JPH03212611A - Light quantity controller - Google Patents

Light quantity controller

Info

Publication number
JPH03212611A
JPH03212611A JP789190A JP789190A JPH03212611A JP H03212611 A JPH03212611 A JP H03212611A JP 789190 A JP789190 A JP 789190A JP 789190 A JP789190 A JP 789190A JP H03212611 A JPH03212611 A JP H03212611A
Authority
JP
Japan
Prior art keywords
light
parallel plane
irradiated
incident
plane plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP789190A
Other languages
Japanese (ja)
Inventor
Makoto Torigoe
真 鳥越
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP789190A priority Critical patent/JPH03212611A/en
Publication of JPH03212611A publication Critical patent/JPH03212611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the control of the irradiation light quantity to a surface to be irradiated with high accuracy over a long period of time even if a high-output laser is used as a light source by disposing a parallel plane plate having a pair of light passage surfaces in the optical path between the light source and the surface to be irradiated and controlling the incident light quantity of the surface to be irradiated. CONSTITUTION:The parallel plane plate 13 disposed in the optical path between the light source 10 and the surface 14 to be irradiated consists of quartz, fluorite, etc., which do not substantially absorb the luminous flux of the short wavelength from the light source 10. The light transmission surface thereof is formed in the original state of a black material which is not formed with a coating film, etc. The parallel plane plate 13 is turned in the luminous flux by a driving means 11 in accordance with the output signal from a detecting means 17 disposed near the surface 14 to be irradiated is turned in the luminous flux to an adequately set an incident angle theta, by which a part of the irradiation light quantity is reflected and the transmitted light quantity is controlled to control the irradiation light quantity to be made incident on the surface 14 to be irradiated. The parallel plane plate 13 has no absorption and since the materials to absorb light are not formed at all on both surfaces, the long-term durability as the optical element is maintained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光源から放射される光束で被照射面を照射する
際、該被照射面への照射光量を制御するようにした光量
制御装置に関し、例えば半導体製造装置等において高エ
ネルギー又は紫外域の光束でマスクやレチクル等の被照
射面を照射する際該被照射面への照射光量を高精度に制
御するようにした光量制御装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a light amount control device that controls the amount of light irradiated onto an irradiated surface when the irradiated surface is irradiated with a luminous flux emitted from a light source. , for example, relates to a light amount control device that precisely controls the amount of light irradiated to an irradiated surface such as a mask or reticle when the irradiated surface is irradiated with high energy or ultraviolet light beam in semiconductor manufacturing equipment, etc. be.

(従来の技術) 従来より、例えばプロジェクタ−等においてはフィルム
面への照射光量の制御を光路中に種々の透過率のND 
(Neutral  D e n s 1ty)フィル
ターを配置して行っている。NDフィルターは一般にガ
ラス基板面上にCr等の金属膜や誘電体多層膜を蒸着し
たり又は基板そのものに色素を混ぜたりして所望の透過
率が得られるように構成されている。
(Prior art) Conventionally, for example, in projectors, etc., the amount of light irradiated onto the film surface is controlled by using NDs with various transmittances in the optical path.
(Neutral Density) This is done by placing a filter. ND filters are generally constructed so that a desired transmittance can be obtained by depositing a metal film such as Cr or a dielectric multilayer film on the surface of a glass substrate, or by mixing a dye into the substrate itself.

又NDフィルターと同様の光学的性質を有する円周方向
に連続的に透過率を変化させた所謂ウェッジNDフィル
ターを光路中で回転させることによって、1枚で任意の
透過率を得て被照射面への光量制御を行うようにした装
置も種々と提案されている。又光束が偏光しでいるとき
にはこれと同様の作用をさせる為に偏光板を用いる方法
も同様にして行なわれている。
In addition, by rotating a so-called wedge ND filter, which has optical properties similar to ND filters and whose transmittance changes continuously in the circumferential direction, in the optical path, a desired transmittance can be obtained with a single filter, and the irradiated surface can be A variety of devices have been proposed that control the amount of light emitted. A similar method is also used in which a polarizing plate is used to achieve the same effect when the light beam is polarized.

この他例えば半導体製造装置においてはウェハ面上に転
写されるパターンの偉質が照明装置の性能、例えば被照
射面上の照射光量の変動等に大きく影響されてくる。
In addition, for example, in semiconductor manufacturing equipment, the quality of the pattern transferred onto the wafer surface is greatly influenced by the performance of the illumination device, such as fluctuations in the amount of light irradiated on the irradiated surface.

この為本出願人は被照射面上の照射光量が所定値となる
ように制御した、特に半導体製造用の露光装置に好適な
光量制御装置を例えば特開昭62−187815号公報
や特開昭63−193130号公報で提案している。
For this reason, the present applicant has developed a light amount control device that controls the amount of irradiated light on the irradiated surface to a predetermined value, which is particularly suitable for exposure equipment for semiconductor manufacturing, for example, in Japanese Patent Laid-Open No. 62-187815 and Japanese Patent Laid-Open No. This is proposed in Japanese Patent No. 63-193130.

これらの公報で提案されている光量制御装置は光路中に
干渉フィルターや偏向素子を配置し、これらの光学素子
で反射又は偏向された光量を検出することにより被照射
面上の照射光量を制御している。
The light amount control devices proposed in these publications place interference filters and deflection elements in the optical path, and control the amount of light irradiated onto the irradiated surface by detecting the amount of light reflected or deflected by these optical elements. ing.

(発明が解決しようとする問題点) 基板面上に蒸着膜を施したり、基板自体に色素を含ませ
光束を吸収して透過率を変化させる方法は、例えば蒸着
膜に関しては金属膜はもとより誘電体膜についても高屈
折率のものは、特に紫外域において、ある程度の吸収を
持っている。
(Problems to be Solved by the Invention) Methods of applying a vapor-deposited film on the substrate surface or impregnating the substrate itself with dye to absorb light flux and change the transmittance can be used, for example, for vapor-deposited films, as well as metal films and dielectric films. Body membranes with a high refractive index also have some degree of absorption, especially in the ultraviolet region.

この吸収の為に対象とする光束が、例えばエキシマレー
ザ等の高エネルギーでしかも紫外域の光束であったりす
ると蒸着膜や基板が光吸収により変質し、光学的性質が
変化し、被照射面への照射光量の高精度な制御が1バな
ってくるという問題点が生じてくる。
If the light beam targeted for this absorption is a high-energy light beam in the ultraviolet region, such as from an excimer laser, the deposited film or substrate will be altered by light absorption, its optical properties will change, and the irradiated surface will A problem arises in that highly accurate control of the amount of irradiation light becomes difficult.

又偏光板については紫外域で使用可能なものは高価かつ
大きさの限定された結晶プリズムしかないという問題点
があった。
Further, regarding polarizing plates, there is a problem in that the only ones that can be used in the ultraviolet region are crystal prisms that are expensive and have a limited size.

本発明は光源から被照射面に至る光路中の適切な位置に
照射光束に対して悪影響を及ぼさない程度にしか吸収し
ない、即ち実質的に吸収せず、又光学的特性が変化しな
い材料より成る光学部材を配置することにより被照射面
への照射光量を高精度に制御するようにした光量制御装
置の提供を目的とする。
The present invention is made of a material that absorbs the irradiated light beam at an appropriate position in the optical path from the light source to the irradiated surface only to the extent that it does not have an adverse effect on the irradiated light beam, that is, it does not substantially absorb it, and its optical properties do not change. An object of the present invention is to provide a light amount control device that controls the amount of light irradiated onto a surface to be irradiated with high precision by arranging optical members.

(問題点を解決するための手段) 本発明の光量制御装置は光源と被照射面との間の光束中
に該光束を実質的に吸収しないコーティング膜の施され
ていない一対の光通過面を有する平行平面板を配置し、
該平行平面板を介し被照射面への入射光量を制御したこ
とを特徴としている。
(Means for Solving the Problems) The light amount control device of the present invention includes a pair of light passing surfaces that are not coated with a coating film that does not substantially absorb the light flux between the light source and the irradiated surface. Place a parallel plane plate with
It is characterized in that the amount of light incident on the irradiated surface is controlled via the parallel plane plate.

この池水発明は前記平行平面板を駆動手段により回動さ
せて該光束の該平行平面板への相対的な入射角度を変化
せしめることによりそこを通過する透過光量を変化させ
被照射面への照射光量を制御している。
In this Ikemizu invention, the parallel plane plate is rotated by a driving means to change the relative angle of incidence of the light beam onto the parallel plane plate, thereby changing the amount of transmitted light passing therethrough and irradiating the irradiated surface. Controls the amount of light.

(実施例) 第1図は本発明を半導体製造用の投影露光装置に適用し
たときの一実施例の概略ブロック図である。同図におい
てlOは光源であり、例えばKrFエキシマレーザ−(
波長248.4nm)やYAGレーザの第4高調波等(
波長265nm)の紫外域で高出力の光束を放射するレ
ーザー等より成っている。
(Embodiment) FIG. 1 is a schematic block diagram of an embodiment in which the present invention is applied to a projection exposure apparatus for semiconductor manufacturing. In the figure, lO is a light source, for example, a KrF excimer laser (
wavelength 248.4nm), the fourth harmonic of YAG laser, etc. (
It consists of a laser that emits a high-output beam in the ultraviolet region (wavelength: 265 nm).

12はレチクルやマスク等の被照射面14を照明する為
の照明光学系である。
12 is an illumination optical system for illuminating an irradiated surface 14 such as a reticle or a mask.

13は平行平面板であり光源10からの短波長の光束に
対して悪影響を及ぼさない程度にしか吸収しない、即ち
実質的に吸収しない石英や蛍石等の材質から成っている
。平行平面板13の光透過面はコーティング膜等が施さ
れていない素材そのままの状態になっている0本実施例
において平行平面板13は光源lOと被照射面14との
間の光路中であればどこに配置しても良い。
A parallel plane plate 13 is made of a material such as quartz or fluorite that absorbs short-wavelength light from the light source 10 only to the extent that it does not have an adverse effect, that is, does not substantially absorb it. The light transmitting surface of the parallel plane plate 13 is made of a raw material without any coating film or the like applied thereto. You can place it anywhere.

又≠行手面板13は光路中で駆動手段11により回動可
能に制御され光束lの入射角θが任意に設定することが
でき、これにより透過光量が任意に制御することができ
るように構成されている。
Furthermore, the row face plate 13 is rotatably controlled by the driving means 11 in the optical path, so that the incident angle θ of the light beam l can be arbitrarily set, and thereby the amount of transmitted light can be arbitrarily controlled. has been done.

15は投影光学系であり被照射面14であるレチクル面
上の回路パターン等をウェハ16面上に投影している。
Reference numeral 15 denotes a projection optical system that projects circuit patterns and the like on the reticle surface, which is the irradiated surface 14, onto the wafer 16 surface.

17は検出手段であり、被照射面14近傍に配置されて
おり、被照射面14への照射光量を検出している。
Reference numeral 17 denotes a detection means, which is disposed near the irradiated surface 14 and detects the amount of light irradiated onto the irradiated surface 14.

尚、駆動手段11は検出手段17からの出力信号に基づ
いて平行平面板13を光束中で回動させている。
Note that the driving means 11 rotates the parallel plane plate 13 in the light beam based on the output signal from the detecting means 17.

本実施例では光源10からの光束を照明光学系12を介
し被照射面14を照射する際、光路中に配置した平行平
面板13の傾きを適切に設定することにより、照射光量
の一部を反射させ、透過光量を制御して、これにより被
照射面14に入射する照射光量を制御している。
In this embodiment, when the light beam from the light source 10 is irradiated onto the irradiated surface 14 through the illumination optical system 12, a part of the amount of irradiated light is reduced by appropriately setting the inclination of the parallel plane plate 13 arranged in the optical path. The amount of light that is reflected and transmitted is controlled, thereby controlling the amount of irradiation light that enters the irradiated surface 14.

特に検出手段17からの出力信号に基づいて駆動手段1
8により平行平面板11を回動させ入射角θを変えるこ
とにより透過光量が任意に制御出来るようにしている。
In particular, based on the output signal from the detection means 17, the driving means 1
8, the amount of transmitted light can be arbitrarily controlled by rotating the parallel plane plate 11 and changing the incident angle θ.

例えば第2図に示すように屈折率n=1.5の材質より
成る平行平面板13に光束lが入射角θで入射したとき
に1面当りのP偏光とS偏光の透過率は第3図に示すよ
うになる。
For example, as shown in FIG. 2, when a light beam l is incident on a plane-parallel plate 13 made of a material with a refractive index n=1.5 at an incident angle θ, the transmittance of P-polarized light and S-polarized light per surface is 3. The result will be as shown in the figure.

尚光束が偏光していないときはP偏光とS偏光の透過率
の平均値(点線で示す曲線)となる。
Note that when the luminous flux is not polarized, it becomes the average value of the transmittance of P-polarized light and S-polarized light (the curve shown by the dotted line).

第2図に示す例では平行平面板13は表面と裏面の2面
あるので実際の透過率は第3図に示す値の2乗となる。
In the example shown in FIG. 2, the parallel plane plate 13 has two surfaces, a front surface and a back surface, so the actual transmittance is the square of the value shown in FIG. 3.

本実施例では平行平面1i13は実質的に光吸収しなく
、かつ双方の面には蒸着膜等、光を吸収する物質が何も
施されていないので透過光量を制御する光学素子として
の初期及び長期の耐久性が良く、長期間にわたり第3図
に示すような値をとり、これにより透過光量を精度良く
制御することのできる光量制御装置の達成を可能として
いる。
In this embodiment, the parallel planes 1i13 do not substantially absorb light, and both surfaces are not coated with any light-absorbing substance such as a vapor deposited film, so they are used initially as optical elements to control the amount of transmitted light. It has good long-term durability and takes values as shown in FIG. 3 over a long period of time, thereby making it possible to achieve a light amount control device that can accurately control the amount of transmitted light.

尚本実施例において透過光量を変更する必要がないとき
は駆動手段11を用いずに平行平面板13への光束の入
射角θを固定にしても良い。
In this embodiment, if there is no need to change the amount of transmitted light, the driving means 11 may not be used and the incident angle θ of the light beam onto the parallel plane plate 13 may be fixed.

一般に第2図に示すように厚さtの平行平面板13に光
束lを入射角θで入射させると透過光束にはΔXの光軸
ずれが生じる。このときの光軸ずれΔXは となる0例えばn=1.5.0270度、tl 0mm
のときΔX=6.65mmとなる。又光束lが結像光束
のときには光軸ずれと共にコマ収差を発生させる原因と
なってくる。
Generally, as shown in FIG. 2, when a light beam l is incident on a parallel plane plate 13 having a thickness t at an incident angle θ, an optical axis shift of ΔX occurs in the transmitted light beam. At this time, the optical axis deviation ΔX is 0. For example, n = 1.5.0270 degrees, tl 0 mm
When ΔX=6.65 mm. Furthermore, when the light beam l is an imaging light beam, it becomes a cause of optical axis deviation and comatic aberration.

そこで本発明において特に光軸ずれやコマ収差の発生が
害となるような場合には第4図に示すように2枚の平行
平面板13a、13bを用い、互いに光束の入射平面が
同一平面A内となり、かつ入射角θの絶対値が同じで入
射方向が逆となる(傾く向きが逆)ように各々の傾きを
調整可能に配置するのが良い。
Therefore, in the present invention, when the occurrence of optical axis deviation or coma aberration is particularly harmful, two parallel plane plates 13a and 13b are used as shown in FIG. It is preferable to arrange the respective inclinations so that their respective inclinations can be adjusted so that the angles of incidence are within the same range, the absolute value of the incident angle θ is the same, and the direction of incidence is opposite (the direction of inclination is opposite).

これによれば光軸ずれΔXはなく、又コマ収差の発生を
防止することが出来る。
According to this, there is no optical axis deviation ΔX, and the occurrence of coma aberration can be prevented.

一般に光束がある面に入射するときの透過率は第3図に
示すようにP偏光とS偏光での透過率が異っているので
光束lが偏光している場合には両偏光の透過光量が変化
してくる。又光束が集光する結像光束のときは非点収差
が発生してくる。
Generally, the transmittance when a light beam is incident on a certain surface is different for P-polarized light and S-polarized light, as shown in Figure 3, so if the light beam l is polarized, the amount of transmitted light for both polarizations is different. is changing. Furthermore, when the light beam is a condensed imaging light beam, astigmatism occurs.

本発明において偏光による透過率の変化や非点収差の影
響を排除するには第5図に示すように2つの平行平面板
13c、13dを用い、入射角θが略同じで入射平面が
互いに直交するように配置するのが良い。
In the present invention, in order to eliminate changes in transmittance due to polarized light and the effects of astigmatism, two parallel plane plates 13c and 13d are used as shown in FIG. It is best to arrange it so that

これによれば平行平面板13cと13dでP偏光とS偏
光が逆転し、双方の偏光の光量差が生じず、又非点収差
の発生も解消するので好ましい。
This is preferable because the P-polarized light and the S-polarized light are reversed by the plane-parallel plates 13c and 13d, and there is no difference in the amount of light between the two polarized lights, and the occurrence of astigmatism is also eliminated.

この池水発明においては第4図に示す系を2つ、全ての
平行平面板の厚さを略等しくして第6図に示すように平
行平面113a、13bに対する光束の入射平面Aと平
行平面板13cと13dに対する光束の入射平面Bとが
互いに直交するように構成すれば光軸ずれ、偏光特性に
よる透過光量の変化、コマ収差、非点収差等の諸問題を
解決した光量制御装置を達成することができる。尚偏光
特性の保存と非点収差の解消の為には、少なくとも平行
平面板13aが平行平面板13c又は13dのいずれか
一方と、又平行平面板13bが他の一方と同じ厚さとな
るように構成すれば良い。
In this Ikemizu invention, two systems shown in FIG. 4 are used, and all the parallel plane plates have approximately the same thickness, and as shown in FIG. If the incident planes B of the light beams 13c and 13d are configured to be perpendicular to each other, a light amount control device can be achieved that solves various problems such as optical axis deviation, changes in the amount of transmitted light due to polarization characteristics, coma aberration, and astigmatism. be able to. In order to preserve polarization characteristics and eliminate astigmatism, at least the parallel plane plate 13a should have the same thickness as either one of the parallel plane plates 13c or 13d, and the parallel plane plate 13b should have the same thickness as the other one. Just configure it.

(発明の効果) 本発明によれば光源と被照射面との間の光路中に前述の
光学的性質を有する平行平面板を配置し、透過光量を制
御することにより、光源として例えばエキシマレーザ等
の高出力レーザを用いても被照射面への照射光量を長期
間にわたり高精度に制御することのできる光量側mv装
置を達成することができる。
(Effects of the Invention) According to the present invention, a plane parallel plate having the above-mentioned optical properties is arranged in the optical path between the light source and the surface to be irradiated, and by controlling the amount of transmitted light, a light source such as an excimer laser or the like can be used. Even if a high-output laser is used, it is possible to achieve a light amount-side mv device that can control the amount of light irradiated onto the irradiated surface with high precision over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略ブロック図、第2図は
第1図の一部分の説明図、第3図はP偏光とS偏光の透
過率の説明図、第4図〜第6図は各々本発明の他の一実
施例の一部の説明図である。 図中1は光束、10は光源、11は駆動手段、12は照
明光学系、13.13a 〜13dは平行7面板、14
は被照射面、15は投影光学系、16はウェハ、17は
検出手段、である。
FIG. 1 is a schematic block diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a part of FIG. 1, FIG. 3 is an explanatory diagram of the transmittance of P-polarized light and S-polarized light, and FIGS. Each figure is an explanatory diagram of a part of another embodiment of the present invention. In the figure, 1 is a light beam, 10 is a light source, 11 is a driving means, 12 is an illumination optical system, 13.13a to 13d are parallel seven-sided plates, and 14
15 is a projection optical system, 16 is a wafer, and 17 is a detection means.

Claims (5)

【特許請求の範囲】[Claims] (1)光源と被照射面との間の光束中に該光束を実質的
に吸収しないコーティング膜の施されていない一対の光
通過面を有する平行平面板を配置し、該平行平面板を介
し被照射面への入射光量を制御したことを特徴とする光
量制御装置。
(1) A parallel plane plate having a pair of light passing surfaces without a coating film that does not substantially absorb the light flux is arranged in the light flux between the light source and the irradiated surface, and the light beam is passed through the parallel plane plate. A light amount control device characterized by controlling the amount of light incident on an irradiated surface.
(2)前記平行平面板を光束中で駆動手段により回動さ
せて該光束の該平行平面板への入射角度を可変にしたこ
とを特徴とする請求項1記載の光量制御装置。
(2) The light amount control device according to claim 1, wherein the parallel plane plate is rotated by a driving means within the light beam to vary the incident angle of the light beam onto the parallel plane plate.
(3)前記平行平面板を2つ該光束の入射平面が同一平
面となり、かつ入射角の絶対値が略等しく入射方向が逆
になるように配置したことを特徴とする請求項1又は2
記載の光量制御装置。
(3) The two parallel plane plates are arranged so that the incident planes of the light beams are the same plane, and the absolute values of the incident angles are substantially equal and the directions of incidence are opposite.
The light amount control device described.
(4)前記平行平面板を2つ該2つの平行平面板への入
射角が略同じで入射平面が互いに直交するように配置し
たことを特徴とする請求項1又は2記載の光量制御装置
(4) The light amount control device according to claim 1 or 2, wherein the two parallel plane plates are arranged so that the incident angles to the two parallel plane plates are substantially the same and the incident planes are perpendicular to each other.
(5)前記平行平面板を4つ該光束中に配置する際、2
つの平行平面板は光束の入射平面が同一平面Aとなり入
射方向が互いに逆になるように配置し、他の2つの平行
平面板は光束の入射平面が該平面Aと直交する同一平面
Bで入射方向が互いに逆になるように配置したことを特
徴とする請求項1又は2記載の光量制御装置。
(5) When arranging four parallel plane plates in the light beam, two
The two parallel plane plates are arranged so that the incident plane of the luminous flux is the same plane A and the directions of incidence are opposite to each other, and the other two parallel plane plates are arranged so that the incident plane of the luminous flux is the same plane B that is perpendicular to the plane A. 3. The light amount control device according to claim 1, wherein the light amount control device is arranged so that the directions thereof are opposite to each other.
JP789190A 1990-01-17 1990-01-17 Light quantity controller Pending JPH03212611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP789190A JPH03212611A (en) 1990-01-17 1990-01-17 Light quantity controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP789190A JPH03212611A (en) 1990-01-17 1990-01-17 Light quantity controller

Publications (1)

Publication Number Publication Date
JPH03212611A true JPH03212611A (en) 1991-09-18

Family

ID=11678207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP789190A Pending JPH03212611A (en) 1990-01-17 1990-01-17 Light quantity controller

Country Status (1)

Country Link
JP (1) JPH03212611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363232A (en) * 1993-04-28 1994-11-08 Imagica, Corp. Device for controlling luminous energy
GB2444163A (en) * 2006-11-24 2008-05-28 Raylase Ag Regulating the power of a laser beam using one or more rotating transparent plates in the beam path
JP2019164213A (en) * 2018-03-19 2019-09-26 株式会社リコー Optical scanner, image projection device, moving body, and manufacturing method of optical scanner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363232A (en) * 1993-04-28 1994-11-08 Imagica, Corp. Device for controlling luminous energy
GB2444163A (en) * 2006-11-24 2008-05-28 Raylase Ag Regulating the power of a laser beam using one or more rotating transparent plates in the beam path
GB2444163B (en) * 2006-11-24 2010-07-21 Raylase Ag System and method for regulating the power of a laser beam
JP2019164213A (en) * 2018-03-19 2019-09-26 株式会社リコー Optical scanner, image projection device, moving body, and manufacturing method of optical scanner

Similar Documents

Publication Publication Date Title
JP2796005B2 (en) Projection exposure apparatus and polarizer
JP4335347B2 (en) Optical system with polarization compensator
US4864123A (en) Apparatus for detecting the level of an object surface
US7199862B2 (en) Beam-splitter optics design that maintains an unflipped (unmirrored) image for a catadioptric lithographic system
JP4065923B2 (en) Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus
US20080186469A1 (en) Polarization rotator and a crystalline-quartz plate for use in an optical imaging system
US8040492B2 (en) Illumination system of a microlithographic projection exposure apparatus
JP2836483B2 (en) Illumination optics
US8625071B2 (en) Optical system and method for characterising an optical system
US7433139B2 (en) Variable attenuator for a lithographic apparatus
JPH03212611A (en) Light quantity controller
KR20050041931A (en) Exposure method
CN110927962B (en) Prism design method, self-reference interferometer and design method and alignment system thereof
US4666292A (en) Projection optical apparatus and a photographic mask therefor
JP3340824B2 (en) Optical system including total reflection prism
JPS61181128A (en) Projection exposure apparatus
US7027235B2 (en) Optical system for providing a useful light beam influenced by polarization
KR100632677B1 (en) Lithography apparatus capable of controlling transmitted light intensity
JPS62187815A (en) Light quantity controller
JP5352989B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR100261266B1 (en) Polarizing beam splitter and its fabrication method using comenting material
JP2744274B2 (en) Illumination device, exposure device, and method of manufacturing semiconductor device using the exposure device
JP2502360B2 (en) Exposure equipment
JPH10206798A (en) Optical device, projection aligner provided with the same and production of device
KR19990033429A (en) Polarized light splitter for two wavelengths and its manufacturing method