JPH03212150A - Linear pulse motor - Google Patents

Linear pulse motor

Info

Publication number
JPH03212150A
JPH03212150A JP533690A JP533690A JPH03212150A JP H03212150 A JPH03212150 A JP H03212150A JP 533690 A JP533690 A JP 533690A JP 533690 A JP533690 A JP 533690A JP H03212150 A JPH03212150 A JP H03212150A
Authority
JP
Japan
Prior art keywords
magnetic circuit
circuit
linear pulse
pulse motor
primary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP533690A
Other languages
Japanese (ja)
Inventor
Mutsuji Kobayashi
小林 睦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP533690A priority Critical patent/JPH03212150A/en
Publication of JPH03212150A publication Critical patent/JPH03212150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To accurately and smoothly position by rocking a primary side magnetic circuit by a specific amount on a plane in the advancing direction by driving means. CONSTITUTION:A primary side magnetic circuit 1 is rocked in the advancing direction on a plane according to an equation by driving means 5. That is, the circuit 1 is always attracted to a secondary side magnetic circuit 3 by magnetic attraction forces of permanent magnets 13, 14, the suction force is received by a thrust bearing 4 to be oscillated. Then, a current flows to an electromagnet 5-1, the circuit 1 is attracted in parallel to the circuit 3. Then, when a movable unit is moved and to a region to be accurately and smoothly positioned, if the current of the magnet 5-1 is interrupted, the circuit 1 is equivalent to the case with a skew of only tau/4 (m=2, n=4) to the circuit 3 by a return spring 5-2. Thus, the region to be accurately and smoothly positioned can be easily altered.

Description

【発明の詳細な説明】 〔概 要〕 ロボット、搬送装置等に用いられるリニアパルスモータ
に関し、 高速でなくともよいが、精度よ(滑らかに位置決めした
すせねばならない領域を容易に変更出来る自由度の高い
リニアパルスモータの提供を目的とし、 1次側磁気回路を固定側の2次側磁気回路上で可動出来
るように支えるフレームに、 該1次側磁気回路の中央を中心として進行方向に対して
平面上で2τ/n−m(但しては歯のピッチ、mはモー
タの相数、nはτの周期の基本波に対して消去する高調
波の次数)だけ揺動自在に支持する支持手段と、 該1次側磁気回路を揺動する駆動手段を設けた構成とす
る。
[Detailed Description of the Invention] [Summary] Regarding linear pulse motors used in robots, conveyance devices, etc., they do not need to be high speed, but they have high accuracy (smooth positioning and a degree of freedom that allows easy change of the area that must be moved). In order to provide a linear pulse motor with high speed, the primary side magnetic circuit is movably supported on the fixed side secondary side magnetic circuit, and the frame is provided with a frame that supports the primary side magnetic circuit so as to be movable on the fixed side. A support that can swing freely by 2τ/n-m (where the pitch of teeth, m is the number of phases of the motor, and n is the order of harmonics to be canceled with respect to the fundamental wave of the period of τ) on a plane. and a drive means for swinging the primary side magnetic circuit.

〔産業上の利用分野〕[Industrial application field]

本発明は、ロホット、搬送装置等に用いられるリニアパ
ルスモータに関する。
TECHNICAL FIELD The present invention relates to a linear pulse motor used in robots, conveyance devices, and the like.

ロホット、搬送装置等に用いられるリニアパルスモータ
(以下LPMと称す)の長い2次側磁気回路としては、
1次側磁気回路を高速に動作させたい領域と、高速でな
くともよいが精度よく滑らかに位置決めしたすせねばな
らない領域があり、この後者の領域を自在に可変出来る
LPMの提供が望まれている。
The long secondary magnetic circuit of a linear pulse motor (hereinafter referred to as LPM) used in robots, conveyors, etc.
There are areas where the primary side magnetic circuit needs to operate at high speed and areas where it does not need to be operated at high speed but must be accurately and smoothly positioned, and it is desired to provide an LPM that can freely vary this latter area. There is.

〔従来の技術〕[Conventional technology]

第4図は従来例のLPMの構成図、第5図は2次側磁気
回路の歯形状の例を示す図、第6図は1例のフルステッ
プ駆動の説明図である。
FIG. 4 is a configuration diagram of a conventional LPM, FIG. 5 is a diagram showing an example of the tooth shape of a secondary side magnetic circuit, and FIG. 6 is an explanatory diagram of an example of full step drive.

LPMは第4図に示す如(、可動部と固定部よりなり、
可動部は等ピッチ間隔で2個づつの矩形状の歯が2組配
列してなる磁極を2組有し、夫々の磁極には磁束を与え
る永久磁石13.14と励磁用コイル15.16を有し
、2つの永久磁石13.14は夫々ヨーク12に接合さ
れている1次側磁気回路lと、1次側磁気回路■を固定
側の2次側磁気回路3上で可動出来るように支えるアル
ミ製のフレーム2よりなっている。
The LPM consists of a movable part and a fixed part, as shown in Figure 4.
The movable part has two sets of magnetic poles each having two sets of rectangular teeth arranged at equal pitch intervals, and each magnetic pole is equipped with a permanent magnet 13.14 that provides magnetic flux and an excitation coil 15.16. The two permanent magnets 13 and 14 movably support the primary magnetic circuit l and the primary magnetic circuit ■ connected to the yoke 12, respectively, on the fixed secondary magnetic circuit 3. It consists of two aluminum frames.

フレーム2には、キャップ支持用ラジアル軸受10とリ
ニアガイド用ラジアル軸受11が設けられており、可動
部をリニアに動かすようになっているっ 2次側磁気回路3には、1次側磁気回路1と同じピッチ
の歯を有している。
The frame 2 is provided with a radial bearing 10 for supporting the cap and a radial bearing 11 for the linear guide, which move the movable part linearly.The secondary magnetic circuit 3 includes a primary magnetic circuit. It has teeth with the same pitch as 1.

LPMを駆動するのには主として、フルステップ駆動と
マイクロステップ駆動がある。
There are two main types of driving LPM: full-step driving and micro-step driving.

フルステップ駆動を、別々の電流を流す励磁用コイルが
2つある2相で、1相駆動の例で説明すると、第6図に
示す如く、1番目には励磁用コイル15に正方向の電流
を流し、次は、励磁用コイル16に正方向の電流を流し
、次は励磁用コイルI5に逆方向の電流を流し、次は、
励磁用コイル16に逆方向の電流を流すことを順次繰り
返す。
To explain full-step drive using an example of a two-phase, one-phase drive in which there are two excitation coils that flow different currents, as shown in FIG. , then a current in the forward direction is passed through the excitation coil 16, then a current in the opposite direction is passed through the excitation coil I5, and then,
The process of passing a current in the opposite direction through the excitation coil 16 is repeated in sequence.

すると歯のピッチをτとすると、1次側磁気回路1の歯
は最初は第6図イに示す如く2次側磁気回路3の歯と合
致した位置で、次は口に示す如(τ/4進み、次はハに
示す如くτ/2進み、次は二に示す如く3τ/4進み、
次はイに示すτ進んだ位置となり、順次進み高速に駆動
することが出来るっ マイクロステップ駆動の場合は、l相側の励磁用コイル
15と、2相側の励磁用コイル16に流す電流は、正弦
波、余弦波で夫々振幅を正弦波。
Then, assuming that the pitch of the teeth is τ, the teeth of the primary magnetic circuit 1 are initially aligned with the teeth of the secondary magnetic circuit 3 as shown in FIG. Advance by 4, then advance by τ/2 as shown in C, then advance by 3τ/4 as shown in 2,
The next position is advanced by τ as shown in A, and can be advanced sequentially and driven at high speed.In the case of microstep drive, the current flowing through the excitation coil 15 on the l-phase side and the excitation coil 16 on the 2-phase side is , sine wave, and cosine wave with amplitude respectively.

余弦波で変化させ、推力を一定にし且つ位相を少しずつ
変化させ、1次側磁気回路lが少しずつ進むようにする
もので、位置決めの高分解能化、高精度化や振動を抑制
した滑らかな動作が出来るが、高速動作をさせるのには
パルス周波数を高める必要かあり、制御回路が複雑にな
り困難である。
It changes with a cosine wave, keeps the thrust constant, and changes the phase little by little, so that the primary magnetic circuit advances little by little.This allows for high resolution and precision positioning, and smooth, vibration-suppressed positioning. Although it can be operated, it is necessary to increase the pulse frequency for high-speed operation, which makes the control circuit complicated and difficult.

次に2次側磁気回路3の歯が矩形状である場合の問題を
説明する。
Next, a problem when the teeth of the secondary side magnetic circuit 3 are rectangular will be explained.

2次側磁気回路3の歯が第5図に示す矩形であると、永
久磁石13.14の起磁力により、2τ/n−mの高調
波、2相の場合はm=2、nは主として4のτ/4周期
のデイテント力が発生してコイル励磁時に、電流により
発生する推力に重畳して推力波形を歪ませ、位置決めの
分解能及び精度が低下し、動作が振動的になる。
If the teeth of the secondary magnetic circuit 3 are rectangular as shown in FIG. A detent force of 4 τ/4 cycles is generated and is superimposed on the thrust force generated by the current when the coil is excited, distorting the thrust waveform, lowering the resolution and accuracy of positioning, and making the operation vibratory.

そこで、歯の形状を、第5図の段付き、又はスキュー付
きとして、これを防ぐことを、本出願人は、昭和61年
12月26日付は特願昭61−315011号及び、昭
和62年7月28日付は特願昭62−189329号の
リニアパルスモータにて特許出願しており、歯の形状を
、第5図の段付き、又はスキュー付きとすることでデイ
テント力による問題は防ぐことが出来るが、この場合は
、高調波を打ち消すようにする為に、推力のピーク値が
低下し加速度や負荷駆動能力が低下する。
Therefore, in order to prevent this problem by changing the shape of the teeth to be stepped or skewed as shown in FIG. A patent application was filed for a linear pulse motor in Japanese Patent Application No. 189329/1989 on July 28th, and problems caused by detent force can be prevented by making the tooth shape stepped or skewed as shown in Figure 5. However, in this case, in order to cancel the harmonics, the peak value of the thrust decreases, and the acceleration and load driving ability decrease.

そこで、高速でなくともよいが、精度よ(滑らかに位置
決めしたすせねばならない領域では、2次側磁気回路3
の歯の形状を第5図の例えばスキュー付きとし、マイク
ロステップ駆動を行い、高速動作の必要な領域では、歯
は矩形の侭で、フルステップ駆動を行うようにしている
Therefore, although high speed is not required, accuracy (in areas where smooth positioning is required, the secondary magnetic circuit 3
The shape of the teeth is, for example, skewed as shown in FIG. 5, and microstep drive is performed, and in areas where high-speed operation is required, the teeth are rectangular and full step drive is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の従来の方法では、高速でなくとも
よいが、精度よく滑らかに位置決めしたすせねばならな
い領域を変更したい時は、変更出来ず、用途に対し自由
度が限定される問題点がある。
However, although the above conventional method does not require high speed, when you want to change an area that must be moved precisely and smoothly, it cannot be changed, and there is a problem that the degree of freedom for the application is limited. .

本発明は、高速でなくともよいが、精度よく滑らかに位
置決めしたすせねばならない領域を容易に変更出来る自
由度の高いLPMの提供を目的としている。
The present invention aims to provide an LPM with a high degree of freedom, which does not require high speed, but can easily change a region that must be moved accurately and smoothly.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理図である。 FIG. 1 is a diagram showing the principle of the present invention.

第1図に示す如く、等ピッチ間隔で複数の矩形状の歯が
配列されてなる磁極を複数有し、且つ該夫々の磁極に磁
束を与える永久磁石と励磁用コイルを有する1次側磁気
回路lと、 該1次側磁気回路lを固定側の2次側磁気回路3上で可
動出来るように支えるフレーム2よりなる可動部と、 複数の矩形状の歯が前記のピッチと等しい等ピッチ間隔
で配列されてなる固定側の該2次側磁気回路3よりなる
リニアパルスモータにおいて、該フレーム2に、 該1次側磁気回路lの中央を中心として進行方向に対し
て平面上で2τ/n−m(但しτは歯のピッチ、mはモ
ータの相数、nはτの周期の基本波に対して消去する高
調波の次数)だけ揺動自在に支持する支持手段4と、 該1次側磁気回路lを揺動する駆動手段5を設ける。
As shown in FIG. 1, a primary side magnetic circuit has a plurality of magnetic poles each having a plurality of rectangular teeth arranged at equal pitch intervals, and has a permanent magnet and an excitation coil that provide magnetic flux to each of the magnetic poles. 1, a movable part consisting of a frame 2 that supports the primary magnetic circuit 1 movably on the secondary magnetic circuit 3 on the stationary side, and a plurality of rectangular teeth arranged at equal pitches equal to the above-mentioned pitch. In the linear pulse motor consisting of the secondary magnetic circuits 3 on the fixed side arranged in the frame 2, the linear pulse motor has a linear pulse motor having a linear pulse width of 2τ/n on a plane in the traveling direction centered at the center of the primary magnetic circuit l. -m (where τ is the pitch of the teeth, m is the number of phases of the motor, and n is the order of harmonics to be canceled with respect to the fundamental wave of the period of τ); Driving means 5 for swinging the side magnetic circuit l is provided.

〔作 用〕[For production]

本発明によれば、可動部が、高速でなくともよいが、精
度よく滑らかに位置決めしたすせねばならない領域にな
ると、駆動手段5にて、1次側磁気回路lを、進行方向
に対し平面上で2τ/n・mだけ揺動させる。
According to the present invention, when the movable part does not need to move at high speed, but when it reaches an area where it must be precisely and smoothly positioned, the driving means 5 moves the primary magnetic circuit l to a plane parallel to the traveling direction. It is oscillated by 2τ/n·m at the top.

すると、相対的に2次側磁気回路3の歯の形状を第5図
のスキュー付きとしたこととなり、精度よく滑らかに位
置決めをしたりすることが出来る。
Then, the shape of the teeth of the secondary side magnetic circuit 3 becomes relatively skewed as shown in FIG. 5, and positioning can be performed accurately and smoothly.

即ち、高速でなくともよいが、精度よく滑らかに位置決
めしたすせねばならない領域となれば、単に駆動手段5
にて、1次側磁気回路lを揺動すれば、精度よ(滑らか
に位置決めをしたりすることが出来るので、高速でなく
ともよいが、精度よく滑らかに位置決めしたすせねばな
らない領域を簡単に変更出来、自由度が高くなる。
In other words, although it does not have to be at high speed, if the area needs to be precisely and smoothly positioned, the drive means 5 may simply be used.
If you oscillate the primary magnetic circuit l, you can achieve smooth positioning, so it doesn't have to be high speed, but it is easy to move the area that needs to be accurately and smoothly positioned. can be changed, increasing the degree of freedom.

勿論、駆動方法としては、高速でな(ともよいが、精度
よく滑らかに位置決めしたすせねばならない領域では、
マイクロステップ駆動とし、高速を必要とする領域では
フルステップ駆動とすればよい。
Of course, the driving method should be at high speed (although this is fine, in areas where accurate and smooth positioning is required,
Micro-step driving may be used, and full-step driving may be used in areas requiring high speed.

〔実施例〕〔Example〕

第2図は本発明の実施例のLPMの構成図であり、駆動
手段としては電磁石を用い揺動させる例である。
FIG. 2 is a block diagram of an LPM according to an embodiment of the present invention, in which an electromagnet is used as a driving means to swing the LPM.

第2図で第4図の従来例と異なる点は、アルミ製のフレ
ーム2に、1次側磁気回路lを支えるスラスト軸受4を
取りつけ、1次側磁気回路lの中央を中心として、進行
方向に対しτ/4(m=2゜n=4の場合)だけ揺動自
在にした点及び、フレーム2に電磁石5−1を取り付は
又復帰はね5−2をフレーム2と1次側磁気回路1間に
取り付けた点である。
The difference between FIG. 2 and the conventional example shown in FIG. 4 is that a thrust bearing 4 that supports the primary magnetic circuit l is attached to an aluminum frame 2, and In addition, the electromagnet 5-1 is attached to the frame 2, and the return spring 5-2 is connected to the frame 2 and the primary side. This is the point attached between the magnetic circuits 1.

こうなると、1次側磁気回路lは永久磁石13゜14の
磁気吸引力で、ギャップを隔てて常に2次側磁気回路2
に吸引され、吸引力をスラスト軸受4で受け、上記の如
く揺動自在となる。
In this case, the primary magnetic circuit 1 is always connected to the secondary magnetic circuit 2 across the gap due to the magnetic attraction force of the permanent magnets 13 and 14.
The thrust bearing 4 receives the suction force and becomes swingable as described above.

そこで、通常は、電磁石5に電流を流し、1次側磁気回
路lを引きつけ、2次側磁気回路3に平行にしておく。
Therefore, normally, a current is applied to the electromagnet 5 to attract the primary magnetic circuit 1 and to make it parallel to the secondary magnetic circuit 3.

可動部が移動し、高速でな(ともよいが、精度よく滑ら
かに位置決めしたすせねばならない領域になると、電磁
石5の電流を断とすれば、復帰はね5−2にて、1次側
磁気回路lは、2次側磁気回路3に対してτ/4だけ斜
めになり、第5図のスキュー付きの場合と等価となる。
When the movable part moves and reaches an area where it must be moved at high speed (or better yet, accurately and smoothly), if the current of the electromagnet 5 is cut off, the primary side The magnetic circuit 1 is inclined by τ/4 with respect to the secondary magnetic circuit 3, and is equivalent to the skewed case shown in FIG.

第3図は本発明の他の実施例のしPMの構成図であり、
駆動手段としては、圧電素子を用い揺動させる例であり
、(B)に変位拡大機構を示している。
FIG. 3 is a block diagram of a PM according to another embodiment of the present invention,
As the drive means, a piezoelectric element is used for swinging, and (B) shows the displacement magnification mechanism.

第3図で第2図と異なる点は、電磁石5−1の代わりに
圧電素子5−4による変位拡大機構5−3を用いた点で
あるので、異なる点を中心に説明する。
The difference between FIG. 3 and FIG. 2 is that a displacement magnifying mechanism 5-3 using a piezoelectric element 5-4 is used instead of the electromagnet 5-1, so the explanation will focus on the different points.

第3図(A)(B)に示す圧電素子5−4に電圧を印加
すると、素子が延びて、1次側磁気回路1は、2次側磁
気回路3と平行になる。
When a voltage is applied to the piezoelectric element 5-4 shown in FIGS. 3A and 3B, the element extends and the primary magnetic circuit 1 becomes parallel to the secondary magnetic circuit 3.

電圧を印加しない時は、復帰はね5−2により1次側磁
気回路lは2次側磁気回路3に対してτ/4だけ斜めに
なる。
When no voltage is applied, the primary magnetic circuit 1 is inclined by τ/4 with respect to the secondary magnetic circuit 3 due to the return spring 5-2.

圧電素子5−4の変位は数十μmと小さいので、第3図
(B)に示す如く2段のてこ機構により、素子の変位を
(z2#+ )x(12a/13)だけ拡大している。
Since the displacement of the piezoelectric element 5-4 is as small as several tens of μm, the displacement of the element is expanded by (z2#+)x(12a/13) using a two-stage lever mechanism as shown in FIG. 3(B). There is.

この場合は、電圧印加時でも、圧電素子5−4には電流
は殆ど流れず、電磁石を用いた場合より消費電力は小さ
(なる。
In this case, even when voltage is applied, almost no current flows through the piezoelectric element 5-4, and the power consumption is smaller than when an electromagnet is used.

勿論、駆動方法としては、高速でな(ともよいが、精度
よ(滑らかに位置決めしたすせねばならない領域では、
マイクロステップ駆動とし、高速を必要とする領域では
フルステップ駆動とすればよい。
Of course, as a driving method, high speed (or better), but accuracy (in areas where smooth positioning is required,
Micro-step driving may be used, and full-step driving may be used in areas requiring high speed.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明せる如く本発明によれば、高速でな(と
もよいが、精度よく滑らかに位置決めしたすせねばなら
ない領域を容易に変更出来る自白度の高いLPMが得ら
れる効果がある。
As described in detail above, according to the present invention, there is an effect that a highly self-explanatory LPM can be obtained that can easily change the area that must be moved at high speed (or better yet, precisely and smoothly).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は本発明の実施例のリニアパルスモータの構成図
、 第3図は本発明の他の実施例のリニアパルスモータの構
成図、 第4図は従来例のリニアパルスモータの構成図、第5図
は2次側磁気回路の歯形状の例を示す図、第6図は1例
のフルステップ駆動の説明図である。 図において、 1は1次側磁気回路、 2はフレーム、 3は2次側磁気回路、 4は支持手段、スラスト軸受、 5は駆動手段、 5−1は電磁石、 5−2は復帰はね、 5−3は変位拡大機構、 5−4は圧電素子、 10はギャップ支持用ラジアル軸受、 ■はリニアガイド用ラジアル軸受、 2はヨーク、 3、I4は永久磁石、 5.16は励磁用コイルを示す。 平 面 図 話 正 面 図 本発明の天井例のリニアパルスを一夕の橋仄図(@狐、
51ZjB穂動) 、t’ffの1世の突崩ダ・1f)す:7ハ゛ルスモ−
qO構廣図(/lf@t+l二iSmvJ) 第 図 (A)正 面 図 (8) (@ 面 図 従来伊1のリニアパルスを一夕の橋成図第 4 図 処杉 袴付き ス士ニー付き 2次側磁気回路e歯形状V例1本T図 第 図 3 口 @瓦仁相 j 1目側 何鴫鳳コイル15) 11列のフルスラ (I相万肪 第 口 2次便1  34 90°    27θ 2相側 (万ガ狸]イ)し 16) 、ツー駆動f詑明図 支2相の逼ざ) 図
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a block diagram of a linear pulse motor according to an embodiment of the present invention, Fig. 3 is a block diagram of a linear pulse motor of another embodiment of the present invention, and Fig. 4 is a block diagram of a linear pulse motor according to another embodiment of the present invention. FIG. 5 is a diagram showing the configuration of a conventional linear pulse motor, FIG. 5 is a diagram showing an example of the tooth shape of the secondary magnetic circuit, and FIG. 6 is an explanatory diagram of an example of full-step drive. In the figure, 1 is a primary magnetic circuit, 2 is a frame, 3 is a secondary magnetic circuit, 4 is a support means, a thrust bearing, 5 is a drive means, 5-1 is an electromagnet, 5-2 is a return spring, 5-3 is a displacement magnifying mechanism, 5-4 is a piezoelectric element, 10 is a radial bearing for supporting the gap, ■ is a radial bearing for a linear guide, 2 is a yoke, 3 and I4 are permanent magnets, 5.16 is an excitation coil show. Plan view Front view Linear pulse of the ceiling example of the present invention
51.
qO structure diagram (/lf@t+l2iSmvJ) Diagram (A) Front view (8) (@ Front view The conventional linear pulse of Italy 1 is a bridge construction diagram No. 4 With cedar hakama and knee-high knee Secondary side magnetic circuit e Tooth shape V example 1 piece T diagram Figure 3 Mouth @Ganren phase j 1st side He Hungfeng coil 15) 11 rows of full throttle (I phase Wanfat 2nd mouth secondary flight 1 34 90° 27θ 2 Phase side (Manga Tanuki) I) 16) , Two-drive f Yingming Zusu 2-phase connection) Fig.

Claims (1)

【特許請求の範囲】 〔1〕等ピッチ間隔で複数の矩形状の歯が配列されてな
る磁極を複数有し、且つ該夫々の磁極に磁束を与える永
久磁石と励磁用コイルを有する1次側磁気回路(1)と
、 該1次側磁気回路(1)を固定側の2次側磁気回路(3
)上で可動出来るように支えるフレーム(2)よりなる
可動部と、 複数の矩形状の歯が前記のピッチと等しい等ピッチ間隔
で配列されてなる固定側の該2次側磁気回路(3)より
なるリニアパルスモータにおいて、該フレーム(2)に
、 該1次側磁気回路(1)の中央を中心として進行方向に
対して平面上で2τ/n・m(但しτは歯のピッチ、m
はモータの相数、nはτの周期の基本波に対して消去す
る高調波の次数)だけ揺動自在に支持する支持手段(4
)と、 該1次側磁気回路(1)を揺動する駆動手段(5)を設
けたことを特徴とするリニアパルスモータ。 〔2〕請求項1記載の支持手段(4)としてはスラスト
軸受、駆動手段(5)としては電磁石又は圧電素子を用
いたことを特徴とするリニアパルスモータ。
[Scope of Claims] [1] A primary side having a plurality of magnetic poles each having a plurality of rectangular teeth arranged at equal pitch intervals, and having a permanent magnet and an excitation coil that provide magnetic flux to each of the magnetic poles. A magnetic circuit (1), and the primary side magnetic circuit (1) is connected to a fixed side secondary side magnetic circuit (3).
), and a fixed side secondary magnetic circuit (3) comprising a plurality of rectangular teeth arranged at equal pitch intervals equal to the above-mentioned pitch. In the linear pulse motor, the frame (2) is provided with 2τ/n m (where τ is the tooth pitch, m
The supporting means (4
), and a driving means (5) for swinging the primary side magnetic circuit (1). [2] A linear pulse motor characterized in that a thrust bearing is used as the support means (4) according to claim 1, and an electromagnet or a piezoelectric element is used as the drive means (5).
JP533690A 1990-01-12 1990-01-12 Linear pulse motor Pending JPH03212150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP533690A JPH03212150A (en) 1990-01-12 1990-01-12 Linear pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP533690A JPH03212150A (en) 1990-01-12 1990-01-12 Linear pulse motor

Publications (1)

Publication Number Publication Date
JPH03212150A true JPH03212150A (en) 1991-09-17

Family

ID=11608391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP533690A Pending JPH03212150A (en) 1990-01-12 1990-01-12 Linear pulse motor

Country Status (1)

Country Link
JP (1) JPH03212150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129141B2 (en) 2004-01-09 2006-10-31 Elpida Memory, Inc. Method for manufacturing a semiconductor device having a low junction leakage current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129141B2 (en) 2004-01-09 2006-10-31 Elpida Memory, Inc. Method for manufacturing a semiconductor device having a low junction leakage current

Similar Documents

Publication Publication Date Title
JP3815750B2 (en) Stage apparatus, and exposure apparatus and device manufacturing method using the stage apparatus
JP3945148B2 (en) XY table and XYZ table
US4507597A (en) Electro-magnetic alignment assemblies
JP2002325421A (en) Linear motor, stage apparatus using the same aligner, and device manufacturing method
JPH11287880A (en) Stage device, aligner using the device and device production method
JPH09308218A (en) Linear motor, stage system and exposure device using it
JP3821101B2 (en) Linear drive device, control method thereof, and XY table
JPH03212150A (en) Linear pulse motor
JPH10327571A (en) Linear pulse motor
JP2663533B2 (en) Pulse motor
JP2002325416A (en) Electromagnetic actuator
JP7386671B2 (en) Drive device and drive method
JP4137091B2 (en) Stage apparatus, linear motor, and exposure apparatus and device manufacturing method using the stage apparatus
JPS62254681A (en) X-y stage
JP2662697B2 (en) Non-contact actuator
JPH03169253A (en) Alternating current linear servomotor
RU2030079C1 (en) Line stepping motor
JP3159336B2 (en) Surface pulse motor
JPH07227076A (en) Forward/reverse rotation stepping motor
JPS5921272A (en) Linear motor
JP2001025228A (en) Linear motor
JPS63234864A (en) Low-noise linear pulse motor
JP5016636B2 (en) Two-phase stepping motor drive device
JPH06327223A (en) Pulse motor
JPH11178368A (en) Actuator, motor and aligner