JPH03211451A - Detection of hydrogen quantity in iron or steel - Google Patents

Detection of hydrogen quantity in iron or steel

Info

Publication number
JPH03211451A
JPH03211451A JP682990A JP682990A JPH03211451A JP H03211451 A JPH03211451 A JP H03211451A JP 682990 A JP682990 A JP 682990A JP 682990 A JP682990 A JP 682990A JP H03211451 A JPH03211451 A JP H03211451A
Authority
JP
Japan
Prior art keywords
hydrogen
steel
iron
metal
electrical resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP682990A
Other languages
Japanese (ja)
Inventor
Shigeru Suzuki
茂 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP682990A priority Critical patent/JPH03211451A/en
Publication of JPH03211451A publication Critical patent/JPH03211451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To detect the quantity of the hydrogen absorbed by iron or steel by joining one end of V, Nb or Ta in a space formed in the iron or steel, thickening the hydrogen permeated in the iron or steel from a hydrogen infiltration atmosphere and measuring the change in electric resistivity. CONSTITUTION:The iron or steel 2 is welded to the iron or steel 1 to form the space and a hydrogen detecting metal 3 of high-purity V, Nb or Ta is joined to the iron or steel 2 in this space. Terminals 61 to 64 for measuring the electric resistivity are joined to the metal 3 and the holes in which the terminals 61 to 64 penetrate the iron or steel are hermetically sealed by insulating seals 51 to 54. The outer side of the iron or steel 2 is then exposed to the hydrogen infiltration atmosphere and the hydrogen is permeated through the joint surfaces. The hydrogen infiltering the metal 3 is thickened in the metal and the electric resistivity is changed. The change in this electric resistivity is measured, by which the hydrogen quantity is detected. The quantity of the hydrogen absorbed by the iron or steel is detected in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、水溶液や水素ガス発生雰囲気などから鉄鋼
材料が吸収する水素量を検出する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for detecting the amount of hydrogen absorbed by a steel material from an aqueous solution, a hydrogen gas generating atmosphere, or the like.

〔従来の技術〕[Conventional technology]

通常の鉄鋼材料は水素の吸収により破壊が起こり易くな
る。鉄鋼の遅れ破壊などの現象はこの水素吸収による脆
化である。これらの現象が起こるか否かを予測するには
鉄鋼材料がどの程度水素を吸収し易い雰囲気に暴露され
ていたかを知ることが重要であり、そのためには鉄鋼中
に吸収された水素量を検出する必要がある。
Ordinary steel materials are susceptible to destruction due to absorption of hydrogen. Phenomena such as delayed fracture of steel are caused by embrittlement due to this hydrogen absorption. In order to predict whether or not these phenomena will occur, it is important to know to what extent the steel material has been exposed to an atmosphere that easily absorbs hydrogen. There is a need to.

従来、雰囲気から鉄鋼中に侵入した水素を検出する方法
としては、鉄鋼中に空間を作っておき、その中に鉄鋼中
を透過してきた水素が水素ガスとして発生し、その蓄積
したガスを抽出して、分析する方法(特公昭56−44
369号公報)がある。
Conventionally, the method for detecting hydrogen that has entered steel from the atmosphere is to create a space in the steel, in which the hydrogen that has permeated through the steel is generated as hydrogen gas, and the accumulated gas is extracted. method for analyzing
No. 369).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来技術では、鉄鋼中を透過してきた水素が水素
検出空間部でガスとして発生する反応が必要であり、水
素ガスをそのたびごとに抽出し、分析しなければならず
、同一試験片で時間の経過に伴う水素の検出が容易にで
きない点に問題がある。本発明はこれらの点を解決した
ものである。
The above conventional technology requires a reaction in which the hydrogen that has permeated through the steel is generated as a gas in the hydrogen detection space, and the hydrogen gas must be extracted and analyzed each time, using the same test piece. The problem is that hydrogen cannot be easily detected over time. The present invention solves these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の従来技術とは異なった原理で鉄鋼中の水
素を検出するものである。すなわち、ある種の金属は水
素を吸収し易く、水素吸収に伴い電気的性質が変化する
性質を利用し、鉄鋼中の水素を検出するものである。第
1図はこの原理の模式図を示している。水素吸収により
脆化しやすい鉄鋼1,2中の空間で、線状にした水素を
吸収し易い金属3ここではV、NbあるいはTaと、水
素脆化に敏感な高強度の鉄鋼2を接合すると、鉄鋼中に
侵入してきた水素はそれらの金属中に濃化する。水素濃
化によりそれらの電気抵抗率が変化し、この電気抵抗率
に基づいて水素量を検出できる1本発明はかかる原理を
基にしたものである。
The present invention detects hydrogen in steel using a principle different from that of the prior art described above. That is, hydrogen in steel is detected by utilizing the property that certain metals easily absorb hydrogen and that their electrical properties change as the hydrogen is absorbed. FIG. 1 shows a schematic diagram of this principle. In the spaces in the steels 1 and 2 that are prone to embrittlement due to hydrogen absorption, when a linear metal 3 that easily absorbs hydrogen, here V, Nb, or Ta, is joined to a high-strength steel 2 that is sensitive to hydrogen embrittlement, Hydrogen that has entered steel concentrates in those metals. The present invention is based on this principle, in which hydrogen concentration changes the electrical resistivity of these elements, and the amount of hydrogen can be detected based on this electrical resistivity.

すなわち、本発明は、鉄鋼中の空間で線状のV。That is, the present invention is directed to a linear V in a space in steel.

NbあるいはTaの一端を該鉄鋼に接触させ、溶液ある
いは気体雰囲気から該鉄鋼中を透過してくる水素を、そ
れらの金属中に濃化させ、その電気抵抗率の変化を測定
し、鉄鋼が雰囲気から吸収した水素量を検出する方法で
ある。
One end of Nb or Ta is brought into contact with the steel, and the hydrogen that permeates through the steel from a solution or gas atmosphere is concentrated in those metals, and the change in electrical resistivity is measured. This method detects the amount of hydrogen absorbed from the water.

次に本発明で水素検出のための金属として、V。Next, in the present invention, V is used as a metal for detecting hydrogen.

NbあるいはTaを用いた理由について述べる。The reason for using Nb or Ta will be described.

V、NbあるいはTaは鉄鋼よりも安定に水素を吸収し
、しかも水素の固溶量が高い。そのため、水素吸収によ
り電気抵抗率が大きく変化する。
V, Nb, or Ta absorbs hydrogen more stably than steel, and moreover, the amount of solid solution of hydrogen is higher. Therefore, the electrical resistivity changes significantly due to hydrogen absorption.

一般に金属の純度が高いものほど、その電気抵抗率が低
いため、水素による電気抵抗率変化量を検出し易い。し
たがって、超高真空中でV、Nb。
Generally, the higher the purity of a metal, the lower its electrical resistivity, so it is easier to detect the amount of change in electrical resistivity due to hydrogen. Therefore, V, Nb in ultra-high vacuum.

Taをよく焼鈍して脱ガスし、純度を高めたものが水素
の検出金属として望ましい。これらの金属3の電気抵抗
率を測定し易いように、形状としては直径0.1〜0.
5■の細線で長さ5〜201911程度の形状のものを
用いる。鉄鋼中に設けた空間に、水素検出金属3の一端
を鉄I12と接合し、接合面を通して水素検出金属側へ
水素が透過してくるようにする。電気抵抗率測定用の電
流端子61y62と電圧端子6a s 64を水素検出
金属3に接合し、水素検出金属3とそれらの端子61〜
64を鉄鋼1.2中の空間に納める。該空間は外部の溶
液あるいは気体雰囲気と直接接触しないように密閉する
。第3図では、鉄鋼2を1に溶接し、端子61〜64が
鉄鋼2を貫通する穴を絶縁シール51〜54で密閉して
いる。すなわち、水素検出金属3の電気抵抗率を安定に
測定するために、水素検出金属3および測定端子61〜
64を他の部分1゜2と電気的に絶縁して空間内に保持
している。場合によっては空間内に絶縁体を充填する。
Ta that has been well annealed and degassed to increase its purity is desirable as a hydrogen detection metal. In order to easily measure the electrical resistivity of these metals 3, the shape is 0.1 to 0.0 mm in diameter.
A thin wire with a diameter of 5 cm and a length of about 5 to 201911 mm is used. One end of the hydrogen detection metal 3 is joined to the iron I12 in a space provided in the steel, so that hydrogen permeates to the hydrogen detection metal side through the joint surface. The current terminals 61y62 and voltage terminals 6a s 64 for measuring electrical resistivity are joined to the hydrogen detection metal 3, and the hydrogen detection metal 3 and those terminals 61 to 64 are connected to the hydrogen detection metal 3.
64 is placed in the space inside steel 1.2. The space is sealed to prevent direct contact with external solution or gaseous atmosphere. In FIG. 3, the steel 2 is welded to 1, and the holes through which the terminals 61 to 64 pass through the steel 2 are sealed with insulating seals 51 to 54. That is, in order to stably measure the electrical resistivity of the hydrogen detection metal 3, the hydrogen detection metal 3 and the measurement terminals 61 to
64 is held in the space while being electrically insulated from the other parts 1.2. In some cases, the space is filled with an insulator.

電気抵抗率は、精度良く測定するために一定温度で四端
子法で測定する。
Electrical resistivity is measured using the four-terminal method at a constant temperature in order to measure it with high accuracy.

〔作用〕[Effect]

上記の本発明を熱力学的に説明する。通常の炭素鋼、低
合金鋼などの鉄鋼は、水素ガスの溶解に対し1、吸熱型
の反応を呈し、言い替えれば鉄鋼中の水素は不安定に存
在する。一方、水素ガスの溶解において発熱反応型の金
属があり、それらには水素が安定に存在し、水素を吸収
し易い。発熱反応型の金属の種々の特性は水素量によっ
て変化する。Va族金属のV、Nb、TaおよびIVa
族金属のTi、Zr、Hfなどがこれに相当する。
The above invention will be explained thermodynamically. Normal steel such as carbon steel and low alloy steel exhibits an endothermic reaction to the dissolution of hydrogen gas; in other words, hydrogen in steel exists unstablely. On the other hand, there are metals that react exothermically when dissolving hydrogen gas, in which hydrogen exists stably, and they easily absorb hydrogen. Various properties of exothermic metals change depending on the amount of hydrogen. Va group metals V, Nb, Ta and IVa
Group metals such as Ti, Zr, and Hf correspond to this.

I V a族金属のT I HZ r r Hfの場合
、水素を吸収しても水素化物を形成しやすく、電気抵抗
率の変化は小さいので1本発明には適さない。
In the case of T I HZ r r Hf, which is an IV a group metal, it is not suitable for the present invention because it easily forms a hydride even if it absorbs hydrogen, and the change in electrical resistivity is small.

Va族金属のV、Nb、Taは水素を吸収しても、数%
まで固溶するため水素固溶による電気抵抗率の変化が大
きく検出し易い、これらの金属と鉄鋼を接合すると水素
は鉄鋼中よりも発熱反応型金属の方へ濃化する。この濃
化した水素は発熱反応型金属の電気抵抗率の変化により
測定することができる。水素による電気抵抗率への寄与
、約1、lX10−’  Ω+*/at%(Trans
、Japan  In5t、Metals20(197
9)647)を用いると、測定された電気抵抗率の変化
量から水素量が計算できる6水力式では分析でのガス発
生を必要とせず、固体中に入った水素を直接検出でき、
しかも時間による変化を調べられる。したがって、この
原理では、水素検出部での水素ガスの発生を必要とせず
、さらに分析のための水素ガスの抽出を必要としないた
め、鉄鋼から直接金属中に濃化した水素を時間と共に検
出できる。
Even if the Va group metals V, Nb, and Ta absorb hydrogen, only a few percent
When these metals and steel are joined, hydrogen is concentrated in the exothermic reaction metal rather than in the steel. This concentrated hydrogen can be measured by the change in electrical resistivity of the exothermically reactive metal. The contribution by hydrogen to the electrical resistivity is approximately 1, lX10-' Ω+*/at% (Trans
, Japan In5t, Metals20 (197
9) By using 647), the hydrogen content in the solid can be directly detected without the need for gas generation during analysis using the 6-hydraulic formula, which allows the amount of hydrogen to be calculated from the amount of change in the measured electrical resistivity.
Moreover, changes over time can be investigated. Therefore, this principle does not require the generation of hydrogen gas in the hydrogen detection section, nor does it require the extraction of hydrogen gas for analysis, making it possible to directly detect hydrogen concentrated in metals from steel over time. .

高強度の鉄鋼は水素の吸収により破壊が起こり易くなり
、使用中の水素吸収が問題である。たとえば、荷重のあ
る状態で高強度の鉄鋼を使用し、水素ガス発生雰囲気か
ら水素を吸収すると、鉄鋼が脆化することがある。また
、硫化物が鉄鋼への水素吸収を促進し、脆化が起こるこ
ともある。これらはそれぞれ遅れ破壊、硫化物応力割れ
と呼ばれ、鉄鋼を使用する上での問題となっている。こ
れらの現象を予測するには鉄鋼が水素を吸収し易い雰囲
気にどの程度暴露されていたかを監視する必要がある。
High-strength steel is susceptible to destruction due to hydrogen absorption, and hydrogen absorption during use is a problem. For example, when high-strength steel is used under load and absorbs hydrogen from a hydrogen gas generating atmosphere, the steel may become brittle. Sulfides may also promote hydrogen absorption into steel, leading to embrittlement. These are called delayed fracture and sulfide stress cracking, respectively, and are problems when using steel. To predict these phenomena, it is necessary to monitor the extent to which steel is exposed to an atmosphere that easily absorbs hydrogen.

本発明の鉄鋼中の水素検出法は鉄鋼中を透過してくる水
素を検出することができ、鉄鋼が水素吸収の雰囲気に暴
露された程度を監視するのに効果的である。
The method for detecting hydrogen in steel of the present invention can detect hydrogen permeating through steel, and is effective in monitoring the extent to which steel is exposed to a hydrogen-absorbing atmosphere.

〔実施例〕〔Example〕

第1図に示す態様で、直径0.2閣、長さio’noの
99%の純度のVの線材3に電気抵抗測定のための測定
端子61〜64を接続し、該線材3を厚さ0.1m の
冷延薄鋼板(JIS G31415PCC) 2に点溶
接した。電気抵抗率の水素吸収による変化を測定しやす
くするために、線材3の端子間の測定部は鉄鋼1,2に
は直接接触しないようにしである。鋼板2の外側が水素
侵入雰囲気に暴露し、■線材3側は水素侵入雰囲気に触
れないように測定系を作成した。室温で0.1規定硫酸
水溶液を電気分解浴中で白金を陽極、鉄板2を陰極にし
、鉄板2の外側に水素ガスを発生させた。電気分解を中
断しながら、0℃におけるV線材3の電気抵抗率を調べ
たところ、■線材3の電気抵抗率は26.OX 10−
”0厘から電気分解の時間経過と共に連続的に増加し、
計1時間の電気分解で26.5 X 10−” Ω1に
増加した。この水素導入による電気抵抗率の増加量0.
5X10−”Ω曹は、水素の電気抵抗率への寄与1、l
X10−” Ωm/at%からv1a材3におイテ約0
.45%の水素量が検出されたことを示している。
In the manner shown in FIG. 1, measurement terminals 61 to 64 for measuring electrical resistance are connected to a V wire 3 having a diameter of 0.2 mm and a length of io'no and having a purity of 99%. It was spot welded to a cold-rolled thin steel plate (JIS G31415PCC) 2 with a length of 0.1 m. In order to easily measure the change in electrical resistivity due to hydrogen absorption, the measuring section between the terminals of the wire 3 is designed so as not to come into direct contact with the steels 1 and 2. The measurement system was created so that the outside of the steel plate 2 was exposed to the hydrogen-invading atmosphere, and the wire 3 side was not exposed to the hydrogen-invading atmosphere. Platinum was used as an anode and iron plate 2 was used as a cathode in an electrolytic bath containing a 0.1 N sulfuric acid aqueous solution at room temperature, and hydrogen gas was generated on the outside of iron plate 2. When the electrical resistivity of the V wire 3 at 0°C was investigated while electrolysis was interrupted, the electrical resistivity of the wire 3 was 26. OX 10-
``Continuously increases from 0 rin with the passage of time of electrolysis,
After a total of 1 hour of electrolysis, the resistance increased to 26.5 x 10-'' Ω1.The increase in electrical resistivity due to hydrogen introduction was 0.
5X10-” Ω So the contribution of hydrogen to the electrical resistivity is 1,1
X10-” Ωm/at% to v1a material 3 approximately 0
.. This shows that 45% of the hydrogen amount was detected.

〔本発明の効果〕[Effects of the present invention]

本発明の鉄鋼中の水素検出法は鉄鋼中を透過してくる水
素を検出することができ、鉄鋼が水素吸収の雰囲気に暴
露された程度を監視するのに効果的である。
The method for detecting hydrogen in steel of the present invention can detect hydrogen permeating through steel, and is effective in monitoring the extent to which steel is exposed to a hydrogen-absorbing atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施態様を示す拡大断面図である
。 1:鉄鋼母材      2:鉄鋼鋼板3:水素検出金
属    4:溶接
FIG. 1 is an enlarged sectional view showing one embodiment of the present invention. 1: Steel base material 2: Steel plate 3: Hydrogen detection metal 4: Welding

Claims (1)

【特許請求の範囲】[Claims]  鉄鋼中の空間で線状のV、NbあるいはTaの一端を
該鉄鋼に接触させ、溶液あるいは気体雰囲気から該鉄鋼
中を透過してくる水素を、それらの金属中に濃化させ、
その電気抵抗率の変化を測定し、鉄鋼が溶液あるいは気
体雰囲気から吸収した水素量を検出する方法。
One end of a linear V, Nb, or Ta is brought into contact with the steel in a space in the steel, and hydrogen that permeates through the steel from a solution or gas atmosphere is concentrated in those metals,
A method to detect the amount of hydrogen absorbed by steel from a solution or gas atmosphere by measuring changes in its electrical resistivity.
JP682990A 1990-01-16 1990-01-16 Detection of hydrogen quantity in iron or steel Pending JPH03211451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP682990A JPH03211451A (en) 1990-01-16 1990-01-16 Detection of hydrogen quantity in iron or steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP682990A JPH03211451A (en) 1990-01-16 1990-01-16 Detection of hydrogen quantity in iron or steel

Publications (1)

Publication Number Publication Date
JPH03211451A true JPH03211451A (en) 1991-09-17

Family

ID=11649113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP682990A Pending JPH03211451A (en) 1990-01-16 1990-01-16 Detection of hydrogen quantity in iron or steel

Country Status (1)

Country Link
JP (1) JPH03211451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554245A (en) * 2024-01-11 2024-02-13 中国航发北京航空材料研究院 Device and method for measuring hydrogen diffusion coefficient of nickel-based superalloy based on resistivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554245A (en) * 2024-01-11 2024-02-13 中国航发北京航空材料研究院 Device and method for measuring hydrogen diffusion coefficient of nickel-based superalloy based on resistivity
CN117554245B (en) * 2024-01-11 2024-03-26 中国航发北京航空材料研究院 Device and method for measuring hydrogen diffusion coefficient of nickel-based superalloy based on resistivity

Similar Documents

Publication Publication Date Title
Chen et al. Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride
Stern et al. The influence of noble metal alloy additions on the electrochemical and corrosion behavior of titanium
Hoar et al. Mechano-chemical anodic dissolution of austenitic stainless steel in hot chloride solution
Kurusu et al. Coulometric determination of the average valencies of copper and bismuth in the superconducting bismuth-strontium-calcium-copper-oxygen system
US10598629B2 (en) Sensor and measurement method for measuring hydrogen content in metal melt
US3378478A (en) Apparatus for continuous oxygen monitoring of liquid metals
Fukatsu et al. Hydrogen sensor for molten metals usable up to 1500 K
Cao et al. Electrochemical oxidation of Fe–Ni alloys in cryolite–alumina molten salts at high temperature
US4045319A (en) Electrochemical gage for measuring partial pressures of oxygen
Swain et al. Redox behavior of moisture in LiCl-KCl eutectic melts: a cyclic voltammetry study
JPH03211451A (en) Detection of hydrogen quantity in iron or steel
Zhang et al. Electrochemical characterization of electrodes in the electrochemical Bunsen reaction of the sulfur–iodine cycle
Lyon et al. Hydrogen measurements using hydrogen uranyl phosphate tetrahydrate
US20110108439A1 (en) Oxide-ion sensor for use in a molten-salt based electrochemical reduction process
JPH0616024B2 (en) Apparatus and method for measuring hydrogen concentration in water
CN114324536A (en) Hydrogen probe device is decided to metal melt
Alber A new method to measure the diffusible hydrogen content in steel weldments using a polymer electrolyte-based hydrogen sensor
JPH03179247A (en) Metal/metal oxide electrode for base determination
Cui et al. In situ electrochemical investigation of acidic pressure oxidation of pyrite at 160–240° C
INOUYE et al. Mixed Ionic and N-type Electronic Conduction in Commercial ZrO2+ 11mol% CaO Solid Electrolyte
de Jones et al. Techniques for the Measurement of Electrode Processes at Temperatures above 100 C
JP4141098B2 (en) Gas sensor
Spaepen et al. Electrochemical corrosion experiments at temperatures above 100° C
Hashizume et al. Reduction of MnFe 2 O 4 without and with carbon
JPS6151554A (en) High-temperature water ph electrode