JPH03211395A - Manufacture of finned pipe - Google Patents

Manufacture of finned pipe

Info

Publication number
JPH03211395A
JPH03211395A JP468890A JP468890A JPH03211395A JP H03211395 A JPH03211395 A JP H03211395A JP 468890 A JP468890 A JP 468890A JP 468890 A JP468890 A JP 468890A JP H03211395 A JPH03211395 A JP H03211395A
Authority
JP
Japan
Prior art keywords
pipe
lubricating oil
temperature
arbors
disks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP468890A
Other languages
Japanese (ja)
Inventor
Yoshimi Yamadera
芳美 山寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP468890A priority Critical patent/JPH03211395A/en
Publication of JPH03211395A publication Critical patent/JPH03211395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Boring (AREA)

Abstract

PURPOSE:To restrain disks from cracking, by specifying the temperature of an oil supplied between a pipe to be worked and the disks. CONSTITUTION:A device for manufacturing a finned pipe comprises three cutter arbors 1 each of which is provided with a plurality of disks 2 at the periphery thereof. The arbors 1 are arranged at 120 deg. angular intervals, with the axis of each of the arbors 1 slightly inclined with respect to the axis of a pipe to be worked 3, and are driven to rotate by a motor. The pipe 3 is provided with a spiral fin 4 on the on the outer peripheral surface thereof by feeding the pipe 3 into the device comprising the three arbors 1, and moving the pipe 3 forward while rotating the arbors 1. At the time of fin formation, a lubricating oil maintained at 35 to 80 deg.C is supplied between the disks 2 and the pipe 3 from a lubricating oil supply pipe. By this method, the disks 2 for forming the fin 4 on the pipe to be worked, which is formed of a material difficult to work such as titanium, can be restrained from cracking.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は管外面に螺旋状のフィンを一体成形するフィ
ン付き管の製造方法に係り、より詳しくは複数の円板を
有するアーバを回転させながら被加工管の外面にフィン
を成形する際に供給する潤滑油を適正の温度に保持する
ことによって、アーバの円板の寿命向上をはかるフィン
付き管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing a finned tube in which spiral fins are integrally formed on the outer surface of the tube, and more specifically, the invention relates to a method for manufacturing a finned tube in which spiral fins are integrally formed on the outer surface of the tube. The present invention relates to a method for manufacturing a finned tube in which the life of an arbor disk is extended by maintaining lubricating oil supplied at an appropriate temperature when forming fins on the outer surface of a processed tube.

従来の技術 管外面に一体成形のフィンを有するフィン付き管の製造
方法は、外周に複数の円板を有するアーバを 120度
の間隔に配置した装置により製造されるのが一般的であ
る。この装置による場合は、被加工管の管軸に対して各
アーバの軸線を僅かに斜め方向とし、各アーバを回転さ
せながら被加工管を進行させることによって、当該管外
面に少なくとも1本の螺旋状のフィンが成形される。
BACKGROUND OF THE INVENTION A method for manufacturing a finned tube having fins integrally formed on the outer surface of the tube is generally manufactured using an apparatus in which arbors having a plurality of disks on the outer periphery are arranged at intervals of 120 degrees. In the case of this device, the axis of each arbor is slightly oblique to the axis of the pipe to be processed, and by rotating each arbor and advancing the pipe to be processed, at least one spiral is formed on the outer surface of the pipe. A shaped fin is formed.

このフィン付き管の製造において、フィンの成形時には
、被加工管と円板との間に潤滑油を供給しながら加工が
行われる。この潤滑油は通常大容量のタンクよりポンプ
等で供給し、再びタンクに回収して循環使用している。
In manufacturing this finned tube, when forming the fins, processing is performed while supplying lubricating oil between the tube to be processed and the disk. This lubricating oil is normally supplied from a large-capacity tank using a pump or the like, and then collected back into the tank for circulation.

この潤滑油の主目的は被加工管と円板との摩擦による焼
付き防止であるため、特に温度管理はなされておらず、
室温(常温)で使用されている。
The main purpose of this lubricating oil is to prevent seizure due to friction between the pipe to be processed and the disc, so there is no particular temperature control.
Used at room temperature.

一方、被加工管に食込んで螺旋状のフィンを成形する加
工用円板は、チタニウム等の加工困難な材料の加工にお
いては高速度鋼のような高価な素材を用いて製作される
On the other hand, the processing disk that bites into the pipe to be processed and forms a spiral fin is manufactured using an expensive material such as high-speed steel when processing a material that is difficult to process, such as titanium.

発明が解決しようとする課題 前記フィン付き管の製造方法において、加工用円板の素
材には高速度鋼のような高価な素材が用いられるにもか
かわらず、フィン成形時に先端部より割れが発生し、被
加工材料の歩留低下と円板に費す費用大により、フィン
付き管の製造コストが高くつくという問題がある。
Problems to be Solved by the Invention In the above method for manufacturing finned tubes, cracks occur at the tip during fin forming, even though an expensive material such as high-speed steel is used for the processing disk. However, there is a problem in that the manufacturing cost of the finned tube is high due to a decrease in the yield of the processed material and the large cost spent on the disk.

この発明はこのような実情よりみて、チタニウム等加工
困難な材質の被加工管にフィンを成形せしめる円板に発
生する割れを抑制し、フィン付き管の製造コストの低減
をはかることを目的とするものである。
In view of these circumstances, the present invention aims to reduce the manufacturing cost of finned tubes by suppressing cracks that occur in the disk used to form fins on tubes made of materials that are difficult to process, such as titanium. It is something.

課題を解決するための手段 アーバの円板の割れに影響をおよぼす要因として、■円
板に加わる面圧、0円板と被加工管のスリップ、■潤滑
および冷却の3点が考えられる。
Means for Solving the Problem Three factors can be considered that influence the cracking of the disc of the arbor: (1) surface pressure applied to the disc, slippage between the zero disc and the pipe to be processed, and (2) lubrication and cooling.

■円板に加わる面圧を減少させる方法としては、被加工
管側では管材質の成分変更が考えられるが、仕様上成分
限定されるため変更できない。また、被加工管をあらか
じめ加温し強度を低下させる方法があるが、円板と被加
工管との間の潤滑を目的とした室温状態の潤滑油により
フィン成形開始以前に冷却され、その効果は期待できな
い。
■As a method of reducing the surface pressure applied to the disk, changing the composition of the tube material on the pipe to be processed side is possible, but this cannot be done because the composition is limited due to the specifications. Another method is to heat the tube to be processed in advance to reduce its strength; however, the tube is cooled with room temperature lubricating oil for the purpose of lubrication between the disk and the tube before fin forming begins, and the effect is cannot be expected.

0円板と被加工管のスリップについては、シミュレート
試験にて調査および検討した結果、その影響は小さいこ
とが判明した。
Regarding the slippage between the zero disc and the pipe to be processed, as a result of investigating and examining it through simulation tests, it was found that the effect was small.

そこで、チタニウム管へのフィン成形により割れの発生
した円板を調査したところ、熱影響により変質したミク
ロ組織が存在していることがわかった。
Therefore, when we investigated a disc that had cracked due to fin forming on a titanium tube, we found that there was a microstructure that had changed in quality due to the effects of heat.

すなわち、円板の先端は加工熱による温度上昇と潤滑油
による冷却の繰返しにより変質したミクロ組織が生じ、
割損するものと推定される。
In other words, the tip of the disc has an altered microstructure due to repeated temperature increases due to processing heat and cooling due to lubricating oil.
It is estimated that there will be a loss.

この熱影響の抑制には、円板と被加工管の潤滑を目的と
した潤滑油に冷却効果を持たせるのが効果的であるとの
観点から、潤滑油の流量、圧力等を変更しても大きな効
果は得られないことが判明した。
To suppress this thermal effect, the flow rate, pressure, etc. of the lubricating oil are changed from the viewpoint that it is effective to provide a cooling effect to the lubricating oil for the purpose of lubricating the disk and the pipe to be processed. It turned out that there was no significant effect.

以上の知見より、この発明者は円板にかかる面圧の減少
の観点から検討した結果、円板と被加工管との間に供給
する潤滑油の温度をコントロールすることにより、円板
の割れが抑制でき、またその温度により材料のフィン成
形による伸び挙動が変化することを考慮して、フィン部
の仕様を満足できる温度範囲を見い出した。
Based on the above knowledge, the inventor investigated from the viewpoint of reducing the surface pressure applied to the disk, and as a result, by controlling the temperature of the lubricating oil supplied between the disk and the pipe to be processed, the inventor decided to prevent the disk from cracking. We have found a temperature range that can satisfy the specifications of the fin part, taking into account that the elongation behavior of the material due to fin forming changes depending on the temperature.

すなわち、この発明は被加工管と円板との間に供給する
潤滑油の温度を35〜80℃に保持することによって、
円板の割れを抑制することを要旨とするものである。
That is, this invention maintains the temperature of the lubricating oil supplied between the pipe to be processed and the disk at 35 to 80°C,
The purpose is to suppress cracking of the disc.

作    用 潤滑油の温度を35〜80℃に限定したのは、以下に示
す理由による。
The reason why the temperature of the lubricating oil was limited to 35 to 80°C is as follows.

円板の寿命は潤滑油の温度を上げると永くなる。The service life of the disc increases as the temperature of the lubricating oil increases.

これは、潤滑油の温度上昇に伴い円板の冷却効果が少な
くなり、加工熱による温度上昇、潤滑油による冷却の温
度幅が小さくなり、変質が生じにくくなること、および
潤滑油の温度上昇により被加工管の強度が下がり、加工
し易くなることにより割損しにくくなるものと推定され
る。
This is because as the temperature of the lubricating oil increases, the cooling effect on the disk decreases, the temperature rise due to machining heat, the temperature range of cooling by the lubricating oil becomes smaller, and deterioration becomes less likely to occur. It is presumed that the strength of the pipe to be processed is reduced and it becomes easier to process, making it less likely to break.

そこで、その円板の割損防止効果を得るには、すなわち
従来(潤滑油の温度約20℃)の場合の円板寿命の倍以
上とするには潤滑油の温度を少なくとも35℃以上とす
る必要がある。
Therefore, in order to obtain the effect of preventing breakage of the disk, that is, to more than double the disk life in the conventional case (lubricating oil temperature of about 20℃), the temperature of the lubricating oil must be at least 35℃ or higher. There is a need.

他方、潤滑油の上限温度としては、実生産における円板
の寿命の観点から80℃以下が望ましい。
On the other hand, the upper limit temperature of the lubricating oil is preferably 80° C. or lower from the viewpoint of the life of the disk in actual production.

これは、使用する潤滑油の点からも極端に高温になると
摩擦係数が上昇するが、80℃程度ではほとんど問題に
ならない。したがって、潤滑油の上限温度としては、8
0℃以下で、当該温度により近い71温度にコントロー
ルするのが望ましい。
This is because the coefficient of friction increases when the temperature is extremely high due to the lubricating oil used, but at about 80°C there is almost no problem. Therefore, the upper limit temperature of lubricating oil is 8.
It is desirable to control the temperature to 71, which is 0° C. or lower and closer to that temperature.

なお、潤滑油の昇温方法としCは、例えば潤滑油タンク
に蒸気配管を設けて潤滑油を蒸気により加熱する方法を
用いることができる。
As the method for raising the temperature of the lubricating oil, for example, a method can be used in which a steam pipe is provided in the lubricating oil tank and the lubricating oil is heated by steam.

実   施   例 第1図はこの発明の一実施例を示す概略図で、(1)は
アーバ、(2)は円板、(3)は被加工管であり、装置
は外周に複数の円板(2)を備えた3個のアーバ(1)
が120度間隔に配置され、かつ被加工管(3)の管軸
に対して各アーバの軸線が僅かに斜め方向となっている
。この3個のアーバ(1)はモータ(図示せず)にて回
転駆動される仕組みとなっている。
Embodiment FIG. 1 is a schematic diagram showing an embodiment of the present invention, in which (1) is an arbor, (2) is a disk, and (3) is a pipe to be processed. 3 arbors (1) with (2)
are arranged at 120 degree intervals, and the axis of each arbor is slightly oblique with respect to the tube axis of the tube to be processed (3). These three arbors (1) are rotated by a motor (not shown).

被加工管(3)に対するフィン(4)の成形は、3個の
アーバ(1)からなる装置内に被加工管(3)を送り込
み、3個のアーバを回転させながら被加工管(3)を進
行させることによって、当該管の外周面に螺旋状のフィ
ン(4)が成形される。このフィン成形時には、潤滑油
供給配管(図示せず)より所定の温度に保持された潤滑
油が円板(2)と被加工管(3)との間に供給される。
To form the fins (4) on the pipe to be processed (3), the pipe to be processed (3) is fed into a device consisting of three arbors (1), and while rotating the three arbors, the pipe to be processed (3) is formed. By advancing the tube, spiral fins (4) are formed on the outer peripheral surface of the tube. During this fin forming, lubricating oil maintained at a predetermined temperature is supplied between the disk (2) and the pipe to be processed (3) from a lubricating oil supply pipe (not shown).

次に、第1図に示す構成で、材質JIS−SKH9、硬
度HRC=59の円板を備えた3個のアーバからなるフ
ィン付き管製造装置により、材質ASTM  B538
Gr2、外径19.05m m、肉厚1.24mmの溶
接チタン管に対し、フィン高さが平均0.8mm以上、
フィン根元の肉厚が平均3.66m m以上、フィン密
度が通常仕様の 1インチ当り30〜32フインのフィ
ン成形を行った。潤滑油には、塩素、硫黄等の物質を含
まない水溶性の工作油を使用した。
Next, with the configuration shown in Fig. 1, a finned tube manufacturing device consisting of three arbors equipped with a disk having a material of JIS-SKH9 and a hardness of HRC = 59 was used to manufacture a finned tube made of material ASTM B538.
Gr2, for a welded titanium tube with an outer diameter of 19.05 mm and a wall thickness of 1.24 mm, the average fin height is 0.8 mm or more,
Fins were formed with an average wall thickness of 3.66 mm or more at the base of the fins and a fin density of 30 to 32 fins per inch, which was the standard specification. As the lubricating oil, water-soluble working oil that does not contain substances such as chlorine and sulfur was used.

その時の潤滑油の温度による円板に割れの発生するまで
のフィン成形管長さと、その時のフィン密度およびフィ
ン成形開始時の材料温度を第2図に示す。
Figure 2 shows the length of the fin-formed pipe until cracks occur in the disc depending on the temperature of the lubricating oil at that time, the fin density at that time, and the material temperature at the start of fin formation.

第2図の結果より明らかなごとく、潤滑油の温度コント
ロールにより円板の寿命延長がはかられるとともに、潤
滑油の温度変化に伴いフィン密度も変化し、チタニウム
のフィン付き管の通常仕様である1インチ当り30〜3
2フインを満足するための潤滑油の温度としては35〜
80℃が望ましいこと。
As is clear from the results in Figure 2, controlling the temperature of the lubricating oil extends the life of the disk, and the fin density also changes as the lubricating oil temperature changes, which is the normal specification for titanium finned tubes. 30-3 per inch
The temperature of lubricating oil to satisfy 2 fins is 35~
Preferably 80℃.

がわかる。I understand.

なお、潤滑油の温度上昇に伴いフィン山数が減少するの
は、材料温度の上昇により当該材料が管軸方向に伸びる
ことによるものと推察される。
It is assumed that the reason why the number of fins decreases as the temperature of the lubricating oil increases is because the material stretches in the tube axis direction due to the increase in material temperature.

発明の詳細 な説明したごとく、この発明方法によれば、潤滑油の温
度をコントロールするだけでフィン成形時の円板の寿命
を延長できるので、被加工管がチタニウム管等の加工困
難な管であっても、フィン付き管製造コストを低減でき
るという犬なる効果を奏するものである。
As described in detail, according to the method of this invention, the life of the disk during fin forming can be extended simply by controlling the temperature of the lubricating oil, so it is possible to extend the life of the disk during fin forming, so that it is possible to extend the life of the disk during fin forming. Even if it is, it has the significant effect of reducing the manufacturing cost of the finned tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概略図、第2図は同
上実施例における潤滑油温度とフィン成形管長さ、フィ
ン密度および材料温度の関係を示す図である。
FIG. 1 is a schematic view showing one embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between lubricating oil temperature, fin forming tube length, fin density, and material temperature in the same embodiment.

Claims (1)

【特許請求の範囲】[Claims]  複数の円板を備えた複数のアーバを回転させながら被
加工管を進行させて、当該管外面に少なくとも1本の螺
旋状のフィンを成形する方法において、被加工管と円板
との間に供給する潤滑油の温度を35〜80℃に保持す
ることを特徴とするフィン付き管の製造方法。
A method of forming at least one spiral fin on the outer surface of the tube by advancing the tube to be processed while rotating a plurality of arbors each having a plurality of disks, wherein there is no space between the tube to be processed and the disks. A method for manufacturing a finned tube, characterized by maintaining the temperature of supplied lubricating oil at 35 to 80°C.
JP468890A 1990-01-12 1990-01-12 Manufacture of finned pipe Pending JPH03211395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP468890A JPH03211395A (en) 1990-01-12 1990-01-12 Manufacture of finned pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP468890A JPH03211395A (en) 1990-01-12 1990-01-12 Manufacture of finned pipe

Publications (1)

Publication Number Publication Date
JPH03211395A true JPH03211395A (en) 1991-09-17

Family

ID=11590835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP468890A Pending JPH03211395A (en) 1990-01-12 1990-01-12 Manufacture of finned pipe

Country Status (1)

Country Link
JP (1) JPH03211395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914047A (en) * 2017-11-16 2018-04-17 中山市科力高自动化设备有限公司 Double surface evaporator cutting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914047A (en) * 2017-11-16 2018-04-17 中山市科力高自动化设备有限公司 Double surface evaporator cutting machine

Similar Documents

Publication Publication Date Title
EP1361003B1 (en) Method for manufacuturing seamless steel tube
US3985995A (en) Method of making large structural one-piece parts of metal, particularly one-piece shafts
KR100348743B1 (en) Process and device for the continuous, chipless separation of individual rings from tubular workpieces
JPWO2005087401A1 (en) Seamless pipe piercing and rolling plug, seamless pipe manufacturing apparatus, and seamless pipe manufacturing method using the same
JP2007044763A (en) Method for producing titanium material for sputtering
CN1726100A (en) Seamless metal tube producing method
US2264287A (en) Metallurgical product and method of making same
JPH03211395A (en) Manufacture of finned pipe
CN1261242C (en) Mfg. method of magnesium alloyed plate for hot rolling and hot rolling method of magnesium alloyed plate
JP5258530B2 (en) How to clean hot slab surface
CN111545892B (en) Motor casing friction stir welding seam and improvement method of base metal hardness uniformity
JPH0468358B2 (en)
JPH0994623A (en) Manufacture of metallic tube with spiral fin
JP4517604B2 (en) Manufacturing method of stainless steel tube with outer surface spiral fin and stainless tube with outer surface spiral fin
JPS63303640A (en) Production of metal pipe with spiral fin and its device
KR101605970B1 (en) A internal turret laser remelting after H.V.O.F. coating type fixation device
JP2006116584A (en) Method for manufacturing seamless steel tube by mannesmann piercing process
RU2767341C1 (en) METHOD FOR THERMO-FRICTION CUTTING WITH DISC SAW OF HEATED PIPE WITH DIAMETER OF 40-120 mm FROM AUSTENITIC CHROMIUM-NICKEL STEEL
RU2767366C1 (en) METHOD FOR THERMO-FRICTION CUTTING OF HEATED ROLLED PIPE WITH DIAMETER OF 120-200 mm FROM LOW-CARBON STEEL WITH DISK SAW
CN108856609A (en) A kind of heavy wall 718Plus alloy annular forging milling method
JP2005046906A (en) Device and method for manufacturing inside grooved tube
RU2767362C1 (en) METHOD FOR THERMO-FRICTION CUTTING OF HEATED ROLLED PIPE WITH DIAMETER OF 120-200 mm FROM LOW-ALLOY STEEL WITH DISK SAW
RU2767354C1 (en) METHOD FOR THERMAL FRICTION CUTTING OF HEATED PIPE WITH DIAMETER OF 120-200 mm FROM AUSTENITIC CHROMIUM-NICKEL STEEL WITH DISK SAW
RU2060861C1 (en) Roll of zone of secondary cooling of continuous casting machines
JP2008168381A (en) Feeding device for bar steel