JPH03211208A - Manufacture of composite metal powder - Google Patents

Manufacture of composite metal powder

Info

Publication number
JPH03211208A
JPH03211208A JP7437990A JP7437990A JPH03211208A JP H03211208 A JPH03211208 A JP H03211208A JP 7437990 A JP7437990 A JP 7437990A JP 7437990 A JP7437990 A JP 7437990A JP H03211208 A JPH03211208 A JP H03211208A
Authority
JP
Japan
Prior art keywords
metal
reinforcing material
matrix
molten
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7437990A
Other languages
Japanese (ja)
Inventor
Toshiya Amakasu
天粕 壽也
Hayami Hara
早美 原
Toshiyuki Aoki
敏行 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7437990A priority Critical patent/JPH03211208A/en
Publication of JPH03211208A publication Critical patent/JPH03211208A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • B22F2009/0812Pulverisation with a moving liquid coolant stream, by centrifugally rotating stream

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To easily and uniformly disperse reinforcing material in matrix by mixing and dispersing the reinforcing material into molten matrix metal containing Ca or Cr, cutting this molten mixed metal into drips, rapidly cooling and solidifying it. CONSTITUTION:The alloy containing 0.5 - 10 wt% Ca or Cr, or 0.5 - 5 wt% Ca or Be, is used for the matrix metal. In this matrix metal, the reinforcing material of short fiber, whisker or particle-shaped alumina, etc., is mixed and dispersed. This molten mixed metal is cut into the drips and also rapidly cooled and solidified. As the reinforcing material is mixed and dispersed in the matrix, wettability of reinforcing material to the molten matrix metal is improved, and the reinforcing material is easily and uniformly dispersed in the molten metal. By injecting this into cooling liquid layer, the reinforcing material is uniformly dispersed and the composite metal powder having high joining strength with the matrix, is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミック繊維等によって強化された金属複合
材料の原料となる金属粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing metal powder that is a raw material for a metal composite material reinforced with ceramic fibers or the like.

(従来の技術と課題) 高強度セラミック繊維等の強化材によりマトリックス金
属を複合強化した強化金属複合材料は、比強度や比弾性
率が高く、また耐熱性を有し、航空機、車輌、各種機械
用部品材料として注目されている。
(Conventional technology and issues) Reinforced metal composite materials, which are composite reinforced matrix metals with reinforcing materials such as high-strength ceramic fibers, have high specific strength and specific modulus, and are heat resistant, and are used in aircraft, vehicles, and various machines. It is attracting attention as a material for industrial parts.

強化金属複合材料の製造方法の一つとして、粉末冶金法
がある。この方法は、マトリックス金属粉末と強化材と
を所定の割合で混合し、ホットプレスや熱間等方圧加圧
(HI P)処理などにより固化成形する方法であり、
その後、必要に応じて押出しや鍛造などにより、所要の
形状に加工成形される。
Powder metallurgy is one of the methods for producing reinforced metal composite materials. This method is a method in which matrix metal powder and reinforcing material are mixed in a predetermined ratio and solidified and formed by hot pressing or hot isostatic pressing (HIP) treatment.
Thereafter, it is processed and formed into a desired shape by extrusion, forging, etc. as necessary.

しかしながら、粉末冶金法では、金属粉末と強化材とを
混合する際、金属粉末が強化材の間に分は入りにくく、
両者が均一に混合分散せず、所々に未解絡強化材のかた
まりが生じ、これが複合材中にそのまま埋入され、その
結果、強化材の物性か不均一になり易いという欠点があ
る。また、強化材の分散性を向上させるため、微細なも
のを使用すると、これに応じて金属粉末も微細なものを
使用しなければならず、コスト高の要因になる。
However, in the powder metallurgy method, when mixing metal powder and reinforcing material, it is difficult for the metal powder to enter between the reinforcing materials.
The disadvantage is that the two do not mix and disperse uniformly, resulting in lumps of undisentangled reinforcing material occurring in some places, which are embedded in the composite material as they are, and as a result, the physical properties of the reinforcing material tend to be non-uniform. Furthermore, if a fine reinforcing material is used to improve the dispersibility of the reinforcing material, a correspondingly fine metal powder must be used, which becomes a factor in increasing costs.

本発明はかかる問題点に鑑みなされたもので、マトリッ
クス金属中に強化材を容易に均一分散させることができ
、また強化材が微細な場合でも、製造コストの上昇を生
じない強化金属複合材料の原料粉末の製造方法を提供す
ることを目的とする。
The present invention was devised in view of these problems, and is a reinforced metal composite material in which the reinforcing material can be easily and uniformly dispersed in the matrix metal, and even when the reinforcing material is fine, the manufacturing cost does not increase. The purpose of the present invention is to provide a method for producing raw material powder.

(課題を解決するための手段) 上記目的を達成するためになされた本発明の製造方法は
、CaもしくはCrを0.5〜10wtχ又はCeもし
くはBeを0.5〜5wtχ含有したマトリックス金属
溶湯内に短繊維、ウィスカー、粒子形態の強化材を混合
分散させた後、該混合溶湯を粒滴状に分断すると共に急
冷凝固させることを手段とするものである。
(Means for Solving the Problems) The manufacturing method of the present invention, which has been made to achieve the above object, uses a matrix metal molten metal containing 0.5 to 10 wtχ of Ca or Cr or 0.5 to 5 wtχ of Ce or Be. After mixing and dispersing reinforcing materials in the form of short fibers, whiskers, and particles, the mixed molten metal is divided into droplets and rapidly solidified.

(作 用) マトリックス金属溶湯は、金属粉末に比べて強化材の間
に容易に分は入るため、強化材が解絡され易くなり、強
化材は溶湯中に分散して混合される。
(Function) Matrix metal molten metal easily penetrates between the reinforcing materials compared to metal powder, so the reinforcing materials are easily disentangled, and the reinforcing materials are dispersed and mixed in the molten metal.

特に、本発明において使用するマトリックス金属溶湯中
にはCaもしくはCrを0.5〜10wt%含有れてい
るので、強化材のマトリックス金属溶湯に対する濡れ性
が向上し、強化材が掻めて容易に溶湯中に均一分散され
る。CaもしくはCrが0.5χ未満では濡れ性の向上
効果が過少であり、一方10χを越えると混合溶湯の溶
滴を後述のように急冷凝固してもCaが基地中に固溶さ
れないものやN化合物が生じ、脆化する。尚、Mgも0
.5〜10wtχで濡れ性向上効果が認められる。
In particular, since the molten matrix metal used in the present invention contains 0.5 to 10 wt% of Ca or Cr, the wettability of the reinforcing material to the molten matrix metal is improved, and the reinforcing material can be scraped easily. Uniformly dispersed in the molten metal. If Ca or Cr is less than 0.5χ, the wettability improvement effect will be too small, while if it exceeds 10χ, Ca will not be dissolved in the matrix or N will not be dissolved even if the mixed molten metal droplets are rapidly solidified as described below. Compounds are formed and become brittle. In addition, Mg is also 0
.. An effect of improving wettability is observed at 5 to 10 wtχ.

CeもしくはBeも同様の理由により、0.5〜5wt
χで強化材の濡れ性向上効果が認められる。Ceの場合
、5χを越えるとCeNaが析出してマトリックスが1
危化する。
Ce or Be is also 0.5 to 5wt for the same reason.
The effect of improving the wettability of the reinforcing material is observed at χ. In the case of Ce, if it exceeds 5χ, CeNa will precipitate and the matrix will become 1
endangered.

強化材がマトリックス金属溶湯中に分散混合した混合溶
湯を粒滴状に分断すると共に急冷凝固させることにより
、Ca、 Cr+ Ce、 Beが過飽和に固溶したマ
トリックス金属中に強化材が均一に分散埋入した急冷凝
固粉末が得られる。この粉末においては、Ca等の濡れ
性向上作用により強化材とマトリックスの接合状態が強
固であり、しかもCa等がマトリックス中にほぼ完全に
固溶された状態となっているため、Ca等の含有による
強度の低下も生じにくい。
By dividing the mixed molten metal in which the reinforcing material is dispersed and mixed into the matrix metal molten metal into droplets and rapidly solidifying it, the reinforcing material is uniformly dispersed and buried in the matrix metal in which Ca, Cr+Ce, and Be are supersaturated as solid solutions. A rapidly solidified powder is obtained. In this powder, the bonding state between the reinforcing material and the matrix is strong due to the wettability improving effect of Ca, etc., and moreover, Ca etc. are almost completely dissolved in the matrix, so the content of Ca etc. It is also less likely that the strength will decrease due to

この金属粉末を一体成形することにより、強化材が内部
に均一に分散した複合材が容易に得られる。
By integrally molding this metal powder, a composite material in which the reinforcing material is uniformly dispersed can be easily obtained.

(実施例) 本発明に使用する強化材の形態としては、短繊維、ウィ
スカー、粒子のいずれでもよい。材質としては、アルミ
ナ、シリコンカーバイド、チタン酸カリウム等のセラミ
ックスや、ボロン、タングステン等の金属が使用される
(Example) The reinforcing material used in the present invention may be in the form of short fibers, whiskers, or particles. As the material, ceramics such as alumina, silicon carbide, and potassium titanate, and metals such as boron and tungsten are used.

一方、マトリックス金属としては、軽量金属であるアル
ミニウム、マグネシウム、チタンまたはこれらの合金が
主として使用される。
On the other hand, as the matrix metal, lightweight metals such as aluminum, magnesium, titanium, or alloys thereof are mainly used.

これらの金属材には強化材の濡れ性向上のために予めC
aもしくはCrを0.5〜10 wtχ又はCeもしく
はBeを0.5〜5wtχ合金化しておくとよい。Ca
等の合金化は、Ca等を実質的に含有しないマトリック
ス金属材に金属CaやCa合金(例えば、Ca−5t)
等を添加して溶解すればよい。尚、Ca等を合金化した
マトリックス金属を使用しない場合は、噴射用の溶湯を
溶製する際に同様の操作を行い、溶湯中にCa等を含有
させればよい。
These metal materials are coated with carbon in advance to improve the wettability of the reinforcing material.
It is preferable to alloy 0.5 to 10 wtχ of a or Cr or 0.5 to 5 wtχ of Ce or Be. Ca
Alloying of metal Ca or Ca alloy (e.g. Ca-5t) to a matrix metal material that does not substantially contain Ca etc.
etc. may be added and dissolved. If a matrix metal alloyed with Ca or the like is not used, Ca or the like may be contained in the molten metal by performing the same operation when preparing the molten metal for injection.

第1図は、本発明を実施するための装置の概要を示して
おり、回転ドラムlと溶湯噴射容器2とを備え、回転ド
ラムlの内周面には別途供給された冷却水が回転ドラム
1の回転により生じた遠心力の作用で冷却水層3を形成
している。溶湯噴射容器2はマトリックス金属溶湯と反
応しにくい耐火材(例えば、黒鉛)で形成されており、
外周部に加熱用高周波コイル4が巻回されている。下部
には噴射孔5が開設され、上部開口には蓋体6が着脱自
在に取り付けられ、容器2を密封している。
FIG. 1 shows an outline of an apparatus for carrying out the present invention, which is equipped with a rotating drum 1 and a molten metal injection container 2. A cooling water layer 3 is formed by the action of centrifugal force generated by the rotation of the cylinder 1. The molten metal injection container 2 is made of a refractory material (for example, graphite) that does not easily react with the molten matrix metal.
A heating high frequency coil 4 is wound around the outer periphery. An injection hole 5 is provided in the lower part, and a lid 6 is removably attached to the upper opening to seal the container 2.

また、該蓋体6を貫通して撹拌プロペラ7が装着されて
おり、容器2内のマトリックス金属溶湯11は、撹拌プ
ロペラ7により容器2内に装入された強化材と共に撹拌
混合される。蓋体6には不活性ガス注入孔8が開設され
、容器2内に注入された不活性ガスにより容器内の溶湯
は加圧され、前記噴射孔5より冷却水層3に向って噴射
され、回転する冷却水により分断され、強化材が埋入し
た2゜冷凝固粉末が得られる。
Further, a stirring propeller 7 is attached to pass through the lid 6, and the matrix metal molten metal 11 in the container 2 is stirred and mixed together with the reinforcing material charged into the container 2 by the stirring propeller 7. An inert gas injection hole 8 is formed in the lid 6, and the molten metal in the container is pressurized by the inert gas injected into the container 2, and is injected from the injection hole 5 toward the cooling water layer 3. It is divided by the rotating cooling water to obtain a 2° cold solidified powder in which the reinforcing material is embedded.

尚、急冷凝固粉末を製造する手段としては、畝上の手段
に限らず、流下する混合溶湯に対して水やArガス等の
冷却媒体を噴射して金属粉末を得るアトマイズ法の適用
も可能である。
Note that the means for producing rapidly solidified powder is not limited to the method on ridges, but it is also possible to apply the atomization method to obtain metal powder by injecting a cooling medium such as water or Ar gas to the flowing mixed molten metal. be.

強化材が埋入した急冷凝固粉末は、ホットプレス、HI
P、押出し、鍛造等により一体化され、所期の複合材に
成形される。
The rapidly solidified powder with embedded reinforcing material is hot pressed, HI
P, is integrated by extrusion, forging, etc., and formed into the desired composite material.

次に具体的実施例について説明する。Next, specific examples will be described.

〈実施例A〉 (1)  Al −5wtχCa合金をマトリックス金
属として用い、これを黒鉛製溶湯噴射容器内で1000
″Cに加熱溶融し、その後、撹拌プロペラを回転させな
がら、SiC粒子(B型、粒径20〜40μI)を混入
した。混合比は体積比でN合金の15χとした。
<Example A> (1) Al-5wtχCa alloy was used as the matrix metal, and it was heated to 1000 ml in a graphite molten metal injection container.
"C" was heated and melted, and then SiC particles (B type, particle size 20 to 40 μI) were mixed in while rotating a stirring propeller.The mixing ratio was 15χ of the N alloy by volume.

(2)撹拌プロペラを回転したまま、注入孔よりArガ
ス(ガス圧1.4kgf/cd)を注入し、SiC粒子
が分散混合した溶湯を加圧し、噴射孔より該溶湯を冷却
ドラム内周面に形成した冷却水層に噴射し、実施例の急
冷凝固粉末を作製した。尚、冷却ドラムは1500r、
p、−で回転した。
(2) While the stirring propeller is still rotating, Ar gas (gas pressure 1.4 kgf/cd) is injected from the injection hole to pressurize the molten metal in which SiC particles are dispersed and mixed, and the molten metal is poured from the injection hole to the inner peripheral surface of the cooling drum. The rapidly solidified powder of the example was prepared by spraying the powder onto the cooling water layer formed in the above. In addition, the cooling drum is 1500r,
Rotated at p, -.

(3)その結果、平均粒径600μmの粉末が得られた
。粒子の断面を観察したところ、SiCが均一に分散埋
入されていた。
(3) As a result, powder with an average particle size of 600 μm was obtained. When the cross section of the particles was observed, it was found that SiC was evenly dispersed and embedded.

(4)比較例として、マトリックス金属として純Nを用
いた他は(1)〜(3)と同様の条件で急冷凝固粉末を
作製した。
(4) As a comparative example, rapidly solidified powder was produced under the same conditions as in (1) to (3) except that pure N was used as the matrix metal.

(5)上記実施例および比較例の2.冷凝固粉末を押出
しコンテナに装入し、押出比6.5、押出温度500℃
で押出した。得られた押出材の引張強度を測定したとこ
ろ下記の通りであり、実施例の方が比較例に比べて20
χの強度向上が見られた。
(5) 2. of the above Examples and Comparative Examples. Charge the cold solidified powder into an extrusion container, extrusion ratio 6.5, extrusion temperature 500℃
I pushed it out. When the tensile strength of the obtained extruded material was measured, it was as follows, and the tensile strength of the example was 20% higher than that of the comparative example.
An improvement in the strength of χ was observed.

実施例−・−・−・−48kg/閣2 比較例−−−−−−−40kg / ttm ”〈実施
例B〉 (1)  Al−1wtχCe、3wtχCe、5wt
χCeの各合金をマトリックス金属として用い、実施例
Aと同様の条件でSiC粒子複合N粉末を製作した。
Example -・-・-・-48kg/Kaku2 Comparative example---40kg/ttm "Example B" (1) Al-1wtχCe, 3wtχCe, 5wt
SiC particle composite N powder was produced under the same conditions as Example A using each alloy of χCe as a matrix metal.

(2)  (1)の複合粉末を用いて、押出比6.5、
押出温度500°Cで押出した。押出材の引張強度を測
定したところ下記の通りであった。
(2) Using the composite powder of (1), extrusion ratio 6.5,
Extrusion was carried out at an extrusion temperature of 500°C. The tensile strength of the extruded material was measured and was as follows.

、6J−1χCe−−−−−−−−−42kg / u
s ”N−3χCe−−−−−−−−47kg / w
a ”N−5χCe−−−−−−−−−47kg / 
igs ”純Nマトリックスの複合材(実施例への比較
材)の引張強度は40kg/■2であるから、Ceの所
定量の添加により、5〜18χの強度の向上が認められ
た。
, 6J-1χCe---42kg/u
s ”N-3χCe---47kg/w
a ”N-5χCe---47kg/
Since the tensile strength of the pure N matrix composite material (comparison material to the example) is 40 kg/2, it was observed that the strength was improved by 5 to 18x by adding a predetermined amount of Ce.

(発明の効果) 以上説明した通り、本発明の強化金属粉末材料の製造方
法によれば、Ca、 Cr、 Ce、 Beの所定量を
含有したマトリックス金属溶湯中で強化材を混合分散す
るので、強化材のマトリックス金属溶湯に対する濡れ性
が向上し、溶湯中に容易に均一分散する。そして、これ
を冷却液層に噴射することにより、強化材が均一分散し
かつマトリックスとの接合強度も高い急冷凝固粉末が容
易に得られる。
(Effects of the Invention) As explained above, according to the method for producing a reinforced metal powder material of the present invention, the reinforcing material is mixed and dispersed in a matrix metal molten metal containing predetermined amounts of Ca, Cr, Ce, and Be. The reinforcing material has improved wettability to the molten matrix metal and is easily and uniformly dispersed in the molten metal. Then, by injecting this into the cooling liquid layer, a rapidly solidified powder in which the reinforcing material is uniformly dispersed and has high bonding strength with the matrix can be easily obtained.

これを一体成形することにより、強化材が均一分散した
複合材料が容易に得られる。また、強化材の大きさに応
じてマトリックス金属粉末の粒径を調整する必要もなく
、経済的である。
By integrally molding this, a composite material in which the reinforcing material is uniformly dispersed can be easily obtained. Furthermore, there is no need to adjust the particle size of the matrix metal powder depending on the size of the reinforcing material, which is economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための粉末製造装置の要部縦
断面図を示す。 1−冷却ドラム、2−溶湯噴射容器、3−・・冷却液層
FIG. 1 shows a vertical cross-sectional view of a main part of a powder manufacturing apparatus for carrying out the present invention. 1-cooling drum, 2-molten metal injection container, 3-...cooling liquid layer.

Claims (2)

【特許請求の範囲】[Claims] (1)CaもしくはCrを0.5〜10wt%含有した
マトリックス金属溶湯内に短繊維、ウィスカー又は粒子
形態の強化材を混合分散させた後、該混合溶湯を粒滴状
に分断すると共に急冷凝固させることを特徴とする複合
金属粉末の製造方法。
(1) After mixing and dispersing reinforcing material in the form of short fibers, whiskers, or particles in a molten matrix metal containing 0.5 to 10 wt% of Ca or Cr, the molten mixture is divided into droplets and rapidly solidified. A method for producing composite metal powder, characterized in that:
(2)CeもしくはBeを0.5〜5wt%含有したマ
トリックス金属溶湯内に短繊維、ウィスカー又は粒子形
態の強化材を混合分散させた後、該混合溶湯を粒滴状に
分断すると共に急冷凝固させることを特徴とする複合金
属粉末の製造方法。
(2) After mixing and dispersing reinforcing material in the form of short fibers, whiskers, or particles in a molten matrix metal containing 0.5 to 5 wt% of Ce or Be, the molten mixture is divided into droplets and rapidly solidified. A method for producing composite metal powder, characterized in that:
JP7437990A 1989-10-26 1990-03-23 Manufacture of composite metal powder Pending JPH03211208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7437990A JPH03211208A (en) 1989-10-26 1990-03-23 Manufacture of composite metal powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-279368 1989-10-26
JP27936889 1989-10-26
JP7437990A JPH03211208A (en) 1989-10-26 1990-03-23 Manufacture of composite metal powder

Publications (1)

Publication Number Publication Date
JPH03211208A true JPH03211208A (en) 1991-09-17

Family

ID=26415521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7437990A Pending JPH03211208A (en) 1989-10-26 1990-03-23 Manufacture of composite metal powder

Country Status (1)

Country Link
JP (1) JPH03211208A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199606A (en) * 1984-10-22 1986-05-17 Hitachi Ltd Production of composite powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199606A (en) * 1984-10-22 1986-05-17 Hitachi Ltd Production of composite powder

Similar Documents

Publication Publication Date Title
Sharma et al. A study of fabrication methods of aluminum based composites focused on stir casting process
US4915905A (en) Process for rapid solidification of intermetallic-second phase composites
US4836982A (en) Rapid solidification of metal-second phase composites
AU732289B2 (en) Particulate field distributions in centrifugally cast metal matrix composites
JP3421535B2 (en) Manufacturing method of metal matrix composite material
US4961461A (en) Method and apparatus for continuous casting of composites
US5791397A (en) Processes for producing Mg-based composite materials
CN110423915B (en) Preparation method of aluminum-based composite material
US5015534A (en) Rapidly solidified intermetallic-second phase composites
WO2021035774A1 (en) Preparation method for lithium-containing magnesium/aluminum-based composite material
KR910006069B1 (en) Method for manufacture of cast articles of fiber-reinforced aluminium composite
CN110205536A (en) A kind of titanium/titanium carbide core-shell structure reinforced aluminum matrix composites and preparation method thereof
CN1060979C (en) Pressureless penetration casting method for aluminium-base composite material
WO2021035776A1 (en) Method for preparing magnesium-based composite material
EP0346771B1 (en) Method for making solid composite material particularly metal matrix with ceramic dispersates
US5477905A (en) Composites and method therefor
JPH03211208A (en) Manufacture of composite metal powder
CN1037117C (en) Method for making casting metal based composite material
CN110129608A (en) SiC particulate enhances AZ91 magnesium-based composite material and preparation method thereof, application and radiator shell
JPH02129322A (en) Magnesium-series composite material
JPS6199606A (en) Production of composite powder
JPH03219035A (en) Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy
JPH0431009B2 (en)
JPH0397806A (en) Manufacture of reinforced metal powder material
JPH02259031A (en) Manufacture of reinforced metallic composite material