JPH0321064B2 - - Google Patents

Info

Publication number
JPH0321064B2
JPH0321064B2 JP12453484A JP12453484A JPH0321064B2 JP H0321064 B2 JPH0321064 B2 JP H0321064B2 JP 12453484 A JP12453484 A JP 12453484A JP 12453484 A JP12453484 A JP 12453484A JP H0321064 B2 JPH0321064 B2 JP H0321064B2
Authority
JP
Japan
Prior art keywords
tank
sample
valve
storage tank
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12453484A
Other languages
Japanese (ja)
Other versions
JPS614953A (en
Inventor
Yoshinori Hiroshige
Shunji Setsukuda
Yoshihiro Sezaki
Yoshio Koyama
Yasuo Matsuba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA SEKYU KAGAKU KK
Original Assignee
OOSAKA SEKYU KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA SEKYU KAGAKU KK filed Critical OOSAKA SEKYU KAGAKU KK
Priority to JP12453484A priority Critical patent/JPS614953A/en
Publication of JPS614953A publication Critical patent/JPS614953A/en
Publication of JPH0321064B2 publication Critical patent/JPH0321064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration

Description

【発明の詳細な説明】 〔産業上の利用分野〕 H2S、CO2等の酸性成分を含有している石油、
石油化学プラント又は化学製品プラント等のガス
流体からこれらの酸性成分を除去するアルカリ洗
浄工程より排出される廃アルカリ液中のアルカ
リ、又はその塩類の濃度を自動的にかつ連続的に
長期間にわたつて測定する方法に関する。
[Detailed description of the invention] [Industrial application field] Petroleum containing acidic components such as H 2 S and CO 2 ;
Automatically and continuously control the concentration of alkali or its salts in waste alkaline liquid discharged from the alkaline cleaning process to remove these acidic components from gas fluids in petrochemical plants or chemical product plants over a long period of time. related to methods for measuring

〔従来技術〕[Prior art]

H2S、CO2等の酸性ガス成分を含有している石
油、石油化学工業等のプラントにおいて得られる
ガス流体中から酸性ガス成分を除去する方法の1
つとしてアルカリ水溶液(苛性ソーダ水溶液等)
による洗浄法があるが、これらの方法においてガ
ス流体中に含有されている酸性ガス量に対してア
ルカリ水溶液の量及び/又はその濃度を適正に保
つことは、プロセス運転上、あるいは経済的に重
要な意味を持つている。アルカリの量及び/又は
その濃度を適正に管理する手段としては、ガス流
体中の酸性物質の各々についての濃度分析値とガ
ス流体の流量測定値とから必要なアルカリ溶液の
量及び/又はその濃度を計算して調節すればよい
が、ガス流量及びガス流体中の酸性物質の濃度は
刻々と変化するものであるからこの管理法は非常
に煩雑である。
A method for removing acidic gas components from gaseous fluids obtained in petroleum and petrochemical industry plants that contain acidic gas components such as H 2 S and CO 2
Alkaline aqueous solution (caustic soda aqueous solution, etc.)
However, in these methods, it is important for process operation and economics to maintain the amount and/or concentration of alkaline aqueous solution appropriate for the amount of acidic gas contained in the gas fluid. It has a meaning. As a means of appropriately controlling the amount of alkali and/or its concentration, the amount of alkaline solution required and/or its concentration can be determined based on the concentration analysis value of each acidic substance in the gas fluid and the measured flow rate of the gas fluid. However, since the gas flow rate and the concentration of acidic substances in the gas fluid change from moment to moment, this control method is very complicated.

従つて、一般的にはガス流体から酸性物質を除
去した後の廃アルカリ溶液の手分析値によつて管
理する方法が行われている。従来、廃アルカリ溶
液は多量の汚濁物及び/又は油を含有しており、
従つて、分析装置時にセンサー等が汚れ易い為、
長時間の運転に耐えられる廃アルカリ液中のアル
カリ等の濃度を測定する装置は知られていなかつ
た。従つて手分析により週数回程度分析を行いア
ルカリ溶液の量及び/又はその濃度を管理してい
るが、応答性が悪く十分な管理を行い得ないのが
現状である。
Therefore, in general, a method of managing the waste alkaline solution by hand analysis after removing acidic substances from the gas fluid is used. Traditionally, waste alkaline solutions contain large amounts of pollutants and/or oils,
Therefore, since the sensors etc. are easily contaminated when using the analyzer,
There was no known device for measuring the concentration of alkali, etc. in waste alkaline solution that could withstand long-term operation. Therefore, manual analysis is performed several times a week to control the amount and/or concentration of the alkaline solution, but the current situation is that the responsiveness is poor and sufficient control cannot be performed.

即ち、例えばプロセスガス中のH2S及びCO2
濃度は原料の種類により、あるいは分解条件の差
により異つて来るが週数回程度の分析では酸性ガ
スの濃度の変化に対応してアルカリ水溶液の量及
び/又はその濃度を適正に保つことは不可能であ
る。
That is, for example, the concentrations of H 2 S and CO 2 in the process gas will vary depending on the type of raw material or due to differences in decomposition conditions, but in analyzes that occur several times a week, the concentration of H 2 S and CO 2 in the process gas will vary depending on the concentration of acid gas. It is impossible to keep the amount and/or its concentration correct.

〔発明の目的〕[Purpose of the invention]

本発明は、ガス等のアルカリ洗浄工程から排出
される廃アルカリ液中のアルカリ及びアルカリ塩
の濃度を自動的に且つ長期間にわたつて測定しう
る方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method that can automatically measure the concentration of alkali and alkali salts in waste alkaline liquid discharged from a gas or other alkali cleaning process over a long period of time.

〔発明の構成〕[Structure of the invention]

本発明は汚濁物及び/又は油分を分離する前処
理工程を経た廃アルカリ液をサンプル貯槽に導く
サンプリング工程、サンプル貯槽から一定量のサ
ンプルを計量槽に送るサンプル計量工程、計量槽
から計量されたサンプルを一定量の稀釈水で稀釈
しながら電位検出電極を有する電極槽に移送する
工程、電極槽内に送られた稀釈サンプルを自動的
に酸標準溶液で滴定する自動滴定工程、各工程終
了後サンプル貯槽、計量槽、電極槽及びこれらを
結ぶ配管を洗浄する洗浄工程よりなり、且つ各工
程を定められた順序で自動的に切換操作するシー
ケンス制御手段及び自動滴定工程或いはシーケン
ス制御手段からの信号を必要な形に変換して出力
する演算処理手段で構成される一定の期間毎に廃
アルカリ液中のアルカリ又はその塩類の濃度を自
動的に測定する方法である。
The present invention consists of a sampling process in which waste alkaline liquid that has undergone a pretreatment process to separate pollutants and/or oil is introduced into a sample storage tank, a sample measurement process in which a certain amount of sample is sent from the sample storage tank to a measuring tank, and A process in which the sample is diluted with a certain amount of dilution water and transferred to an electrode tank with a potential detection electrode, an automatic titration process in which the diluted sample sent into the electrode tank is automatically titrated with an acid standard solution, and after each process is completed. A sequence control means that automatically switches each step in a predetermined order, and a signal from the automatic titration step or sequence control means, which consists of a cleaning process that cleans a sample storage tank, a measuring tank, an electrode tank, and the piping that connects these. This method automatically measures the concentration of alkali or its salts in waste alkali solution at regular intervals, and is comprised of arithmetic processing means that converts the alkali into a required form and outputs it.

本発明者等は前記従来技術の欠点を改善すべ
く、廃アルカリ液中の物性変化を連続的に計測出
来るならばアルカリ洗條工程の運転管理をより経
済的に行うことが可能である筈であるとの観点か
ら、種々検討を行つた結果、本発明に到達したも
のである。
In order to improve the drawbacks of the prior art, the present inventors believe that if changes in physical properties in the waste alkali solution can be continuously measured, it will be possible to manage the operation of the alkaline washing process more economically. As a result of various studies from this viewpoint, the present invention has been arrived at.

つぎに、本発明をエチレンプラント等で生成さ
れるプロセスガス中に含まれるH2S或いはCO2
ス等の酸性ガスをNaOH水溶液を用いて除去す
る例について説明する。
Next, an example of the present invention in which acidic gas such as H 2 S or CO 2 gas contained in a process gas generated in an ethylene plant or the like is removed using a NaOH aqueous solution will be described.

この例において本発明方法に中核をなす部分
は、廃アルカリ液を硫酸標準溶液で滴定して、プ
ロセスガス中に含まれているH2S或いはCO2ガス
等の酸性ガスを中和する為に用いるNaOHの量
がどの程度過剰であるのかを連続的に測定するこ
と、即ち廃アルカリ液中のNaOH又はその塩類
の濃度を連続的に長期間にわたつて測定する方法
である。
In this example, the core part of the method of the present invention is to titrate the waste alkali solution with a sulfuric acid standard solution to neutralize acidic gases such as H 2 S or CO 2 gas contained in the process gas. This is a method of continuously measuring how excessive the amount of NaOH used is, that is, measuring the concentration of NaOH or its salts in the waste alkali solution continuously over a long period of time.

まず、酸性ガスを中和するのに必要以上の
NaOH水溶液を使用した場合の廃アルカリ液中
の過剰のNaOHを硫酸標準溶液で滴定して算出
する方法を説明する。
First, use more than necessary to neutralize acidic gases.
We will explain how to calculate excess NaOH in waste alkaline solution by titrating with sulfuric acid standard solution when NaOH aqueous solution is used.

算出する方法は一般に知られているものである
が以下説明する。
The calculation method is generally known and will be explained below.

第2図は硫酸滴定を開始してからの硫酸の滴定
ml数とサンプル液の電位(PH)の変化との関係を
示す1例である。過剰のNaOH水溶液を用いた
場合、廃アルカリ液中にはH2S等の中和に使用さ
れなかつたNaOHとH2Sの中和で生成したNa2S
及びCO2の中和で生成したNa2CO3が存在してい
る。この溶液をH2SO4溶液で中和するとそれぞ
れ 2NaOH+H2SO4→Na2SO4+H2O ……(1) 2Na2S+H2SO4→2NaSH+Na2SO4 ……(2) 2Na2CO3+H2SO4→2NaHCO3+Na2SO4 ……(3) の反応がおこり、この反応が完結した時点、即ち
PH8(図上の点a)でPHが急激に変化し、つい上
記反応により生成したNaSHとNaHCO3が更に
反応してこの反応が終るとPHは4に達し、この点
(点b)で更にPHが急変する。
Figure 2 shows titration of sulfuric acid after starting sulfuric acid titration.
This is an example showing the relationship between the number of ml and the change in potential (PH) of the sample liquid. When an excess NaOH aqueous solution is used, the waste alkaline solution contains NaOH that was not used to neutralize H 2 S, etc. and Na 2 S generated by neutralizing H 2 S.
and Na 2 CO 3 produced by neutralization of CO 2 are present. When this solution is neutralized with H 2 SO 4 solution, 2NaOH+H 2 SO 4 →Na 2 SO 4 +H 2 O ……(1) 2Na 2 S+H 2 SO 4 →2NaSH+Na 2 SO 4 ……(2) 2Na 2 CO 3 +H 2 SO 4 →2NaHCO 3 +Na 2 SO 4 ...(3) reaction occurs, and when this reaction is completed, i.e.
At PH 8 (point a on the figure), the PH changes rapidly, and the NaSH generated by the above reaction further reacts with NaHCO 3. When this reaction ends, the PH reaches 4, and at this point (point b), the PH changes further. PH suddenly changes.

この反応を化学式で示すと次のとおりである。 The chemical formula for this reaction is as follows.

2NaSH+H2SO4→Na2SO4+H2S ……(4) 2NaHCO3+H2SO4→Na2SO4 +2H2O+2CO2 ……(5) なお、この反応はPHが8に達するまでは起きな
い。
2NaSH+H 2 SO 4 →Na 2 SO 4 +H 2 S ...(4) 2NaHCO 3 +H 2 SO 4 →Na 2 SO 4 +2H 2 O+2CO 2 ...(5) This reaction does not occur until the pH reaches 8. do not have.

上記反応式からわかるように、硫酸滴定開始点
からa点に至るまでの間にNa2SをNaSHに、ま
たNa2CO3をNaHCO3に変化させる為に要する
H2SO4の量と、a点からb点に至る間に要する
硫酸の流、即ち式(2)及び(3)で必要とする硫酸の量
と式(4)及び(5)で必要とする硫酸の量とは同じであ
るから、硫酸滴定開始時からa点に至るまでの間
に消費される硫酸の量Amlとa点からb点に至る
までの間に消費された硫酸の量Bmlの差(A−
B)mlの硫酸は過剰のNaOHの中和に消費され
たことになる。
As can be seen from the above reaction formula, it is necessary to convert Na 2 S to NaSH and Na 2 CO 3 to NaHCO 3 from the starting point of sulfuric acid titration to point a.
The amount of H 2 SO 4 and the flow of sulfuric acid required from point a to point b, that is, the amount of sulfuric acid required by equations (2) and (3) and the amount of sulfuric acid required by equations (4) and (5). Since the amount of sulfuric acid consumed is the same, the amount of sulfuric acid consumed from the start of sulfuric acid titration to point a, Aml, and the amount of sulfuric acid consumed from point a to point B, Bml. difference (A-
B) ml of sulfuric acid will have been consumed in neutralizing the excess NaOH.

即ち、A−B>0の場合、(A−B)mlの硫酸
は過剰のNaOHの中和に消費されたことになり、
硫酸の濃度とこの過剰の硫酸のml数から廃アルカ
リ液中に存在するNaOHの濃度を測定出来る為
に過剰のNaOHの量は容易に算出できる。
That is, if A-B>0, (A-B) ml of sulfuric acid was consumed to neutralize excess NaOH,
Since the concentration of NaOH present in the waste alkaline solution can be measured from the concentration of sulfuric acid and the number of milliliters of excess sulfuric acid, the amount of excess NaOH can be easily calculated.

また(A−B)=0の場合、プロセスガス中に
含まれているH2S及びCO2をNa2S及びNa2CO3
中和するのに必要量のNaOH溶液が用いられた
ことを意味し、また(A−B)<0の場合、生成
したNa2S及びNa2CO3の一部がプロセスガス中
のH2S及びCO2と反応してNaSH及びNaHCO3
生成していることを意味し、この場合にも、硫酸
の濃度とA−Bの値(負の値)から廃アルカリ液
中に存在するNaSH及びNaHCO3の濃度を測定
出来る為に不足するNaOHの量を容易に算出出
来る。
Also, if (A-B) = 0, the necessary amount of NaOH solution was used to neutralize H 2 S and CO 2 contained in the process gas to Na 2 S and Na 2 CO 3 . Also, when (A-B) < 0, a part of the generated Na 2 S and Na 2 CO 3 reacts with H 2 S and CO 2 in the process gas to generate NaSH and NaHCO 3 . In this case, the concentration of NaSH and NaHCO 3 present in the waste alkaline solution can be measured from the concentration of sulfuric acid and the value of A-B (negative value), so the amount of NaOH that is insufficient can be determined. can be easily calculated.

つぎに第1図に基いて本発明を詳しく説明す
る。
Next, the present invention will be explained in detail based on FIG.

廃ソーダ液はサンプル入口1から汚濁物を分離
する静置槽2と静置槽で分離できなかつた油分を
分離するための油分離器3を通しサンプリング開
始まで常時循環せしめられている。
The waste soda solution is constantly circulated from a sample inlet 1 through a static tank 2 for separating pollutants and an oil separator 3 for separating oil that cannot be separated in the static tank until sampling starts.

サンプリング開始信号が発せられると、サンプ
ルバルブCV−1を開き圧送弁SOL−2を閉(大
気側を開)にし、サンプル液をサンプル貯槽4に
分離機3から一定量受入れた後サンプルバルブを
閉じる。ついで圧送弁SOL−2と洗條水閉止弁
SOL11を開にし、サンプル液を圧送弁SOL−
2を通して送られる空気圧にて計量槽5に一定時
間移送した後圧送弁SOL2の閉(大気側を開)
にしサンプル貯槽4の内圧を抜きながらサイホン
現象を利用して計量槽5のサンプル液が一定量に
なるまで計量槽5のサンプルをサンプル貯槽4に
戻す。のお、このような操作を行う代りに、サン
プル貯槽4から計量ポンプによつて所定量のサン
プルを計量槽5に送るようにしてもよい。
When the sampling start signal is issued, the sample valve CV-1 is opened, the pressure feeding valve SOL-2 is closed (open to the atmosphere side), and after receiving a certain amount of sample liquid from the separator 3 into the sample storage tank 4, the sample valve is closed. . Next, pressurize valve SOL-2 and washing water shutoff valve.
Open SOL11 and force the sample liquid to the valve SOL-
After being transferred to the measuring tank 5 for a certain period of time using the air pressure sent through 2, the pressure feeding valve SOL2 is closed (the atmospheric side is opened).
While releasing the internal pressure of the sample storage tank 4, the sample in the measurement tank 5 is returned to the sample storage tank 4 using a siphon phenomenon until the sample liquid in the measurement tank 5 reaches a certain amount. However, instead of performing such an operation, a predetermined amount of sample may be sent from the sample storage tank 4 to the metering tank 5 by a metering pump.

サンプル貯槽4に留つている液は送液弁SOL
3を開にして排出ライン6に排出する。
The liquid remaining in the sample storage tank 4 is transferred to the liquid sending valve SOL.
3 and discharge to the discharge line 6.

ついで計量槽5中のサンプル液は移送弁SOL
5及びSOL6を開にして稀釈水タンク7からの
稀釈水と共に電極槽8に移送する。
Next, the sample liquid in the measuring tank 5 is transferred to the transfer valve SOL.
5 and SOL6 are opened, and the diluted water from the diluted water tank 7 is transferred to the electrode tank 8.

稀釈水は、サンプリング開始と同時に給水弁
SOL4を開にして移送弁SOL5を閉にした状態
で稀釈水タンクに給水し、オーバーフロー口を通
して排出ライン9に流すことにより予め一定量を
稀釈水タンク7に貯えておく。
The dilution water is supplied from the water supply valve at the same time as sampling starts.
Water is supplied to the dilution water tank with SOL4 open and transfer valve SOL5 closed, and a certain amount of water is stored in the dilution water tank 7 in advance by flowing it into the discharge line 9 through the overflow port.

計量槽5からのサンプル液移送完了後、電極槽
8のスターラ10を回転させ、硫酸滴定弁SOL
7を開き、滴定ポンプ11をスタートさせ標準硫
酸溶液を硫酸貯槽12から電極槽8に導入し滴定
を行う。
After completing the transfer of the sample liquid from the measuring tank 5, rotate the stirrer 10 of the electrode tank 8 and close the sulfuric acid titration valve SOL.
7 is opened, the titration pump 11 is started, and the standard sulfuric acid solution is introduced from the sulfuric acid storage tank 12 into the electrode tank 8 for titration.

電極槽8においては、滴定開始時から電位を測
定し、滴定開始時から電位の急変部即ち第2図の
例ではPH8及びPH4に至るまでの滴定ポンプ11
の回転数を積算することによつてそれぞれの急変
部までに添加した硫酸の量を求め、前に説明した
方法によりサンプル液中の遊離のアルカリ又はそ
の塩類の濃度を演算器15で演算することにより
求める。
In the electrode tank 8, the potential is measured from the start of titration, and the titration pump 11 measures the potential from the start of titration to the parts where the potential suddenly changes, that is, PH8 and PH4 in the example of FIG.
The amount of sulfuric acid added up to each sudden change point is calculated by integrating the rotational speed of the sample liquid, and the concentration of free alkali or its salts in the sample liquid is calculated by the calculator 15 using the method explained above. Find it by

電位が第2の急変部(第2図に示す例ではPH
4)に至つたらスターラ10及び滴定ポンプ11
を停止すると同時に硫酸滴定弁SOL7を閉じ滴
定動作を終了し、同時に排出弁SOL8開いて電
極槽8内の液を排出ライン6に排出する。
The potential is at the second sudden change point (PH in the example shown in Figure 2).
When reaching 4), stirrer 10 and titration pump 11
At the same time, the sulfuric acid titration valve SOL7 is closed to complete the titration operation, and at the same time, the discharge valve SOL8 is opened to discharge the liquid in the electrode tank 8 to the discharge line 6.

ついで洗條弁SOL9−2を開き、洗條水閉止
弁SOL11、サンプルバルブCV−1、圧送弁
SOL2を閉にし、送液弁SOL3を開にして温水
器14から洗條弁SOL9−2を経てサンプル貯
槽4に温水を供給してサンプル貯槽4の洗條を行
ない、又、電極槽8及び計量槽5は稀釈水タンク
7の給水弁SOL4、移送弁SOL5及びSOL6並
びに排出弁SOL8を開にし、稀釈水タンクから
水を供給して上記各槽の附着サンプル液を流し出
すことによつて洗條を行う。なお、温水器14は
サンプリング開始時から水及びスチームの供給弁
SOL9及びSOL10を開にして水をスチームで
暖めて温水としておく。そして上記の洗條が終了
した後次のサンプリングの開始を待つ。
Next, open the washing valve SOL9-2, and close the washing water shut-off valve SOL11, sample valve CV-1, and pressure feed valve.
Close SOL2 and open the liquid supply valve SOL3 to supply hot water from the water heater 14 to the sample storage tank 4 via the washing valve SOL9-2 to wash the sample storage tank 4, and also to wash the electrode tank 8 and the metering valve. The tank 5 is washed by opening the water supply valve SOL4, transfer valves SOL5 and SOL6, and discharge valve SOL8 of the dilution water tank 7, and supplying water from the dilution water tank to flush out the adhering sample liquid from each tank. I do. Note that the water heater 14 has a water and steam supply valve from the start of sampling.
Open SOL9 and SOL10 and heat the water with steam to make it hot. After the above-mentioned cleaning is completed, the next sampling is started.

上記の一連の動作は総て自動化され、各弁の作
動、滴定ポンプ11のスタート・ストツプ、スタ
ーラ10のスタート・ストツプ等はシーケンサー
13によるシーケンスで動作させ演算は演算器1
5で処理される。
All of the above series of operations are automated, and the operation of each valve, start/stop of the titration pump 11, start/stop of the stirrer 10, etc. are operated in sequence by the sequencer 13, and calculations are performed by the calculator 1.
Processed in 5.

又、シーケンス時間(各工程の)及び演算系数
の設定等は変更可能としてある。
In addition, the sequence time (for each step) and the settings of the number of calculation systems can be changed.

第3図乃至第5図は静置槽の1例を示すもの
で、第3図は静置槽の縦断面図、第4図は第3図
のA−A線における縦断面図(たゞし邪魔板の切
断しないそのまゝの状態を示す)、第5図は第3
図のB−B線における断面図サンプル出入口は省
略を示し、第6図は静置槽内器(邪魔板等)の見
取り図を示す。
Figures 3 to 5 show an example of a static tank, with Figure 3 being a vertical cross-sectional view of the static tank, and Figure 4 being a vertical cross-sectional view taken along line A-A in Figure 3. Figure 5 shows the condition of the baffle plate as it is without being cut.
A sectional view taken along the line B-B in the figure shows that the sample entrance and exit port are omitted, and FIG. 6 shows a sketch of the stationary tank inner container (baffle plate, etc.).

第3図乃至第6図に示す静置槽には、サンプル
入口1、サンプル出口22、サンプル排出口23
が設けられ、また、サンプル中の汚濁物の分離を
効果的ならしめるため複数の邪魔板24が設けら
れている。邪魔板24は第6図に詳しく示すよう
に皿を伏せた形の支持枠固定台に固定した支持枠
26に固定されており、取出し可能になつてい
る。また、支持枠固定台25の側縁部には沈降し
た汚濁物を汚濁物排出口28(第3図参照)へ排
出させるための複数の孔27が設けられている。
The static tank shown in FIGS. 3 to 6 includes a sample inlet 1, a sample outlet 22, and a sample outlet 23.
A plurality of baffle plates 24 are also provided to effectively separate contaminants in the sample. As shown in detail in FIG. 6, the baffle plate 24 is fixed to a support frame 26 fixed to a support frame fixing base in the form of an upside-down plate, and is made removable. Further, a plurality of holes 27 are provided at the side edge of the support frame fixing table 25 for discharging settled contaminants to a contaminant discharge port 28 (see FIG. 3).

サンプル入口1から静置槽2に導入されたアル
カリ廃液は油及び汚濁物を分離され、油はアルカ
リ廃液と共にサンプル排出口23からサンプル戻
りラインへ排出され、汚濁物は下方に沈降し、沈
降した汚濁物は排出口28から排出され、また油
及び汚濁物の除かれたアルカリ廃液はサンプル出
口22から更に油を分離するため油分離器3に導
かれる。
The alkaline waste liquid introduced into the static tank 2 from the sample inlet 1 is separated from oil and pollutants, and the oil and the alkaline waste liquid are discharged from the sample discharge port 23 to the sample return line, and the pollutants settle downward and settle. The pollutants are discharged from the outlet 28, and the alkaline waste liquid from which oil and pollutants have been removed is led to the oil separator 3 from the sample outlet 22 for further oil separation.

第7図に油分離器の1例を示す。第7図は油分
離器3の断面図を示すもので、サンプル入口3
1、サンプル出口32、サンプル排出口33が設
けられており、サンプル入口31から導入された
サンプルは、油分離器中に滞留している間に更に
微量の油を分離せしめられ、分離した油はサンプ
ルと共にサンプ排出口33よりサンプル戻りライ
ンに導かれ、油を分離されたサンプルはサンプル
出口32からサンプル貯槽4(第1図参照)へ導
かれる。
Figure 7 shows an example of an oil separator. FIG. 7 shows a cross-sectional view of the oil separator 3, and shows the sample inlet 3.
1. A sample outlet 32 and a sample discharge port 33 are provided, and while the sample introduced from the sample inlet 31 remains in the oil separator, a trace amount of oil is further separated, and the separated oil is The sample is led along with the sample to the sample return line from the sump outlet 33, and the sample from which the oil has been separated is led to the sample storage tank 4 (see FIG. 1) from the sample outlet 32.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのフ
ローシート、第2図は硫酸の滴定ml数と廃アルカ
リ液の電位(PH)の変化との関係を示す図、第3
図乃至第6図は静置槽の一例を示す図であつて、
第3図は静置槽の縦断面図、第4図は第3図のA
−A線における縦断面図、第5図は第3図のB−
B線における横断面図、第6図は静置槽内器(邪
魔板等)の見取り図、第7図は油分離器の断面図
を示す。 1……サンプル入口、2……静置槽、3……油
分離器、4……サンプル貯槽、5……計量槽、
6,9……排出ライン、7……稀釈水タンク、8
……電極槽、10……スターラ、11……滴定ポ
ンプ、12……硫酸貯槽、13……シーケンサ
ー、14……温水器、15……演算器、24……
邪魔板、CV−1……サンプルバルブ、SOL2…
…圧送弁、SOL3……送液弁、SOL4……給水
弁、SOL5,SOL6……移送弁、SOL7……硫
酸滴定弁、SOL8……排出弁、SOL9−2……
滌條弁。
Figure 1 is a flow sheet for explaining one embodiment of the present invention, Figure 2 is a diagram showing the relationship between the titrated ml number of sulfuric acid and the change in the potential (PH) of waste alkaline solution, and Figure 3 is a flow sheet for explaining an embodiment of the present invention.
Figures to Figures 6 are diagrams showing an example of a stationary tank, and
Figure 3 is a vertical cross-sectional view of the static tank, Figure 4 is A in Figure 3.
- Longitudinal cross-sectional view along line A, Figure 5 is B- in Figure 3.
A cross-sectional view taken along line B, FIG. 6 is a sketch of the stationary tank inner device (baffle plate, etc.), and FIG. 7 is a cross-sectional view of the oil separator. 1...Sample inlet, 2...Stationing tank, 3...Oil separator, 4...Sample storage tank, 5...Measuring tank,
6, 9...Discharge line, 7...Dilution water tank, 8
... Electrode tank, 10 ... Stirrer, 11 ... Titration pump, 12 ... Sulfuric acid storage tank, 13 ... Sequencer, 14 ... Water heater, 15 ... Computing unit, 24 ...
Baffle plate, CV-1...Sample valve, SOL2...
...Pressure feed valve, SOL3...Liquid feed valve, SOL4...Water supply valve, SOL5, SOL6...Transfer valve, SOL7...Sulfuric acid titration valve, SOL8...Discharge valve, SOL9-2...
Kojo dialect.

Claims (1)

【特許請求の範囲】[Claims] 1 汚濁物及び/又は油分を分離する前処理工程
を経た廃アルカリ液をサンプル貯槽に導くサンプ
リング工程、サンプル貯槽から一定量のサンプル
を計量槽に送るサンプル計量工程、計量槽から計
量されたサンプルを一定量の稀釈水で稀釈しなが
ら電位検出電極を有する電極槽に移送する工程、
電極槽内に送られた稀釈サンプルを自動的に酸標
準溶液で滴定する自動滴定工程、各工程終了後サ
ンプル貯槽、計量槽、電極槽及びこれらを結ぶ配
管を洗浄する洗浄工程よりなり、且つ各工程を定
められた順序で自動的に切換操作するシーケンス
制御手段及び自動滴定工程或いはシーケンス制御
手段からの信号を必要な形に変換して出力する演
算処理手段で構成される一定の期間毎に廃アルカ
リ液中の遊離のアルカリ又はその塩類の濃度を自
動的に測定する方法。
1 A sampling process in which the waste alkaline solution that has undergone a pretreatment process to separate pollutants and/or oil is introduced into a sample storage tank, a sample measurement process in which a certain amount of sample is sent from the sample storage tank to a measuring tank, and a sample weighed from the measurement tank is A step of transferring to an electrode tank having a potential detection electrode while diluting with a certain amount of dilution water,
It consists of an automatic titration process in which the diluted sample sent into the electrode tank is automatically titrated with an acid standard solution, and a cleaning process in which the sample storage tank, measuring tank, electrode tank, and piping connecting these are cleaned after each process. A system that automatically switches processes in a predetermined order and arithmetic processing means that converts signals from the automatic titration process or sequence control means into a necessary form and outputs them. A method for automatically measuring the concentration of free alkali or its salts in an alkaline solution.
JP12453484A 1984-06-19 1984-06-19 Automatic measuring method of concentration of free alkali or its salt in waste alkali liquid Granted JPS614953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12453484A JPS614953A (en) 1984-06-19 1984-06-19 Automatic measuring method of concentration of free alkali or its salt in waste alkali liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12453484A JPS614953A (en) 1984-06-19 1984-06-19 Automatic measuring method of concentration of free alkali or its salt in waste alkali liquid

Publications (2)

Publication Number Publication Date
JPS614953A JPS614953A (en) 1986-01-10
JPH0321064B2 true JPH0321064B2 (en) 1991-03-20

Family

ID=14887850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12453484A Granted JPS614953A (en) 1984-06-19 1984-06-19 Automatic measuring method of concentration of free alkali or its salt in waste alkali liquid

Country Status (1)

Country Link
JP (1) JPS614953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369789C (en) * 2006-05-23 2008-02-20 集美大学 Dual-shell shellfish anhydrobiosis method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6748366B2 (en) * 2018-08-13 2020-09-02 東亜ディーケーケー株式会社 Method for cleaning titrator and titration tube
CN109781646B (en) * 2019-03-15 2021-05-04 中世沃克(天津)科技发展股份有限公司 Full-automatic ultraviolet aquatic oil detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369789C (en) * 2006-05-23 2008-02-20 集美大学 Dual-shell shellfish anhydrobiosis method

Also Published As

Publication number Publication date
JPS614953A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
US2987912A (en) Method and apparatus for measurement of gas dissolved in a liquid
US3674672A (en) Multiparameter process solution analyzer-controller
JPS6047959B2 (en) Method of controlling the supply of suspension medium to a system for continuous washing of suspensions
US3241923A (en) Method and apparatus for the treatment of liquids
EP0214846A2 (en) Sample monitoring instrument for on-line application
JPH0321064B2 (en)
WO1997021096A1 (en) Method and apparatus for the measurement of dissolved carbon
JP2907269B2 (en) Automatic calibration method of automatic analyzer
JPH06319946A (en) Method for removing toxic gas in toxicity-removing tower
EP3191817B1 (en) Method for conducting and analyzing a process reaction
ZA200209436B (en) Method and device for measuring a component in a liquid sample.
EP0466303A2 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
US4154579A (en) Method and arrangement for the continuous quantitative indication of gaseous pollutants in gases
JP2996827B2 (en) Automatic analyzer
CN216525439U (en) On-line silicon watch
AU697563B2 (en) Chloride monitoring apparatus and process
JPH0754856Y2 (en) Water quality measuring device
JPH0717004Y2 (en) Carbon content measuring device
SU1254010A1 (en) Apparatus for monitoring thinning of diffusion juice in sugar production
CN116448956A (en) Online detection simulation device and online detection method for acid mist content in industrial tail gas
CN116519615A (en) Automatic measurement system for sulfides in water
JPH08145856A (en) Apparatus for removing air bubble in liquid
JPS61215950A (en) Automatic colorimetric analysis
Xun Automatic Measuring System for Process of Zinc Hydrometallurgy
JPS6260017B2 (en)