JPS61215950A - Automatic colorimetric analysis - Google Patents

Automatic colorimetric analysis

Info

Publication number
JPS61215950A
JPS61215950A JP5745885A JP5745885A JPS61215950A JP S61215950 A JPS61215950 A JP S61215950A JP 5745885 A JP5745885 A JP 5745885A JP 5745885 A JP5745885 A JP 5745885A JP S61215950 A JPS61215950 A JP S61215950A
Authority
JP
Japan
Prior art keywords
liquid
tank
colorimetric
colorimeter
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5745885A
Other languages
Japanese (ja)
Other versions
JPH0465970B2 (en
Inventor
Shigeo Asada
茂雄 麻田
Shingo Tokuda
徳田 晋吾
Hiroshi Takatomi
廣志 高富
Tetsumi Watanabe
渡辺 哲美
Tomoo Inoue
智雄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP5745885A priority Critical patent/JPS61215950A/en
Publication of JPS61215950A publication Critical patent/JPS61215950A/en
Publication of JPH0465970B2 publication Critical patent/JPH0465970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To make possible exact analysis with high reliability and to lessen manpower by automation by sampling a specified amt. of liquid to be examined at every specified time, introducing the sample liquid together with a specified amt. of coloring agent and other buffer chemicals, etc. into a colorimetric device and analyzing automatically the samples. CONSTITUTION:The colorimetric device forms the liquid circulation route from a mixing vessel 9 through a filter 21, a gas-liquid separating vessel 22 and a colorimetric vessel 23 to the vessel 9. A microcomputer 30 controls the device so as to sample the specified amt. of the liquid to be examined at every specified time and to introduce the sampled liquid together with the specified amt. of the coloring agent and the other buffer chemicals, etc. into the colorimetric device. The sampled liquid is circulated for the specified time in the colorimetric device and is thereby stabilized. The liquid is then decolored and is automatically analyzed by a colorimeter 26. The liquid is discharged upon ending of the analysis and after the colorimetric device is cleaned for the specified time, the specified amt. of the liquid to be measured is again sampled and the measurement is repeated. The colorimetrically measured value is digitized and displayed during this time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は経時的に変化する成分を含む被検液中の該成分
を自動的に比色分析する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for automatically colorimetrically analyzing components in a test liquid containing components that change over time.

(従来技術) 従来、連続的に流れる液体中においてこれに含まれる微
量成分の含有日が経時的に変化する場合、これを採取し
て比色分析を行いその経時変化の状態を調べる際には種
々の問題点が存在した。
(Prior art) Conventionally, when the content date of a trace component contained in a continuously flowing liquid changes over time, the sample is collected and subjected to colorimetric analysis to examine the state of the change over time. There were various problems.

たとえば1ll)bオーダーの微量成分を自動測定する
場合には、被検液の通過するラインの洗浄を十分行わな
いと前回の分析時残液の影響等により分析値が非常に信
頼度の低いものになる。
For example, when automatically measuring trace components on the order of 1 ll) B, if the line through which the test liquid passes is not thoroughly cleaned, the analytical values may be extremely unreliable due to the influence of residual liquid from the previous analysis. become.

また被検液の採取0発色剤等との薬剤との混合発色接液
の比色分析及び上記洗浄等の操作は被検成分の経時変化
を適確に知るため迅速に行う必要があるが、これらは従
来システマテイツクに行われておらずそれぞれが個別に
マニュアルな操作で行われていたため甚だ能率が悪くそ
の改善が望まれていた。
In addition, the colorimetric analysis of the sample solution, mixing it with a coloring agent, etc., and the coloring contact liquid, and the above-mentioned washing and other operations need to be carried out quickly in order to accurately understand the changes in the test component over time. Conventionally, these processes have not been performed systematically, and each has been performed individually and manually, resulting in extremely poor efficiency and a need for improvement.

(発明の目的) 本発明の目的は経時的に変化する微量成分の分析に際し
、被検液の採取、薬剤との混合。比色分析、洗浄等一連
の操作をシステマテイツクに組立てられた装置を使用し
て信頼度の高いかつ工業的に有用な自動比色分析法を提
供することにある。
(Object of the Invention) The object of the present invention is to collect a test liquid and mix it with a drug when analyzing trace components that change over time. The object of the present invention is to provide a highly reliable and industrially useful automatic colorimetric analysis method using an apparatus in which a series of operations such as colorimetric analysis and washing are systematically assembled.

(発明の構成) 本発明はすなわち成分が経時的に変化する被検液を比色
計によりその変化する成分を測定するに際し、該被検液
を一定時間毎に一定量サンプリングし一定量の発色剤及
びその他の緩衝用薬剤等と共に比色装置に導入し、該比
色装置において一定時間循環して安定化させ、脱気後比
色計にて自動的に分析し、分析が終れば検後液を排出し
一定時間比色装置を洗浄した後、再び被検液の一定量を
サンプリングして前記測定をくり返し、この操作中にお
ける比色測定値をデジタル化して表示することを特徴と
する自動比色分析方法である。
(Structure of the Invention) In other words, the present invention, when measuring the changing components of a test liquid whose components change over time using a colorimeter, samples a certain amount of the test liquid at regular intervals, and produces a certain amount of color. It is introduced into a colorimetric device together with the agent and other buffering agents, stabilized by circulation for a certain period of time in the colorimetric device, and automatically analyzed with a colorimeter after degassing. After draining the liquid and cleaning the colorimetric device for a certain period of time, a certain amount of the test liquid is sampled again and the measurement is repeated, and the colorimetric measurement value during this operation is digitized and displayed. It is a colorimetric analysis method.

本発明方法を図面により説明すると未精製液は管(1)
より精製塔(2)(2’ )を通り精製され微量の変動
成分を含む被検液として管(3)(4)より次の工程に
送られる。その一部はサンプリング液として弁(5)を
通り受器(6)に導かれる。この液は連続的に供給され
管(7)より溢流させて古い液と入れ替えるのが好まし
い。サンプリング液は一定堡バルブV+ 、バルブV2
を経て定量ポンプ(8)により混合槽(9)に導かれる
。(10)は洗浄用軟水槽であり同じく定量ポンプ(8
)により混合槽(9)に導かれる。また(11)は発色
液槽、(12)は緩衝用薬液槽であり発色液、緩衝用薬
液がそれぞれ定量ポンプ(13)。
To explain the method of the present invention using drawings, the unpurified liquid is placed in a tube (1).
The sample solution is purified through purification towers (2) and (2') and sent to the next step through tubes (3) and (4) as a test liquid containing trace amounts of fluctuating components. A part of it passes through the valve (5) and is led to the receiver (6) as a sampling liquid. Preferably, this liquid is continuously supplied and allowed to overflow from the pipe (7) to replace the old liquid. Sampling liquid is fixed with constant pressure valve V+, valve V2
The liquid is then guided to a mixing tank (9) by a metering pump (8). (10) is a soft water tank for cleaning, and is also a metering pump (8
) into the mixing tank (9). Further, (11) is a coloring liquid tank, (12) is a buffering chemical liquid tank, and the coloring liquid and buffering chemical liquid are each provided with a metering pump (13).

(14)により混合槽(9)に導かれる。これらのバル
ブおよびポンプはマイクロコンピュータ−によって制御
され混合槽への送液器を調節しうるようになつCいる。
(14) leads to the mixing tank (9). These valves and pumps are controlled by a microcomputer to allow adjustment of the liquid feed to the mixing tank.

混合槽(9)はモーター(15)により低速および高速
に変速して自転し得るようになっており、低速回転させ
て槽内液を適当な時間混合しサンプリング液を十分発色
させる。次にこの液を循環ポンプ(18)により管(1
9)(20)を経て、濾過II(21)、気液分離槽(
22)、および比色槽(23)よりなる比色装置に導き
、管(24)(25)より混合槽に戻し所定時間循環さ
せて液の状態を安定化させた後、比色槽(23)におい
て比色計(26)により一定波長の液の吸光度が測定さ
れる。なお気液分離槽(23)は測定誤差の原因となる
循環液中のガスを除去し液の安定化を図るために設【プ
られ、上部に溜った空気は間けつ的に電磁弁V3を開放
して放出される。また濾過機(21)は液の種類により
生成する沈澱を除去するために有効であるが、沈澱生成
が認められない場合は省略し得る。
The mixing tank (9) is capable of rotating at low and high speeds by a motor (15), and is rotated at low speed to mix the liquid in the tank for an appropriate time and sufficiently color the sampling liquid. Next, this liquid is pumped into the pipe (1) by the circulation pump (18).
9) (20), filtration II (21), gas-liquid separation tank (
22), and a colorimetric tank (23), and returned to the mixing tank through tubes (24) and (25) and circulated for a predetermined period of time to stabilize the state of the liquid. ), the absorbance of the liquid at a certain wavelength is measured by a colorimeter (26). The gas-liquid separation tank (23) is installed to remove gas in the circulating fluid that causes measurement errors and stabilize the fluid. released and released. The filter (21) is effective for removing precipitates generated depending on the type of liquid, but may be omitted if no precipitates are observed.

(17)により糸外に排出させる。次いで洗浄用軟水槽
(10)より洗浄用水をポンプ(8)にて混合槽(9)
に導き、同種を低速回転して槽内を十分洗浄し、この洗
浄水を循環ポンプ(18)により上記比色装置に循環さ
せ洗浄する。混合槽(9)に戻された洗浄水は混合槽(
9)を高速回転して溢流させ管(17)より排出させる
。また循環液は弁v4より管(27)に排出させること
もできる。
(17) causes it to be discharged to the outside of the thread. Next, the cleaning water is pumped from the cleaning soft water tank (10) into the mixing tank (9) using the pump (8).
The same type of water is rotated at low speed to thoroughly wash the inside of the tank, and this washing water is circulated through the colorimetric device using the circulation pump (18) for washing. The cleaning water returned to the mixing tank (9) is
9) is rotated at high speed to overflow and discharged from the pipe (17). Further, the circulating fluid can also be discharged into the pipe (27) from the valve v4.

以下これらの操作を細部にわたって説明する。These operations will be explained in detail below.

精製塔(2)(2’ )はたとえばカルシウム分を含む
塩水、硬水等の場合、これを大部分除去するのに有効で
あるが、被検液の種類によっては必ずしも必要でない。
Although the purification towers (2) and (2') are effective in removing most of salt water, hard water, etc. containing calcium, they are not always necessary depending on the type of liquid to be tested.

サンプリング液の受器(6)はたとえば(6′ )のご
とく複数個設置してもよく、これらは予備受槽として被
検液の任意の個所よりサンプリング液を採取することが
でき、電磁弁V+の切替えによりいくつかのサンプルに
ついての分析が可能となる。サンプリング液は前述のよ
うに受器(6)(6’ )より常時溢流させれば被検液
を連続的に採取できて好ましいが、このような受器を設
けずに直接混合槽(9)に管(28)より送液し、その
際、弁(5)にタイマー等を連動させて一定聞間けつ的
に送液するようにしてもよい。比色摺(23)は循環液
を自動的に供給排出できるフローセルであって、これに
設けられた分光光度計による測定データをA/D変換器
(29)によりアナログからデジタルに変換し、マイク
ロコンピュータ−(30)によりその値を記憶し、計算
しその結果をディスプレーに表示しプリンターでアウト
プットする。
A plurality of sampling liquid receivers (6) may be installed, for example (6'), and these can be used as preliminary receivers to collect sampling liquid from any part of the test liquid. Switching allows analysis of several samples. As mentioned above, it is preferable to allow the sampling liquid to constantly overflow from the receivers (6) (6') so that the sample solution can be collected continuously. ) from the tube (28), and at that time, the valve (5) may be linked with a timer or the like to feed the liquid at fixed intervals. The colorimetric slide (23) is a flow cell that can automatically supply and discharge circulating fluid, and the measurement data from the spectrophotometer installed therein is converted from analog to digital by the A/D converter (29). The computer (30) stores and calculates the values, displays the results on a display, and outputs them using a printer.

この場合、前以てサンプリング液の1個を基準液としあ
らかじめ別の精密分析、例えばI CP、原子吸光光度
法等により測定した後、吸光度を測定しブランク液との
比較により検m線を得ることができ、これをマイクロコ
ンピュータ−(30)に記憶させてお(。そしてこの基
準液と他のサンプリング液との値を比較することにより
正確な測定が可能になる。
In this case, one of the sampled solutions is used as a reference solution and measured in advance by another precise analysis, such as ICP or atomic absorption spectrometry, and then the absorbance is measured and compared with a blank solution to obtain a calibration line. By storing this in the microcomputer (30) and comparing the values of this reference solution and other sampled solutions, accurate measurement becomes possible.

このマイクロコンピュータ−(30)はポンプ(8)(
13)(14)(18)の起動停止操作、及び稼動時間
、弁(5)、V+ 、V2 。
This microcomputer (30) is a pump (8) (
13) Start/stop operations of (14) and (18), operating time, valve (5), V+, V2.

v3の開開、及びその時間の測定、混合W(9)を自転
するモーター(15)の起動、停止・、高速回転、低速
回転の速度の切替え、その時間の測定等一連の操作をプ
ログラムによって行う様に指令し、これによって被検液
のサンプリング量および時間1発色剤、緩衝南薬剤の添
加価および添加時間、比色装置の循環時間、混合槽の自
転時間、洗浄水の送入口および洗浄時間等を定憬化させ
ることができる。
A series of operations such as opening and opening of V3 and measuring the time, starting and stopping the motor (15) that rotates the mixing W (9), switching the speed of high speed rotation and low speed rotation, and measuring the time are performed by a program. The sampling amount and time of the test solution are determined, and the amount and time of addition of the coloring agent and buffering agent, the circulation time of the colorimetric device, the rotation time of the mixing tank, the inlet of the washing water, and the washing time are determined. It is possible to standardize time, etc.

(発明の効果) 本発明法によれば被検液の流路よりのサンプリング、発
色液、緩衝液等の添加、それらの混合と比色装置におけ
る循環、比色測定、洗浄水による装置洗浄等一連の操作
をくり返し行うのに、マイクロコンピュータ−等を利用
して自動化することにより省力化が図られ合理的に行う
ことができる。また比色測定値はデジタル化されコンピ
ューターに入力し表示されるので容易に被検液中の微量
成分の変動を知ることが可能である。本発明法の比色装
置における循環は液の安定化のために有効であり、特に
被検液中に固形分が存在する場合は濾過機を循環工程中
に設けることにより除去し得る。また混合槽は特に自転
し得るようにしておけばこれにより洗浄操作および薬液
の混合操作を行うことができ、また液取出ポンプを混合
槽に直結しないのでサンプリング液が槽、配管内に残存
してその後の測定に影響を及ぼすことがなく正確な分析
を行い得る。
(Effects of the Invention) According to the method of the present invention, sampling of the test liquid from the flow path, addition of coloring solution, buffer solution, etc., mixing and circulation of these in the colorimetric device, colorimetric measurement, device cleaning with washing water, etc. By automating a series of repeated operations using a microcomputer, etc., labor can be saved and the operations can be performed rationally. Furthermore, since the colorimetric measurement values are digitized and input into a computer and displayed, it is possible to easily know the fluctuations in trace components in the test liquid. Circulation in the colorimetric device of the present invention is effective for stabilizing the liquid, and in particular, if solids are present in the test liquid, they can be removed by providing a filter during the circulation process. In addition, if the mixing tank is designed to be able to rotate, cleaning operations and mixing of chemical solutions can be carried out, and since the liquid extraction pump is not directly connected to the mixing tank, there is no possibility that the sampling liquid will remain in the tank or piping. Accurate analysis can be performed without affecting subsequent measurements.

実施例 第1図に示される自動分析装置を使用して飽和塩水中の
カルシウムイオン<ca++>m度の測定を行った。
EXAMPLE Calcium ion <ca++>m degrees in saturated salt water was measured using the automatic analyzer shown in FIG.

まず分析のスパン(換算係数)を算口iするために次の
操作を行う。プラズマ発光分析の結果Ca ++195
ppbを含む飽和塩水を混合槽に入れ、発色液、緩衝液
を加えた後、第1図の比色装置に循環し安定化させた後
吸光度を測定し0.469の値を得た。これを排出後、
同じ塩水を混合槽に送りCa +十を完全に隠蔽する吊
の試薬EDTAを加えてCa中十についてのブランク液
とした。
First, the following operation is performed to calculate the analysis span (conversion coefficient). Plasma emission analysis result Ca ++195
A saturated salt solution containing ppb was placed in a mixing tank, a coloring solution and a buffer solution were added thereto, and the mixture was circulated through the colorimeter shown in FIG. 1 for stabilization, and then the absorbance was measured and a value of 0.469 was obtained. After discharging this,
The same salt water was sent to a mixing tank and EDTA, a reagent that completely concealed Ca + 10, was added thereto to prepare a blank solution for Ca 10+.

この液を前記と同じ方法で比色装置に循環し吸光度を測
定すると0.304であった。これら2つの吸光度より
Ca中+1度を算出するための係数は 195x  1/  0.469− 0.304=  
1.182x 103としてマイクロコンピュータ−(
30)に記憶させる。
This liquid was circulated through a colorimeter in the same manner as above, and the absorbance was measured to be 0.304. The coefficient to calculate +1 degree in Ca from these two absorbances is 195x 1/0.469-0.304=
Microcomputer as 1.182x 103 (
30).

1)測定 ソーダ電解工程において電解槽に送られる飽和塩水をキ
レート樹脂充填精製塔(1)に通し大部分のCa ++
、 M(1”を除去した塩水を被検液とする。
1) Measurement In the soda electrolysis process, the saturated salt water sent to the electrolytic cell is passed through the chelate resin-filled purification tower (1), where most of the Ca ++
, M(1") was removed from the salt water as the test solution.

上記精製塔出口の塩水の一部を容量的11の受器(6)
に542/hrの流速で常時溢流させ、常に新しい塩水
が受器を満たしている状態に保つ。この受器中の塩水を
定量ポンプ(8)により 1001/sinの割合で1
分間混合槽(9)に送る。なお上記操作及び後述の下記
操作はすべてマイクロコンピュータ−(30)により自
動制御されている。次いで発色液槽(11)より発色液
を、定量ポンプ(13)により、緩衝液槽(12)より
緩衝液(水酸化アルカリ)を定量ポンプ(14)により
、それぞれ201/■inの割合で混合槽(9)に送り
、この混合槽(9)を5分間低速回転(約300rpm
) L/て十分に撹拌し発色せしめる。この発色した液
を循環ポンプ(18)で気液分離槽(22)及び比色槽
(26)に3分間循環させ比色槽内の液を十分安定化せ
しめた後、循環ポンプ(18)を停止する。比色計(2
6)により吸光度が測定されその値をAとする。次いで
混合槽(9)を高速回転(約1200rpm ) L、
槽内液を排液する。
A volumetric capacity of 11 receivers (6) for a portion of the brine at the outlet of the purification tower
It is constantly overflowed at a flow rate of 542/hr to keep the receiver always filled with fresh brine. The salt water in this receiver is pumped with a metering pump (8) at a rate of 1001/sin.
into the mixing tank (9) for a minute. The above operations and the following operations described below are all automatically controlled by a microcomputer (30). Next, the color developing solution from the color developing solution tank (11) is mixed with the metering pump (13), and the buffer solution (alkali hydroxide) is mixed with the metering pump (14) from the buffer solution tank (12) at a rate of 201/inch. This mixing tank (9) is rotated at low speed (approximately 300 rpm) for 5 minutes.
) Stir thoroughly to develop color. The colored liquid is circulated through the gas-liquid separation tank (22) and the colorimetric tank (26) for 3 minutes using the circulation pump (18) to sufficiently stabilize the liquid in the colorimetric tank, and then the circulation pump (18) is turned on. Stop. Colorimeter (2
6), the absorbance is measured and the value is defined as A. Next, the mixing tank (9) is rotated at high speed (approximately 1200 rpm).
Drain the liquid in the tank.

次に再び受器(6)中の塩水を定量ポンプ(8)により
同じり10〇−混合槽(9)に送る。
Next, the salt water in the receiver (6) is again sent to the same mixing tank (9) by the metering pump (8).

その後、Ca++を完全に隠蔽する量の試薬EDTAを
貯槽゛(図示していない)より混合槽(9)にポンプ輸
送し、さらに比色液、緩衝液。
Thereafter, an amount of reagent EDTA to completely hide Ca++ is pumped from a storage tank (not shown) to a mixing tank (9), and then a colorimetric solution and a buffer are added.

これら多液の混合、及び比色装置の循環操作は上記と全
く同様にして吸光度を測定しその値を8とする。
The mixing of these multiple liquids and the circulation operation of the colorimetric device are carried out in exactly the same manner as described above, and the absorbance is measured and the value is set to 8.

A、Bの値および係数より該塩水中のCa→濃度Cは C−(A−B) X 1.182X103となり、この
値はマイクロコンピュータ−(30)で演算された後、
プリンターで記録しディスプレー上に表示される。
From the values of A and B and the coefficients, the concentration of Ca in the salt water becomes C-(A-B)
It is recorded by the printer and displayed on the display.

11)洗浄 混合槽(9)を高速回転して測定後の塩水を排出し、次
いで洗浄用軟水槽(10)より定量ポンプ(8)で20
0ccの水を混合槽に送り2分間低速回転して同槽内を
洗浄後、高速回転して排水する。次に再び水を洗浄用軟
水槽より混合槽に送り循環ポンプ(18)により比色装
置内に2分間循環し洗浄後、同じ操作で混合槽より排水
する。
11) The cleaning mixing tank (9) is rotated at high speed to drain the measured salt water, and then the metering pump (8) is used to drain the salt water from the cleaning soft water tank (10).
0cc of water is sent to the mixing tank, and the tank is rotated at low speed for 2 minutes to clean the inside of the tank, and then rotated at high speed to drain the water. Next, water is again sent from the cleaning soft water tank to the mixing tank and circulated within the colorimetric device for 2 minutes using the circulation pump (18). After washing, water is drained from the mixing tank in the same manner.

以上1 ) 11 >の測定および洗浄操作をコンピュ
ーター制御により繰り返し行って、Ca++濃度を一定
時間毎に自動的に測定した結果を第2図に示す。
The measurement and washing operations described above in 1) 11> were repeated under computer control, and the Ca++ concentration was automatically measured at regular intervals. The results are shown in FIG.

第2図により明らかなようにキレート樹脂充填精製塔(
1)がまだ十分に塩水に含まれるCa→の交換容量のあ
る間は、同精製塔出口のCaH1!度は十分に低い値を
示しているが、能力が落ちてくるとCa++澹度が急速
に上昇する状態がよく検出される。
As is clear from Figure 2, the chelate resin-filled purification tower (
1) While there is still sufficient exchange capacity for Ca→ contained in the brine, the CaH1! Although the Ca++ concentration is showing a sufficiently low value, a state in which the Ca++ concentration rapidly increases when the capacity decreases is often detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施態様を示す工程図であり、第
2図は実施例におけるカルシウムイオン濃度の経日変化
を示すグラフである。 <6)(6’ )・・・サンプリング液受器。 (9)・・・混合槽、(10)・・・洗浄用軟水槽。 (11)・・・発色液槽、(12)・・・緩衝液槽。 (18)・・・循環ポンプ、(22)・・・気液分離槽
。 (23)・・・比色槽、(30)・・・マイクロコンピ
ュータ−
FIG. 1 is a process diagram showing an embodiment of the method of the present invention, and FIG. 2 is a graph showing changes in calcium ion concentration over time in Examples. <6) (6')... Sampling liquid receiver. (9)...Mixing tank, (10)...Soft water tank for cleaning. (11)...Coloring solution tank, (12)...Buffer solution tank. (18)... Circulation pump, (22)... Gas-liquid separation tank. (23)...Colorimetric tank, (30)...Microcomputer-

Claims (5)

【特許請求の範囲】[Claims] (1)成分が経時的に変化する被検液を比色計によりそ
の変化する成分を測定するに際し、該被検液を一定時間
毎に一定量サンプリングし一定量の発色剤及びその他の
緩衝用薬剤等と共に比色装置に導入し、該比色装置にお
いて一定時間循環して安定化させ、脱気後比色計にて自
動的に分析し、分析が終れば検後液を排出し一定時間比
色装置を洗浄した後、再び被検液の一定量をサンプリン
グして前記測定をくり返し、この操作中における比色測
定値をデジタル化して表示することを特徴とする自動比
色分析方法。
(1) When using a colorimeter to measure the changing components of a test liquid whose components change over time, a certain amount of the test liquid is sampled at regular intervals, and a certain amount of coloring agent and other buffers are added to the test liquid. It is introduced into a colorimeter along with chemicals, stabilized by being circulated in the colorimeter for a certain period of time, and then automatically analyzed by a colorimeter after degassing.When the analysis is completed, the liquid is drained and kept for a certain period of time. An automatic colorimetric analysis method characterized in that after cleaning the colorimetric device, a certain amount of the test liquid is sampled again and the measurement is repeated, and the colorimetric measurement values during this operation are digitized and displayed.
(2)比色装置が混合槽より気液分離槽および比色槽を
経て混合槽に戻る液循環経路を有する装置である特許請
求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the colorimetric device has a liquid circulation path from the mixing tank, through the gas-liquid separation tank and the colorimetric tank, and back to the mixing tank.
(3)混合槽と気液分離槽との間の液循環経路に濾過機
を設けた特許請求の範囲第2項記載の方法。
(3) The method according to claim 2, wherein a filter is provided in the liquid circulation path between the mixing tank and the gas-liquid separation tank.
(4)混合槽が低速および高速の少くとも2段変速可能
に自転する槽であり、かつ槽内液を上部より汲上げて液
循環経路に導くポンプを設けた特許請求の範囲第2項記
載の方法。
(4) Claim 2, wherein the mixing tank is a tank that can rotate in at least two speeds, low speed and high speed, and is provided with a pump that pumps up the liquid in the tank from the upper part and guides it to the liquid circulation path. the method of.
(5)サンプリングが被検液をサンプル受槽に連続的に
供給し余剰液を溢流させつつ行う特許請求の範囲第1項
記載の方法。
(5) The method according to claim 1, wherein the sampling is performed while continuously supplying the test liquid to the sample receiving tank and overflowing the excess liquid.
JP5745885A 1985-03-20 1985-03-20 Automatic colorimetric analysis Granted JPS61215950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5745885A JPS61215950A (en) 1985-03-20 1985-03-20 Automatic colorimetric analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5745885A JPS61215950A (en) 1985-03-20 1985-03-20 Automatic colorimetric analysis

Publications (2)

Publication Number Publication Date
JPS61215950A true JPS61215950A (en) 1986-09-25
JPH0465970B2 JPH0465970B2 (en) 1992-10-21

Family

ID=13056225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5745885A Granted JPS61215950A (en) 1985-03-20 1985-03-20 Automatic colorimetric analysis

Country Status (1)

Country Link
JP (1) JPS61215950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301150A (en) * 1988-05-30 1989-12-05 Mitsui Petrochem Ind Ltd Automatic coloring testing device for chemical article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301150A (en) * 1988-05-30 1989-12-05 Mitsui Petrochem Ind Ltd Automatic coloring testing device for chemical article

Also Published As

Publication number Publication date
JPH0465970B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
US4774101A (en) Automated method for the analysis and control of the electroless metal plating solution
US3898042A (en) Method and apparatus for continuously determining total copper in an aqueous stream
US2967764A (en) Apparatus for analysis and other processing of fluids
US7507587B2 (en) Automatic analysis and control system for electroless composite plating solution
WO2006043900A1 (en) A water quality testing system
JPS6385334A (en) Thermostatic apparatus for analyser
JPS61215950A (en) Automatic colorimetric analysis
US4036590A (en) Method and apparatus for the automatic analysis of the concentration of an individual component of a fluid in a metal-depositing bath having several components
JP2017053740A (en) Iodine concentration measurement device
JPH06288923A (en) Analyzer for silica content in water
JP2002047575A (en) Automatic analyser and controller of electroless composite plating liquid
JP3172745B2 (en) Method for measuring peroxodisulfuric acid in wastewater
JPH0257863B2 (en)
AU2015101934A4 (en) On-line wet chemistry analyzer
US4154579A (en) Method and arrangement for the continuous quantitative indication of gaseous pollutants in gases
Jones et al. Experimental and theoretical studies of solid solution formation in lime and limestone SO2 scrubbers
JP2996827B2 (en) Automatic analyzer
JPH03272464A (en) Apparatus for automatically and continuously analyzing cod in waste water
JPH08247950A (en) Concentration analysis method
JP7469630B2 (en) Sludge Water Analyzer
JP2701760B2 (en) Chemical composition monitor
JP2001174374A (en) Solution sampling system
US4504367A (en) Monitoring of chemical species in solution and apparatus therefor
RU2075338C1 (en) Apparatus for studying kinetic aspect of dissolution of solid substances
JPH049750A (en) Thermostatic tank dipping type analyser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees