JPH03210613A - Controller for reactive power compensator - Google Patents

Controller for reactive power compensator

Info

Publication number
JPH03210613A
JPH03210613A JP2004516A JP451690A JPH03210613A JP H03210613 A JPH03210613 A JP H03210613A JP 2004516 A JP2004516 A JP 2004516A JP 451690 A JP451690 A JP 451690A JP H03210613 A JPH03210613 A JP H03210613A
Authority
JP
Japan
Prior art keywords
circuit
gain
reactive power
power
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004516A
Other languages
Japanese (ja)
Inventor
Naoko Sato
直子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004516A priority Critical patent/JPH03210613A/en
Priority to US07/635,972 priority patent/US5099190A/en
Priority to EP91100094A priority patent/EP0438059B1/en
Priority to DE69110481T priority patent/DE69110481T2/en
Priority to AU68645/91A priority patent/AU622063B2/en
Priority to CA002033567A priority patent/CA2033567C/en
Priority to CN91100148A priority patent/CN1024105C/en
Publication of JPH03210613A publication Critical patent/JPH03210613A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To obtain the optimum responsiveness by calculating the estimated value of a power impedance from a changed variable of the system voltage produced by the ON/OFF of a static capacitor and a current changed variable, and adjusting the control gain based on the estimated power impedance. CONSTITUTION:A power impedance estimating circuit 18 receives the ON/OFF switch signal of a capacitor 7 and calculates a changed variable DELTAV of the system voltage V and a changed variable DELTAI of a current I and then estimates a power impedance Z as Z = DELTAV/DELTAI. A gain adjusting circuit 19 adjusts the gain Kp of a reactive power deciding circuit 15 in adverse proportion to the estimated impedance value Z. Therefore the transient response of a control circuit 9 is delayed when the value Z is reduced. Thus the gain Kp of the circuit 15 is increased. On the contrary, the transient response of the circuit 9 is accelerated and the hunting is produced with increase of the value Z. In this respect, the gain Kp of the circuit 15 is reduced for stabilization of a system. Thus the reactive power is controlled in a fast and stable way.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は電力系統の電圧変動を抑制する無効電力補償装
置の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a control device for a reactive power compensator that suppresses voltage fluctuations in an electric power system.

(従来の技術) 第2図は従来の無効電力補償装置の一例を示すブロック
図である。
(Prior Art) FIG. 2 is a block diagram showing an example of a conventional reactive power compensator.

同図において、交流電源1と電源インピーダンス2とで
等価的に表わされる電力系統に接続される無効電力補償
装置の主回路3はリアクトル4にサイリスタ5.6の逆
並列回路を直列接続して構成されている。
In the figure, a main circuit 3 of a reactive power compensator connected to a power system equivalently represented by an AC power supply 1 and a power supply impedance 2 is constructed by connecting an anti-parallel circuit of thyristors 5 and 6 in series to a reactor 4. has been done.

又、この電力系統にはスタティックコンデンサ7をスイ
ッチング回路8を介して接続するのが普通である。
Further, a static capacitor 7 is usually connected to this power system via a switching circuit 8.

一方、制御回路9は電力系統の電・圧を電圧検出回路l
Oにより検出し、この検出値Vと基準電圧設定回路11
に設定される電圧基準値vrefとの偏差を偏差検出回
路12で検出している。一方、電力系統からの電流は電
流検出回路13にて検出し、この検出値Iはスロープリ
アクタンス回路14により数%〜lO数%程度の値にし
て偏差検出回路12に入力している。偏差検出回路12
は2つの電圧入力信号V、 V、。rの差と電流入力信
号Iに応じて得た偏差出力を増幅回路および位相補償回
路等から成る無効電力決定回路15に与えている。無効
電力決定回路15は電圧偏差に応じて決定した補償すべ
き無効電力信号をサイリスクの点弧角制御回路1Bに与
え、主回路3のサイリスク5.6の点弧パルスを無効電
力信号に応じた位相で発生させる。この点弧パルスはパ
ルス増幅器17を介してサイリスタ5゜6のゲートに印
加される。
On the other hand, the control circuit 9 detects the voltage of the power system using the voltage detection circuit l.
This detected value V and the reference voltage setting circuit 11
A deviation detection circuit 12 detects a deviation from a voltage reference value vref set to . On the other hand, the current from the power system is detected by the current detection circuit 13, and this detected value I is converted into a value of several % to several 10% by the slope reactance circuit 14 and input to the deviation detection circuit 12. Deviation detection circuit 12
are two voltage input signals V, V,. A deviation output obtained according to the difference in r and the current input signal I is provided to a reactive power determining circuit 15 comprising an amplifier circuit, a phase compensation circuit, and the like. The reactive power determining circuit 15 supplies the reactive power signal to be compensated determined according to the voltage deviation to the Cyrisk firing angle control circuit 1B, and the firing pulse of Cyrisk 5.6 of the main circuit 3 is determined according to the reactive power signal. Generate in phase. This ignition pulse is applied via a pulse amplifier 17 to the gate of the thyristor 5.6.

かかる構成において、電力系統の電圧が低下すると電圧
検出回路10は系統電圧Vを検出し、この電圧■と基準
値vrefとの偏差は偏差検出回路12で検出される。
In such a configuration, when the voltage of the power system decreases, the voltage detection circuit 10 detects the system voltage V, and the deviation between this voltage (■) and the reference value vref is detected by the deviation detection circuit 12.

この偏差は出力電流検出器I3の出力Iで補正される場
合もある。偏差検出回路12の出力信号はさらに無効電
力決定回路15で増幅され無効電力信号となり、この信
号に応じた位相で点弧角制御開路16が点弧パルスを出
力する。この点弧パルス出力はパルス増幅817で増幅
されてサイリスタ5.6を点弧する。
This deviation may be corrected by the output I of the output current detector I3. The output signal of the deviation detection circuit 12 is further amplified by a reactive power determination circuit 15 to become a reactive power signal, and the firing angle control circuit 16 outputs a firing pulse with a phase corresponding to this signal. This firing pulse output is amplified by pulse amplification 817 to fire thyristor 5.6.

その結果、リアクトル4に流れる遅れ電流が減少し、系
統電圧の低下が抑制される。
As a result, the delayed current flowing through the reactor 4 is reduced, and a drop in system voltage is suppressed.

逆に、系統電圧が上昇した場合には、サイリスタ5,6
の点弧パルスの位相を制御してリアクトル4に流れる電
流を増加させ、系統電圧の上昇を抑制するようなフィー
ドバック制御が実施される。
Conversely, when the grid voltage increases, thyristors 5 and 6
Feedback control is implemented to control the phase of the ignition pulse to increase the current flowing through the reactor 4 and to suppress the rise in system voltage.

(発明が解決しようとする課題) かかる従来の無効電力補償装置は制御系の過渡応答を安
定でしかも速くするために無効電力決定回路15のゲイ
ンKPを電源インピーダンスZの値に応じてあらかじめ
最適に定めている。ところが、電源インピーダンスZの
値は一定ではなく、電力系統の運用の状況によって大き
く変化する。
(Problem to be Solved by the Invention) In this conventional reactive power compensator, the gain KP of the reactive power determining circuit 15 is optimized in advance according to the value of the power source impedance Z in order to stabilize and speed up the transient response of the control system. It has established. However, the value of the power supply impedance Z is not constant and varies greatly depending on the operation status of the power system.

例えば、昼と夜の違い、季節による違い、発電所の増設
による変動などで電源インピーダンスZの値は変化する
。このため、電源インピーダンス2が小さくなると制御
ループのゲインが下り過渡応答が遅くなり、逆に電源イ
ンピーダンスZが大きくなると制御ループのゲインが大
きくなり応答が不安定となりハンチングを生じるという
問題がある。
For example, the value of power source impedance Z changes due to differences between day and night, seasonal differences, and fluctuations due to expansion of power plants. Therefore, when the power supply impedance 2 becomes small, the gain of the control loop decreases and the transient response becomes slow. Conversely, when the power supply impedance Z becomes large, the gain of the control loop increases, making the response unstable and causing hunting.

本発明は電源インピーダンスの変動に伴う上記の問題点
を解消し、電源インピーダンスを推定してそれに見合っ
た値に無効電力決定回路のゲインを自動的に調整するこ
とにより電源インピーダンスが変化しても常に最適な応
答性が得られるようにした無効電力補償装置の提供を目
的とする。
The present invention solves the above-mentioned problems associated with variations in power supply impedance, and by estimating the power supply impedance and automatically adjusting the gain of the reactive power determining circuit to a value commensurate with the power supply impedance, the present invention always maintains power even when the power supply impedance changes. An object of the present invention is to provide a reactive power compensator that can obtain optimal responsiveness.

【発明の構成1 (課題を解決するための手段) 本発明は電力系統に無効電力補償装置と併設されるスタ
ティックコンデンサの人、切の信号を受け、このスタテ
ィックコンデンサの入又は切によって生じる系統電圧の
変化mと、電流の変化量とから電源インピーダンスの推
定値を算出し、この推定値に基づいて制御ゲインを調整
するゲイン調整手段を備えたものである。
Arrangement 1 of the Invention (Means for Solving the Problems) The present invention provides a means for solving the problems of a static capacitor installed in a power system together with a reactive power compensator, and receiving a signal to turn off the static capacitor, and detecting a system voltage generated by turning on or turning off the static capacitor. The control circuit is equipped with a gain adjustment means that calculates an estimated value of the power supply impedance from the change m in the current and the amount of change in the current, and adjusts the control gain based on this estimated value.

(作 用) 本発明においてはスタティックコンデンサの人又は切に
よって生じた系統電圧の変化量ΔVをこの時の電流変化
分ΔIで割算することにより電源インピーダンスの推定
値Z−(−ΔV/Δ1)を算出することができる。この
推定値に反比例させて制御手段のゲインを調整すること
により、高速応答で安定度の高い無効電力制御装置を実
現することができる。
(Function) In the present invention, the estimated value of the power source impedance Z-(-ΔV/Δ1) is calculated by dividing the amount of change ΔV in the system voltage caused by the disconnection of the static capacitor by the current change ΔI at this time. can be calculated. By adjusting the gain of the control means in inverse proportion to this estimated value, a reactive power control device with high speed response and high stability can be realized.

(実施例) 以下、図面を参照しながら本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

同図において電源インピーダンス推定回路18はコンデ
ンサ7の入又は切の切換信号を受信すると、系統電圧V
の変化分ΔV及び電流lの変化分ΔIを算出し電源イン
ピーダンスZをZ−ΔV/ΔIの演算により推定する。
In the same figure, when the power source impedance estimating circuit 18 receives a switching signal to turn on or off the capacitor 7, the power source impedance estimation circuit 18
The change ΔV in the current l and the change ΔI in the current l are calculated, and the power source impedance Z is estimated by calculating Z-ΔV/ΔI.

ゲイン調整回路19はこのインピーダンス推定値2に反
比例させて無効電力決定回路15のゲインに、を調整す
る。
The gain adjustment circuit 19 adjusts the gain of the reactive power determining circuit 15 in inverse proportion to this estimated impedance value 2.

その結果、電源インピーダンスの推定値2が小さくなっ
た場合、制御回路9の過渡応答が遅くなるので無効電力
決定回路15のゲインKPが上げられ、逆に電源インピ
ーダンスの推定値Zが大きくなった場合は、制御回路9
の過渡応答が早くなりハンチングを生ずるので無効電力
決定回路15のゲインを下げて系の安定化がなされる。
As a result, when the estimated value 2 of the source impedance becomes smaller, the transient response of the control circuit 9 becomes slower, so the gain KP of the reactive power determining circuit 15 is increased, and conversely, when the estimated value Z of the source impedance becomes larger. is the control circuit 9
Since the transient response becomes faster and hunting occurs, the gain of the reactive power determining circuit 15 is lowered to stabilize the system.

第1図においてコンデンサ7をサイリスクスイッチで人
、切する方式の無効電力補償装置(TSC)におきかえ
て、TSCの人又は切時の系統電圧及び電流の変化分か
ら電源インピーダンスを求め上記実施例と同様にゲイン
の調整をすることも可能である。
In Fig. 1, the capacitor 7 is replaced with a reactive power compensator (TSC) that is turned off by a syris switch, and the power supply impedance is calculated from the change in the system voltage and current when the TSC is turned off. It is also possible to adjust the gain in the same way.

[発明の効果] 以上述べたように、本発明によれば、電力系統の運用状
況により電源インピーダンスが変化しても、制御系でそ
のゲインを自動調整するため、高速で安定な無効電力の
制御が可能となり、信頼性の高い無効電力補償装置を得
ることができる。
[Effects of the Invention] As described above, according to the present invention, even if the power source impedance changes depending on the operational status of the power system, the gain is automatically adjusted in the control system, so that fast and stable reactive power control can be achieved. This makes it possible to obtain a highly reliable reactive power compensator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は従来の無効電力補償装置の構成を示すブロック図
である。 1・・・交流電源、 2・・・電源インピーダンス、  3・・・主回路、4
・・・リアクトル、    5・・・サイリスタ、6・
・・サイリスク、 7・・・スタティックコンデンサ、 8・・・スイッチング回路、 9・・・制御回路、 lO・・・電圧検出回路、 11・・・基準電圧設定回路、 12・・・偏差検出回路、 13・・・出力電流検出回路、 14・・・スロープリアクタンス回路、15・・・無効
電力決定回路、 1G・・・点弧角制御回路、 17・・・パルス増幅器、 18・・・電源インピーダンス推定回路、19・・・ゲ
イン調整回路。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of a conventional reactive power compensator. 1... AC power supply, 2... Power source impedance, 3... Main circuit, 4
...Reactor, 5...Thyristor, 6.
... Cyrisk, 7... Static capacitor, 8... Switching circuit, 9... Control circuit, lO... Voltage detection circuit, 11... Reference voltage setting circuit, 12... Deviation detection circuit, 13... Output current detection circuit, 14... Slope reactance circuit, 15... Reactive power determination circuit, 1G... Firing angle control circuit, 17... Pulse amplifier, 18... Source impedance estimation Circuit, 19...gain adjustment circuit.

Claims (1)

【特許請求の範囲】[Claims]  電力系統にリアクトルと逆並列接続スイッチング素子
を直列に接続した主回路と、電力系統の電圧を電圧基準
値に保つよう前記スイッチング素子を位相制御する手段
を有する無効電力補償装置において、前記無効電力補償
装置に並列に設けられたスタティックコンデンサの投入
又は遮断信号を受信し、スタティックコンデンサの投入
又は遮断によると判別された系統電圧の変化分を出力電
流の変化分で割算して電源インピーダンスの推定値を算
出し、この推定値に基づいて前記制御手段のゲインを調
整することを特徴とする無効電力補償装置の制御装置。
A reactive power compensator comprising a main circuit in which a reactor and an anti-parallel connected switching element are connected in series to a power system, and a means for controlling the phase of the switching element so as to maintain the voltage of the power system at a voltage reference value. Receive a signal to turn on or cut off a static capacitor installed in parallel to the device, and divide the change in system voltage that is determined to be due to turning on or cutting off a static capacitor by the change in output current to estimate the source impedance. A control device for a reactive power compensator, characterized in that the control device calculates the estimated value and adjusts the gain of the control means based on the estimated value.
JP2004516A 1990-01-16 1990-01-16 Controller for reactive power compensator Pending JPH03210613A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004516A JPH03210613A (en) 1990-01-16 1990-01-16 Controller for reactive power compensator
US07/635,972 US5099190A (en) 1990-01-16 1990-12-31 Reactive power compensation apparatus
EP91100094A EP0438059B1 (en) 1990-01-16 1991-01-02 Reactive power compensation apparatus
DE69110481T DE69110481T2 (en) 1990-01-16 1991-01-02 Reactive power compensator.
AU68645/91A AU622063B2 (en) 1990-01-16 1991-01-03 Reactive power compensation apparatus
CA002033567A CA2033567C (en) 1990-01-16 1991-01-03 Reactive power compensation apparatus
CN91100148A CN1024105C (en) 1990-01-16 1991-01-14 Arrangement for compensating reactive power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004516A JPH03210613A (en) 1990-01-16 1990-01-16 Controller for reactive power compensator

Publications (1)

Publication Number Publication Date
JPH03210613A true JPH03210613A (en) 1991-09-13

Family

ID=11586219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004516A Pending JPH03210613A (en) 1990-01-16 1990-01-16 Controller for reactive power compensator

Country Status (1)

Country Link
JP (1) JPH03210613A (en)

Similar Documents

Publication Publication Date Title
EP0438059B1 (en) Reactive power compensation apparatus
JP6768619B2 (en) Constant voltage power supply circuit
JPH02131329A (en) Reactive power compensator for power system
JPH03210614A (en) Controller for reactive power compensator
JPH03210613A (en) Controller for reactive power compensator
US3965684A (en) Device for controlling speed of turbine
JPH0527856A (en) Reactive power compensating device
JPS6352639A (en) Reactive power compensator
JPH04289728A (en) Higher harmonic compensator
JPH06188660A (en) Power amplifier circuit
JPH06161576A (en) Controller for reactive power compensator
JPH0215893B2 (en)
JPS6122557B2 (en)
SU1453555A1 (en) Method of controlling stabilized rectifier
JP3427596B2 (en) Automatic voltage regulator
JPS6169335A (en) Controller of stationary reactive power control device
JPH05111162A (en) Controller of reactive power compensator
JPS6313525Y2 (en)
JPH0145272Y2 (en)
JPH02262843A (en) Power system stabilizer
JPH0146884B2 (en)
JP2679581B2 (en) Switching power supply circuit
JPS63144798A (en) Excitation controller for synchronous machine
US4011497A (en) Voltage/current regulated power supply for very high output currents
JPH02114307A (en) Control circuit for static type reactive power compensating device