JPS6169335A - Controller of stationary reactive power control device - Google Patents

Controller of stationary reactive power control device

Info

Publication number
JPS6169335A
JPS6169335A JP59189580A JP18958084A JPS6169335A JP S6169335 A JPS6169335 A JP S6169335A JP 59189580 A JP59189580 A JP 59189580A JP 18958084 A JP18958084 A JP 18958084A JP S6169335 A JPS6169335 A JP S6169335A
Authority
JP
Japan
Prior art keywords
control device
reactive power
power control
load
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59189580A
Other languages
Japanese (ja)
Inventor
小西 博雄
河合 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59189580A priority Critical patent/JPS6169335A/en
Publication of JPS6169335A publication Critical patent/JPS6169335A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は静止形無効電力制御装置の制御装置に係り、特
に負荷の安定運転範囲を広くするのに好適な静止形無効
電力制御装置の制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device for a static reactive power control device, and particularly to a control device for a static reactive power control device suitable for widening the stable operation range of a load. Regarding.

〔発明の背景〕[Background of the invention]

電力系統の規模の拡大広域化に伴い、電力系統における
無効電力の調整は極めて重要な問題となってき、サイリ
スタを応用した静止形無効電力制御装置が開発されてい
る。静止形無効電力制御装置で最も広く使用されている
のは第2図に示すリアクトル電流をサイリスタの位相制
御により制御するタイプである。図中、1は負荷の電源
、2は送電線のインピーダンス、3は負荷、4は進相コ
ンデンサ、5は降圧用変圧器、6はサイリスタ制御の静
止形無効電力制御装置で、61はリアクトル、62は位
相制御用のサイリスタである。7は負荷3のつながれた
電圧の大きさを検出する電圧変成器、8は静止形無効電
力制御装置の制御装置で、81は電圧設定値Vref電
圧変成器7の検出値Vとの差を求める加算回路、82は
一次遅れ等の制御演算を行う演算回路、83は演算回路
82の出力の大きさに比例して適切な位相のパルスを出
力する位相制御回路で、この回路の入出力特性の一例を
第3図に示す。第3図は入力に対する出力パルスの位相
特性を示し、入力がVユ。以下のときはパルス位相は点
弧角の最小値αユ。、74以上のときは点弧角の最大値
α128.入力がVユ。がらv matの間にあるとき
は入力信号に比例した点弧角をもつパルスを出力する。
BACKGROUND OF THE INVENTION As power systems become larger and wider in area, the adjustment of reactive power in power systems has become an extremely important issue, and static reactive power control devices using thyristors have been developed. The most widely used static reactive power control device is the type shown in FIG. 2 in which reactor current is controlled by phase control of a thyristor. In the figure, 1 is the load power source, 2 is the impedance of the transmission line, 3 is the load, 4 is the phase advance capacitor, 5 is the step-down transformer, 6 is the thyristor-controlled static reactive power control device, 61 is the reactor, 62 is a thyristor for phase control. 7 is a voltage transformer that detects the magnitude of the voltage connected to the load 3; 8 is a control device for a static reactive power control device; 81 is a voltage set value Vref that calculates the difference between the detected value V of the voltage transformer 7; An adder circuit 82 is an arithmetic circuit that performs control calculations such as first-order delay, and 83 is a phase control circuit that outputs a pulse with an appropriate phase in proportion to the magnitude of the output of the arithmetic circuit 82. An example is shown in FIG. Figure 3 shows the phase characteristics of the output pulse with respect to the input, and the input is VU. In the following cases, the pulse phase is the minimum value α of the firing angle. , 74 or more, the maximum firing angle α128. The input is Vyu. and v mat, a pulse having a firing angle proportional to the input signal is output.

84は位相制御装置83の出力パルスを増幅するパルス
アンプ回路でこの出力が前記サイリスタ62の位相制御
パルスとなる。第2図の例は、例えば「日新電機波相」
VoQ28.Nci3.(’83,9)rSVCの原理
と電力系統への適用」に紹介されている。このような制
御装置において従来、制御演算部のゲインとしては入力
に対して一定であるため、負荷の無効電力の急変により
負荷の電圧が大幅に変化しても静止形無効電力制御装置
の応答速度が変わらず、負荷にとっては安定運転範囲を
広くとれないと言った問題があった。
84 is a pulse amplifier circuit that amplifies the output pulse of the phase control device 83, and this output becomes the phase control pulse of the thyristor 62. The example in Figure 2 is, for example, "Nissin Electric Wave Phase"
VoQ28. Nci3. ('83, 9) ``Principles of rSVC and its application to power systems''. Conventionally, in such control devices, the gain of the control calculation unit is constant with respect to the input, so even if the voltage of the load changes significantly due to a sudden change in the reactive power of the load, the response speed of the static reactive power control device There was a problem in that the stable operation range could not be widened for the load.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した従来技術における問題点を除き
、負荷の安定運転範囲を拡大することのできる静止形無
効電力制御装置の制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for a static reactive power control device that can eliminate the problems in the prior art described above and expand the range of stable load operation.

Irを明の概要〕 1ぐ      負荷の安定運転範囲は電源から負荷に
至るまでの送電線のインピーダンスが大きい程、狭くな
る。
Overview of Irlight] 1. The stable operating range of a load becomes narrower as the impedance of the transmission line from the power supply to the load increases.

これは負荷の変化に伴なう無効電力の変化をAQ、これ
による負荷の電圧の変化をAVとすると、lJQとAV
との間には概略、次式の関係があり、送電線のインピー
ダンスXが大きい程、同じAQの変化に対してAVの変
化が大きくなるためである。
If the change in reactive power due to a change in load is AQ, and the change in load voltage due to this is AV, then lJQ and AV
There is a relationship roughly expressed by the following equation, and this is because the larger the impedance X of the power transmission line, the larger the change in AV for the same change in AQ.

A V=X −A Q            ・”’
(1)電圧変動に対する負荷の安定運転範囲を広くする
ためには、AQに対するAVを小さくすれば良い。
A V=X −A Q ・”'
(1) In order to widen the stable operation range of the load against voltage fluctuations, AV relative to AQ may be reduced.

即ちAVに対して静止形無効電力制御装置により高速に
一7!IQを発生できればAVは実質上零にでき、負荷
の安定運転範囲を広げることができる。
In other words, the static reactive power control device provides high-speed 17! If IQ can be generated, AV can be reduced to virtually zero, and the stable operation range of the load can be expanded.

このため、静止形無効電力制御装置の制御装置において
、AVの大きさに応じて無効電力制御装置のループゲイ
ンを変え1./IVが大きいところでの無効電力制御装
置の応答を上げるようにした。
For this reason, in the control device of the static type reactive power control device, the loop gain of the reactive power control device is changed according to the magnitude of AV.1. Improved the response of the reactive power control device when /IV is large.

尚、入力としてはAVの他に直接AQを検出し無効電力
制御装置によって−AQを補償するようにしても(1)
式からAVを実質上零にできるので負荷の安定運転範囲
を広くできる。この場合もAQの大きさに応じて無効電
力制御装置のループゲインを変え、AQが大きいところ
での無効電力制御装置の応答を上げるようにした。
Furthermore, even if AQ is directly detected in addition to AV as an input, and -AQ is compensated by a reactive power control device (1)
From the equation, since AV can be made substantially zero, the stable operation range of the load can be widened. In this case as well, the loop gain of the reactive power control device was changed depending on the magnitude of AQ to increase the response of the reactive power control device where AQ was large.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図に示す。第2図と同じ番号の
ものは同じものを表わしているので、新しいものにのみ
ついて説明する。85は演算回路82と位相制御回路の
間に挿入され、入力に対して出力が非線形の関係となる
利得調節回路で、入力が大きくなる程、出力も大きくな
る正の増加関数の非線形特性をもっている。ここで前述
の演算回路82の利得を仮に1と考えると、静止形無効
電力制御装置の電圧偏差に対する無効電力補償量はこの
利得調整回路の入力に対する出力の大きさを変えること
によって任意に変えることができる。
An embodiment of the present invention is shown in FIG. Items with the same numbers as in FIG. 2 represent the same items, so only new items will be explained. 85 is a gain adjustment circuit inserted between the arithmetic circuit 82 and the phase control circuit, in which the output has a nonlinear relationship with respect to the input, and has a nonlinear characteristic of a positive increasing function in which the larger the input, the larger the output. . Here, assuming that the gain of the arithmetic circuit 82 mentioned above is 1, the amount of reactive power compensation for the voltage deviation of the static reactive power control device can be arbitrarily changed by changing the magnitude of the output with respect to the input of this gain adjustment circuit. I can do it.

ここで利得調節回路の入力は前記演算回路82の入力と
同等であり、前記加算回路81の出力である。即ち、電
圧設定値V refと負荷の電圧の検出値Vとの差(電
圧偏差)であり、負荷が急変したときのAVに等しい。
Here, the input of the gain adjustment circuit is equivalent to the input of the arithmetic circuit 82 and is the output of the adder circuit 81. That is, it is the difference (voltage deviation) between the voltage setting value V ref and the detected voltage value V of the load, and is equal to AV when the load suddenly changes.

従って、利得調節回路の入出力特性の非線形性によって
、AVが大きいときは無効電力の補償量0線形の場合よ
り大きくなる。
Therefore, due to the nonlinearity of the input/output characteristics of the gain adjustment circuit, when AV is large, the amount of compensation for reactive power becomes larger than when it is zero linear.

(即ちループゲインが高くなる)ので、AVが小さいと
きに比べて応答が早くなり、より早く定常状態(lV=
o)に落ちつかせることが可能となる。JVが小さくな
れば電圧変動に対する負荷の安定運転範囲も広くなるこ
とは明らかである。
(In other words, the loop gain becomes higher), the response becomes faster than when AV is small, and the steady state (lV=
It becomes possible to calm down to o). It is clear that the smaller the JV, the wider the stable operation range of the load against voltage fluctuations.

この利得調節回路は演算増幅器、抵抗等を用いて簡単に
実現でき、この−回路を第3図に示す。
This gain adjustment circuit can be easily realized using an operational amplifier, a resistor, etc., and this circuit is shown in FIG.

図中(a)に回路、(b)にその入出力特性を示す。図
中Rは抵抗、OPは演算増幅器、Dはダイオードであり
、入出力特性は抵抗R1固定バイアス値を変えることに
よって任意に変更でき、(a)に示した回路を追加すれ
ば更に複雑な入出力特性も得られる。詳細の説明は電子
回路等に記載されているのでここでは省く。
In the figure, (a) shows the circuit, and (b) shows its input/output characteristics. In the figure, R is a resistor, OP is an operational amplifier, and D is a diode.The input/output characteristics can be changed arbitrarily by changing the fixed bias value of resistor R1, and if the circuit shown in (a) is added, the input/output characteristics can be changed even more. Output characteristics can also be obtained. A detailed explanation is given in electronic circuits, etc., so it will be omitted here.

尚、上記実施例では制御演算回路と利得調節回路とを分
けて記載したが、制御演算(回路)部に利得調節回路の
機能をもたせることも可能であることは明らかである。
In the above embodiment, the control calculation circuit and the gain adjustment circuit are described separately, but it is clear that the control calculation (circuit) section can also have the function of the gain adjustment circuit.

また、入力信号としては電圧偏差(電圧基準値と実系統
の負荷の交流電圧差)を用いたが、無効電力偏差(無効
電力基準値と実系統の負荷と無効電力制御装置の無効電
力の和の差)を用いても良いことは明らかである。この
場合、第1図において加算回路81の入力に無効電力基
準値、と送電線に流れる無効電力検出値をとれば良い。
In addition, although the voltage deviation (the AC voltage difference between the voltage reference value and the actual system load) was used as the input signal, the reactive power deviation (the sum of the reactive power reference value, the actual system load, and the reactive power of the reactive power control device) was used. It is clear that the difference between In this case, the reactive power reference value and the reactive power detection value flowing through the power transmission line may be input to the adder circuit 81 in FIG.

〔発明の効果〕〔Effect of the invention〕

静止形無効電力制御装置の制御装置に簡単な回路を追加
することによって、負荷の安定運転範囲を拡大できる。
By adding a simple circuit to the control device of a static reactive power control device, the stable operation range of the load can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の静止形無効電力制御装置の制御装置、
第2図は本発明の従来実施例による静止形無効電力制御
装置の制御装置、第3図は本発明の制御装置の利得調節
回路の一例を示す回路図とその入出力特性を示す。 4・・・進相用コンデンサ、5・・・降圧変圧器、6・
・・静(′□    正形無効電力制御装置、7・・・
電圧変成器、8・・・静止形無効電力制御装置の制御装
置、81・・・加算口路、82・・・演算回路、83・
・・位相制御回路、84・・・パルスアンプ回路。
FIG. 1 shows a control device for a static reactive power control device of the present invention,
FIG. 2 shows a control device for a static reactive power control device according to a conventional embodiment of the present invention, and FIG. 3 shows a circuit diagram showing an example of a gain adjustment circuit of the control device of the present invention and its input/output characteristics. 4... Phase advance capacitor, 5... Step-down transformer, 6...
・・Static (′□ Positive reactive power control device, 7...
Voltage transformer, 8... Control device for static reactive power control device, 81... Addition port, 82... Arithmetic circuit, 83.
...Phase control circuit, 84...Pulse amplifier circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、リアクトル、コンデンサに流れる電流を半導体スイ
ッチにより制御することによって発生する無効電力を制
御する静止形無効電力制御装置の制御装置において、制
御装置の入力偏差信号の大きさに応じて利得が変化する
ようにしたことを特徴とする静止形無効電力制御装置の
制御装置。
1. In a control device for a static reactive power control device that controls reactive power generated by controlling the current flowing through a reactor and a capacitor using a semiconductor switch, the gain changes depending on the magnitude of the input deviation signal of the control device. A control device for a static reactive power control device, characterized in that:
JP59189580A 1984-09-12 1984-09-12 Controller of stationary reactive power control device Pending JPS6169335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59189580A JPS6169335A (en) 1984-09-12 1984-09-12 Controller of stationary reactive power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59189580A JPS6169335A (en) 1984-09-12 1984-09-12 Controller of stationary reactive power control device

Publications (1)

Publication Number Publication Date
JPS6169335A true JPS6169335A (en) 1986-04-09

Family

ID=16243706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59189580A Pending JPS6169335A (en) 1984-09-12 1984-09-12 Controller of stationary reactive power control device

Country Status (1)

Country Link
JP (1) JPS6169335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131329A (en) * 1988-01-05 1990-05-21 Hitachi Ltd Reactive power compensator for power system
JP2016524436A (en) * 2013-05-07 2016-08-12 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method for supplying power to a power supply network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131329A (en) * 1988-01-05 1990-05-21 Hitachi Ltd Reactive power compensator for power system
JP2016524436A (en) * 2013-05-07 2016-08-12 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method for supplying power to a power supply network
US10063060B2 (en) 2013-05-07 2018-08-28 Wobben Properties Gmbh Method for feeding electric power into an electric power supply system

Similar Documents

Publication Publication Date Title
US7492221B2 (en) Power conversion regulator with exponentiating feedback loop
US4158180A (en) Temperature control circuit
US20040136214A1 (en) Parallel inverter system based on tracking of system power reference
US3506905A (en) Transistor triac regulated power supply
JPS6169335A (en) Controller of stationary reactive power control device
US3538423A (en) Circuit arrangement for the independent control of the output voltage and output current intensity for a regulator
US3676766A (en) Multiphase alternating current regulation system for transformer-coupled loads
US3727036A (en) Control stabilizing techniques
US3499169A (en) Variable frequency ac regulator
US2831160A (en) Negative feedback magnetic amplifier with temperature compensation
JPH0417570A (en) Voltage control method for inverter
JPH05150802A (en) Deviation variable and deviation hysteresis type pi control method
JP2580746B2 (en) Control method of suburban power compensator
JP2679581B2 (en) Switching power supply circuit
JPS6352639A (en) Reactive power compensator
JPS61240872A (en) Speed controller of motor
JPH0923585A (en) Control of reactive power compensation
US3636459A (en) Smoothing circuit for smoothing pulsating direct voltages
JPH0433583A (en) Induction motor controller
SU605300A1 (en) Transistor multicascade converter
JPS58212328A (en) Controller for thyristor reactive power compensating device
JPH0565890B2 (en)
JPH0448110Y2 (en)
SU1473043A2 (en) Method of controlling stabilized rectifier
JPS61264416A (en) Control system for reactive power compensating device