JPH03210548A - Projector - Google Patents

Projector

Info

Publication number
JPH03210548A
JPH03210548A JP2004462A JP446290A JPH03210548A JP H03210548 A JPH03210548 A JP H03210548A JP 2004462 A JP2004462 A JP 2004462A JP 446290 A JP446290 A JP 446290A JP H03210548 A JPH03210548 A JP H03210548A
Authority
JP
Japan
Prior art keywords
light
optical axis
point
mirror
projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004462A
Other languages
Japanese (ja)
Inventor
Ikuo Iwai
郁夫 祝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2004462A priority Critical patent/JPH03210548A/en
Publication of JPH03210548A publication Critical patent/JPH03210548A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

PURPOSE:To make it possible to project light beams with high parallelism and to improve the using efficiency of light by providing the projector with a light guiding pipe capable of linearly expanding light beams converged upon one point in accordance with the advance of the light along the optical axis. CONSTITUTION:The projector is provided with a light source 10 having a fine light emitting size, a converging optical system including a mirror 20 for converging light beams from the light source 10 upon a point on the optical axis L and the light guiding pipe 30 for guiding the light converged upon one point in the direction of the optical axis L and linearly expanding the light in accordance with the advance of the light along the optical axis L. Thereby, light beams radiated from the light source 10 having the fine light emitting size are converged upon one point by the converging optical system such as a mirror 20 and the converged light is repeatedly reflected by the pipe 30 linearly expanded along the optical axis L, so that approximately parallel light beams can be obtained. Consequently, light with high parallelism can be projected, the using efficiency of light can be improved and the uniform illuminance distribution of an irradiated face can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、投光器に関し、例えば液晶プロジェクタ−テ
レビのバックライトとして好適に用いられる投光器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projector, and more particularly, to a projector suitably used as a backlight for a liquid crystal projector television.

〔技術の背景] 液晶プロジェクタ−テレビにおいては、通常、液晶画面
と、この液晶画面に光を照射するためのバックライトと
、液晶画面からの透過光を拡大してスクリーンに投影す
るための投影レンズ系とを備えてなる。
[Technical Background] LCD projector televisions usually include an LCD screen, a backlight to illuminate the LCD screen, and a projection lens to magnify the transmitted light from the LCD screen and project it onto the screen. It is equipped with a system.

しかして、良好な画像をスクリーン上に形成するために
は、バックライトからの光が液晶画面の全面において垂
直に入射される必要があり、これを達成するためには、
バックライトから投射される光が高い平行度を有するも
のであることが必要である。
However, in order to form a good image on the screen, the light from the backlight needs to be perpendicularly incident on the entire surface of the LCD screen, and in order to achieve this,
It is necessary that the light projected from the backlight has high parallelism.

従来、平行度の高い光を投射する投光器としては、例え
ば第6図に示すように、パラボラミラー80の焦点fに
その発光部が位贋するよう、例えばショートアーク型メ
タルハライドランプなどの発光寸法が微小な光源10を
配置してなるものが知られている。この投光器によれば
、パラボラミラー80からその光軸りに沿って高い平行
度を有する光が投射される。50は液晶画面である。
Conventionally, as shown in FIG. 6, a projector that projects highly parallel light has, for example, a short-arc metal halide lamp whose light emitting dimensions are adjusted so that its light emitting part is aligned with the focal point f of a parabolic mirror 80. A device in which a minute light source 10 is arranged is known. According to this projector, highly parallel light is projected from the parabolic mirror 80 along its optical axis. 50 is a liquid crystal screen.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の投光器は光の利用率が小さい欠点がある
。例えば光源10がメタルハライドランプの場合の光の
利用率は10%程度であり、発光寸法が更に小さいキセ
ノンランプでも光の利用率は25%程度に留まる。
However, the above-mentioned light projector has a drawback in that the light utilization rate is low. For example, when the light source 10 is a metal halide lamp, the light utilization rate is about 10%, and even for a xenon lamp with even smaller light emission dimensions, the light utilization rate remains at about 25%.

この投光器において光の利用率が低い理由は次のとおり
である。
The reason why the light utilization rate is low in this projector is as follows.

(1)光源10は厳密には点光源ではなくて一定以上の
発光寸法を有するものであるため、パラボラミラー80
によって反射された光は所定の液晶画面50の外方にま
で拡がってしまい、周辺の光lは液晶画面50に照射さ
れないこととなる。パラボラミラー80と液晶画面50
との距離を短くすれば、液晶画面50への投射率が高く
なって光の利用率が高くなるが、パラボラミラー80と
液晶画面50との間には、通常、赤外線カットフィルタ
ーや変向ミラーなどが挿入されるため、両者間をあまり
接近させることはできない。
(1) Strictly speaking, the light source 10 is not a point light source, but has a light emitting size above a certain level, so the parabolic mirror 80
The light reflected by the liquid crystal screen 50 will spread to the outside of the predetermined liquid crystal screen 50, and the peripheral light l will not be irradiated onto the liquid crystal screen 50. Parabolic mirror 80 and LCD screen 50
If the distance between the parabolic mirror 80 and the liquid crystal screen 50 is shortened, the projection rate to the liquid crystal screen 50 will be increased and the utilization rate of light will be increased. etc. are inserted, so it is not possible to bring the two very close together.

(2)パラボラミラー80の口径は、液晶画面50の寸
法と同程度の大きさとされる。これは、パラボラミラー
80の口径が大きい場合においては、パラボラミラー8
0の周縁からの反射光は、光軸りに平行に投射されるに
もかかわらず液晶画面50上に照射されないこととなり
、一方、口径が小さい場合においては、パラボラミラー
それ自体が受ける光源10よりの光の量が少なくなるか
らである。そしてこのことは、最近需要が高まっている
小型液晶プロジェクタ−にふいては、液晶画面5oの寸
法も小さいので、重要な問題である。
(2) The diameter of the parabolic mirror 80 is approximately the same as the size of the liquid crystal screen 50. This is because the parabolic mirror 80 has a large diameter when the parabolic mirror 80 has a large diameter.
The reflected light from the periphery of the parabolic mirror will not be irradiated onto the liquid crystal screen 50 even though it is projected parallel to the optical axis.On the other hand, if the aperture is small, the light reflected from the parabolic mirror itself will not be irradiated onto the liquid crystal screen 50. This is because the amount of light will decrease. This is an important problem because the size of the liquid crystal screen 5o is small in the case of small liquid crystal projectors, for which demand has been increasing recently.

更に従来の投光器にふいては、液晶画面50などの被照
射面において、均一な照度分布が得られないという問題
がある。これは、光源10およびパラボラミラー80か
らは、周辺部より光$1!ILの付近において多量の光
が投射されるからであり、照度分布は第7図に示すよう
に光軸りの付近において高く、周辺部において低い不均
一な状態のものとなる。
Furthermore, conventional floodlights have a problem in that a uniform illuminance distribution cannot be obtained on the illuminated surface, such as the liquid crystal screen 50. This means that from the light source 10 and the parabolic mirror 80, $1 of light is emitted from the periphery! This is because a large amount of light is projected near the IL, and the illuminance distribution becomes non-uniform, being high near the optical axis and low at the periphery, as shown in FIG.

本発明は、以上の如き事情に基づいてなされたものであ
って、その目的は、平行度の高い光を投射することがで
きてしかも光の利用率が高く、更に被照射面に均一な照
度分布を得ることのできる投光器を提供することにある
The present invention has been made based on the above-mentioned circumstances, and its objects are to be able to project highly parallel light, to have a high light utilization rate, and to provide uniform illuminance to the irradiated surface. The object of the present invention is to provide a floodlight that can obtain distribution.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の投光器は、発光寸法が微小な光源と、該光源よ
りの光を光軸上の一点に集光させる、ミラーを含む集光
光学系と、該一点に集光された光を光軸の方向に導く、
当該光軸に沿って進むに従って直線状に拡開する導光パ
イプとよりなることを特徴とする。
The projector of the present invention includes a light source with a minute light emission dimension, a condensing optical system including a mirror that condenses light from the light source to a point on the optical axis, and lead in the direction of
It is characterized by a light guide pipe that expands linearly as it progresses along the optical axis.

〔作用〕[Effect]

発光寸法が微小な光源より放射された光は、ミラー等の
集光光学系により一点に集光され、この集光された光は
、光軸に沿って直線状に拡開する導光パイプにより反射
を繰り返されるうちに、平行に近い光束となる。
Light emitted from a light source with minute emission dimensions is focused on a single point by a focusing optical system such as a mirror, and this focused light is passed through a light guide pipe that expands linearly along the optical axis. As the light is repeatedly reflected, it becomes a nearly parallel beam of light.

〔実施例〕〔Example〕

以下、本発明の実施例を具体的に説明する。 Examples of the present invention will be specifically described below.

第1図は本発明の投光器の一実施例を示す説明用断面図
であり、この投光器は、それ自体が集光光学系としての
機能を有する楕円ミラー20の第1焦点f1の位置に、
その発光部が位置するようキセノンランプなどよりなる
発光寸法が微小な光源10が配置され、楕円ミラー20
の光軸りに沿って進むに従って直線状に拡開する導光パ
イプ30が当該光軸りに沿って配置されて構成されてい
る。
FIG. 1 is an explanatory cross-sectional view showing one embodiment of the projector of the present invention, and the projector has a first focal point f1 of an elliptical mirror 20 which itself functions as a condensing optical system.
A light source 10 made of a xenon lamp or the like with a minute light emitting size is arranged so that the light emitting part is located, and an elliptical mirror 20
A light guide pipe 30 that expands linearly as it advances along the optical axis is arranged along the optical axis.

前記導光パイプ30は、全体が筒状であって両端に光入
口31および光出口32を有し、その周壁は光入口31
から光出口32に向かうに従って光軸りに対して比較的
小さい角度θで傾斜する直線に沿って拡開しており、光
出口320面積は光入口31の面積よりも大きく、かつ
内面はその全面が高い反射率を有する鏡面とされている
The light guide pipe 30 has a cylindrical shape as a whole and has a light inlet 31 and a light outlet 32 at both ends.
The light outlet 320 expands along a straight line inclined at a relatively small angle θ with respect to the optical axis toward the light exit 32, and the area of the light exit 320 is larger than the area of the light entrance 31, and the inner surface is the entire surface of the light exit 320. It is considered a mirror surface with high reflectance.

この導光パイプ30は、前記楕円ミラー20の第2焦点
f2が光入口31より僅かに内方に位置することとなる
ように配置されている。
This light guide pipe 30 is arranged so that the second focal point f2 of the elliptical mirror 20 is located slightly inward from the light entrance 31.

以上のような構成によれば、光源10よりの光の一部は
直接光軸りに沿って進んで導光パイプ30を通過するが
、多くの光は楕円ミラー20に向かってこれによって反
射され、当該楕円ミラー20の第2焦点f2の位置にお
いて一点に集光される。この集光された光は、導光パイ
プ30の内面によって反射されて光出口32の方向に導
かれ、導光パイプ30の光出口32に配置された例えば
液晶画面50に投射される。
According to the above configuration, a part of the light from the light source 10 directly travels along the optical axis and passes through the light guide pipe 30, but most of the light is reflected towards the elliptical mirror 20. , the light is focused on one point at the second focal point f2 of the elliptical mirror 20. This focused light is reflected by the inner surface of the light guide pipe 30, guided toward the light outlet 32, and projected onto, for example, a liquid crystal screen 50 disposed at the light outlet 32 of the light guide pipe 30.

そして、第1rI!Jに示すように、集光点(f2)か
ら光軸りに対して大きな角度を有する光は導光パイプ3
0の内面によって反射されるが、当該導光パイプ30は
光軸りに沿って進むに従って直線状に拡開しているため
、この導光パイプ3oの内面による1回の反射において
、その反射後の光の光軸りに対する角度βは、反射前の
光の光軸りに対する角度αより小さくなり、従って光5
lILに対する平行度がより高いものとなる。ここに、
βの大きさは反射位置における導光パイプ30の内面の
光軸りに対する角度がθであるから、 β=α−2θ となる。従って、導光パイプ3oによって反射される回
数が増加するほど、その光は光軸りに沿って平行度がよ
り高いものとなり、この光が光出口32から投射される
And the 1st rI! As shown in J, light having a large angle with respect to the optical axis from the condensing point (f2) passes through the light guide pipe 3.
However, since the light guide pipe 30 expands linearly as it advances along the optical axis, in one reflection by the inner surface of the light guide pipe 3o, after the reflection The angle β with respect to the optical axis of the light is smaller than the angle α with respect to the optical axis of the light before reflection, so that the light 5
The degree of parallelism to IL becomes higher. Here,
Since the angle of the inner surface of the light guide pipe 30 with respect to the optical axis at the reflection position is θ, the magnitude of β is β=α−2θ. Therefore, as the number of times the light is reflected by the light guide pipe 3o increases, the parallelism of the light becomes higher along the optical axis, and this light is projected from the light exit 32.

また、導光パイプ30が存在しなければ外方に放射され
てしまう光が、上述のように導光パイプ30によって光
軸りに沿っていわば集光されて光出口32に導かれるた
め、高い光の利用率が達成され、しかも同時に、光出口
32に接近するほど光が混合されることとなるので、光
出口32に配置された液晶画面50における照度分布が
十分に均一化された状態となる。
In addition, the light that would be emitted outward if the light guide pipe 30 did not exist is condensed by the light guide pipe 30 along the optical axis and guided to the light exit 32 as described above, so that the light The utilization efficiency of light is achieved, and at the same time, the closer the light exit 32 is, the more the light is mixed, so that the illuminance distribution on the liquid crystal screen 50 disposed at the light exit 32 is made sufficiently uniform. Become.

前記導光パイプ30は、一点に集光されたいわば点光源
よりの光を導くものであるので、その光入口31の径は
十分小さいものとすることができ、従って光出口32の
形状が比較的小さいものであっても十分に対応すること
ができるので、小型の液晶画面にも好適に適用すること
ができる。
Since the light guide pipe 30 guides light from a so-called point light source that is condensed to one point, the diameter of the light entrance 31 can be made sufficiently small, so that the shape of the light exit 32 can be made relatively small. Since the present invention can sufficiently handle even small objects, it can be suitably applied to small-sized liquid crystal screens.

以上において、光源10より放射される光のうち導光パ
イプ30内に進入せず、従って利用されないものは、楕
円ミラー20と導光パイプ30との間から外方に向かう
光であるが、前記楕円ミラー2oは導光パイプ30によ
ってその口径が制約を受けることがないので、口径の大
きな楕円ミラー20を用いることにより、この利用され
ない光を大幅に減少させることができ、この観点からも
光の利用率を高くすることができる。
In the above description, the light emitted from the light source 10 that does not enter the light guide pipe 30 and is therefore not used is the light that travels outward from between the elliptical mirror 20 and the light guide pipe 30. Since the aperture of the elliptical mirror 2o is not restricted by the light guide pipe 30, by using the elliptical mirror 20 with a large aperture, this unused light can be significantly reduced. The utilization rate can be increased.

実際に第1図に示す構成に従い、光源lOとじて発光寸
法が2+n+r+、定格消費電力が150Wのキセノン
ランプを用い、これに焦点距離が12齢、焦点間距離が
120111ff+、口径が80mmの楕円ミラー20
と、長さが200ITll′111光入口31の寸法が
20mm x 15mm、光出口32の寸法が40mm
 x3Qmm、内面に反射率95%のグイクロイックミ
ラーを有する導光パイプ30とを組合せて製作した投光
器においては、光の利用率が50%と非常に高く、しか
も光出口32に配置された液晶面50に対する入射角が
光軸りに対して10度以内という高い平行度が連成され
、更に第2図に示すように十分に均一な状態の照度分布
が得られた。
Actually, according to the configuration shown in Figure 1, a xenon lamp with a light emission dimension of 2+n+r+ and a rated power consumption of 150W was used as the light source lO, and an elliptical mirror with a focal length of 12 years, a focal length of 120111ff+, and an aperture of 80 mm was used. 20
and the length is 200ITll'111, the dimensions of the light inlet 31 are 20 mm x 15 mm, and the dimensions of the light outlet 32 are 40 mm.
x3Qmm, and a light guide pipe 30 having a 95% reflectance mirror on the inner surface, the light utilization rate is extremely high at 50%, and the liquid crystal placed at the light exit 32 A high degree of parallelism was achieved, with the angle of incidence on the surface 50 being within 10 degrees with respect to the optical axis, and a sufficiently uniform illuminance distribution was obtained as shown in FIG.

以上において、光源10の発光寸法は具体的には2〜1
0mmの範囲内であることが好ましい。光源10の発光
寸法が過大であると、集光点の寸法が大きくなるので好
ましくない。従って、光filOとしては、上記のキセ
ノンランプ以外に、例えばメタルハライドランプ等のシ
ョートアーク放電灯を用いるのが好ましい。
In the above, the light emission dimension of the light source 10 is specifically 2 to 1
Preferably, it is within the range of 0 mm. If the light emission dimensions of the light source 10 are too large, the dimensions of the light condensing point will become large, which is not preferable. Therefore, as the light filO, it is preferable to use a short arc discharge lamp such as a metal halide lamp in addition to the above-mentioned xenon lamp.

楕円ミラー20の代わりに、光源10よりの光を一点に
集光する機能を有する他の集光光学系を用いることもで
き、例えば第3図に示すように、光源lOの発光部が焦
点fに位置されるよう組合されたパラボラミラー60と
、このパラボラミラー6oよりの光軸りに平行な光を一
点に集光するレンズ61とにより、集光光学系を構成す
ることもできる。更にパラボラミラーを用い、光源lO
をその発光部がパラボラミラーの焦点位習より若干後方
に変位した位置となるよう配置する構成によっても、同
様の機能を得ることができる。
Instead of the elliptical mirror 20, it is also possible to use another condensing optical system that has the function of condensing the light from the light source 10 to one point. For example, as shown in FIG. A condensing optical system can also be constructed by a parabolic mirror 60 that is combined so as to be positioned at , and a lens 61 that condenses light parallel to the optical axis from the parabolic mirror 6o to one point. Furthermore, using a parabolic mirror, the light source lO
A similar function can also be obtained by arranging the light emitting part at a position slightly displaced backward from the focal point of the parabolic mirror.

導光パイプ30において、その周壁の光軸りに対する角
度θの大きさは、通常3度〜30度の範囲内であること
が好ましい。そして、この角度が全周壁において等しい
角度であることは不要であり、また光入口31および光
出口32の形状も特に限定されるものではない。
In the light guide pipe 30, it is preferable that the angle θ of the peripheral wall of the pipe with respect to the optical axis is usually within the range of 3 degrees to 30 degrees. It is not necessary that this angle be the same on the entire circumferential wall, and the shapes of the light entrance 31 and the light exit 32 are not particularly limited either.

第4図は、本発明の他の実施例を示し、この例において
は、導光パイプ30の光入口31に続いて光源10に接
近するに従って拡開する、内面が反射面とされた漏光防
止用筒体40が設けられている。このような構成によれ
ば、光源10より放射される光のうち、集光光学系を構
成するミラーと導光パイプ30との間に向かう光が漏光
防止用筒体40によって導光バイブ30内に導かれ、そ
の結果−層高い光の利用率を得ることができる。
FIG. 4 shows another embodiment of the present invention. In this example, the light leakage prevention device is provided with a light leakage prevention device whose inner surface is a reflective surface and which expands as it approaches the light source 10 following the light inlet 31 of the light guide pipe 30. A cylinder body 40 is provided. According to this configuration, among the light emitted from the light source 10, the light directed between the mirror and the light guide pipe 30 constituting the condensing optical system is directed into the light guide vibrator 30 by the light leakage prevention cylinder 40. As a result, an even higher light utilization rate can be obtained.

第5図は、本発明の更に他の実施例を示し、この例にお
いては、平面反射鏡による変向ミラー70によって光軸
りが屈曲されている。また導光バイブ30の途中に赤外
線カットフィルター71が設けられている。このように
、導光パイプ30を利用してこれに補助光学系を設ける
ことができる。
FIG. 5 shows still another embodiment of the present invention, in which the optical axis is bent by a deflection mirror 70 which is a plane reflecting mirror. Further, an infrared cut filter 71 is provided in the middle of the light guide vibrator 30. In this way, the light guide pipe 30 can be used to provide an auxiliary optical system.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、発光寸法が微小な光源
と、該光源よりの光を光軸上の一点に集光させる、ミラ
ーを含む集光光学系と、該一点に集光された光を光軸の
方向に導く、当該光軸に沿って進むに従って直線状に拡
開する導光パイプとにより構成したので、平行度の高い
光を投射することができてしかも光の利用率が高く、更
に被照射面に均一な照度分布を得ることのできる投光器
を提供することができる。
As described above, according to the present invention, there is provided a light source with a minute emission dimension, a focusing optical system including a mirror that focuses light from the light source onto one point on the optical axis, and a focusing optical system including a mirror that focuses light from the light source onto one point on the optical axis. The structure is composed of a light guide pipe that guides the light in the direction of the optical axis and expands linearly as it travels along the optical axis, so it is possible to project highly parallel light and also improve the light utilization rate. It is possible to provide a projector that has high brightness and can provide a uniform illuminance distribution on the illuminated surface.

【図面の簡単な説明】 第1図は本発明の一実施例の構成を示す説明用断面図、
第2図は本発明の投光器の一例による照度分布を示す曲
線図、第3図は本発明における集光光学系の変形例を示
す説明用断面図、第4図および第5図はそれぞれ本発明
の他の実施例の要部を示す説明用断面図、第6図は従来
の投光器の構成を示す説明用断面図、第7図は第6図の
投光器による照度分布を示す曲線図である。 1G・・・光源      20・・・楕円ミラー30
・・・導光パイプ   31・・・光入口32・・・光
出口     40・・・漏光防止用筒体50・・・液
晶画面    60・・・パラボラミラー61・・・レ
ンズ     70・・・変向ミラー71・・・赤外線
カットフィルター
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is an explanatory sectional view showing the configuration of an embodiment of the present invention;
FIG. 2 is a curve diagram showing the illuminance distribution by an example of the projector of the present invention, FIG. 3 is an explanatory cross-sectional view showing a modified example of the condensing optical system in the present invention, and FIGS. 4 and 5 are respectively according to the present invention. FIG. 6 is an explanatory sectional view showing the main part of another embodiment, FIG. 6 is an explanatory sectional view showing the structure of a conventional projector, and FIG. 7 is a curve diagram showing the illuminance distribution by the projector of FIG. 1G...Light source 20...Elliptical mirror 30
...Light guiding pipe 31...Light inlet 32...Light outlet 40...Cylinder for light leakage prevention 50...LCD screen 60...Parabola mirror 61...Lens 70...Direction change Mirror 71...Infrared cut filter

Claims (1)

【特許請求の範囲】[Claims] 1)発光寸法が微小な光源と、該光源よりの光を光軸上
の一点に集光させる、ミラーを含む集光光学系と、該一
点に集光された光を光軸の方向に導く、当該光軸に沿っ
て進むに従って直線状に拡開する導光パイプとよりなる
ことを特徴とする投光器。
1) A light source with minute emission dimensions, a condensing optical system including a mirror that condenses the light from the light source to a point on the optical axis, and guides the light condensed to the one point in the direction of the optical axis. , a light projector comprising a light guide pipe that expands linearly as it advances along the optical axis.
JP2004462A 1990-01-16 1990-01-16 Projector Pending JPH03210548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004462A JPH03210548A (en) 1990-01-16 1990-01-16 Projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004462A JPH03210548A (en) 1990-01-16 1990-01-16 Projector

Publications (1)

Publication Number Publication Date
JPH03210548A true JPH03210548A (en) 1991-09-13

Family

ID=11584806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004462A Pending JPH03210548A (en) 1990-01-16 1990-01-16 Projector

Country Status (1)

Country Link
JP (1) JPH03210548A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091257A (en) * 2004-09-22 2006-04-06 Olympus Corp Light guiding apparatus, illumination apparatus and image projection apparatus
JP2006139005A (en) * 2004-11-11 2006-06-01 Olympus Corp Light guiding device, lighting system and projector
EP1688779A1 (en) * 2005-02-04 2006-08-09 Samsung Electronics Co, Ltd Light tunnel for projection apparatus
US7568806B2 (en) 2004-12-14 2009-08-04 Casio Computer Co., Ltd. Light source unit having a light source in a mirror tunnel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449017A (en) * 1987-08-19 1989-02-23 Canon Kk Projection optical system
JPH021818A (en) * 1987-12-23 1990-01-08 Philips Gloeilampenfab:Nv Light valve projector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449017A (en) * 1987-08-19 1989-02-23 Canon Kk Projection optical system
JPH021818A (en) * 1987-12-23 1990-01-08 Philips Gloeilampenfab:Nv Light valve projector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091257A (en) * 2004-09-22 2006-04-06 Olympus Corp Light guiding apparatus, illumination apparatus and image projection apparatus
JP2006139005A (en) * 2004-11-11 2006-06-01 Olympus Corp Light guiding device, lighting system and projector
US7568806B2 (en) 2004-12-14 2009-08-04 Casio Computer Co., Ltd. Light source unit having a light source in a mirror tunnel
EP1688779A1 (en) * 2005-02-04 2006-08-09 Samsung Electronics Co, Ltd Light tunnel for projection apparatus
KR100664325B1 (en) * 2005-02-04 2007-01-04 삼성전자주식회사 Light tunnel and Projection apparatus having the same

Similar Documents

Publication Publication Date Title
JP2004524581A (en) Projector display device
US6246170B1 (en) Light source apparatus with a spherical optical member
US5217299A (en) Reflection type lighting apparatus
US5438379A (en) Image projection apparatus
US6407871B1 (en) Optical device for eliminating stray light
JP5036102B2 (en) Lighting device
JPH03210548A (en) Projector
JPH0572628A (en) Light source device
JP3309286B2 (en) Condensing illumination method and condensing illumination device
JPH0540223A (en) Lighting device
GB2378499A (en) A lamp for a projection system
US20230236489A1 (en) Light source device and image projecting apparatus
JP2991464B2 (en) Reflective illumination device with parabolic mirror
KR100188957B1 (en) Lighting device for lcd projector
KR0135835B1 (en) Illumination apparatus for l.c.d projector
JP2531928Y2 (en) LCD projector
JP2000187178A (en) Projection type display device using reflection type display element
JP2958078B2 (en) Reflective illumination device with parabolic mirror
JPH10283821A (en) Lighting system
JP2002296647A (en) Flashing device
JPH064753U (en) LCD projector lighting device
EP1914573A2 (en) Coupling of light from a light source to a target using dual ellipsoidal reflectors
JPH07219046A (en) Irradiation device
KR100188700B1 (en) Lamp apparatus for projector
JPH0453926A (en) Illuminator