JPH03210344A - Rubber composition for tire sidewall - Google Patents

Rubber composition for tire sidewall

Info

Publication number
JPH03210344A
JPH03210344A JP2004322A JP432290A JPH03210344A JP H03210344 A JPH03210344 A JP H03210344A JP 2004322 A JP2004322 A JP 2004322A JP 432290 A JP432290 A JP 432290A JP H03210344 A JPH03210344 A JP H03210344A
Authority
JP
Japan
Prior art keywords
isoprene
crack growth
growth resistance
rubber
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004322A
Other languages
Japanese (ja)
Inventor
Isao Sugita
杉田 功
Osamu Kondo
理 近藤
Fumio Tsutsumi
堤 文雄
Isao Furuta
古田 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP2004322A priority Critical patent/JPH03210344A/en
Publication of JPH03210344A publication Critical patent/JPH03210344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title compsn. excellent in the crack growth resistance and failure characteristics by using, as the principal component, an isoprene- butadiene copolymer rubber having a trans-1,4 bond content, isoprene content, and Mooney viscosity each in a specified range. CONSTITUTION:The title compsn. contains, as the principal component, an isoprene-butadiene copolymer rubber having a trans-1,4 bond content in the isoprene part of 90% or higher, an isoprene content of 10-95wt.%, and a Mooney viscosity (ML1+4, 100 deg.C) of 30-100. A trans-1,4 bond content lower than 90% gives an inferior crack growth resistance. A Mooney viscosity lower than 30 also gives an inferior crack growth resistance, and one higher than 100, a poor processability. An isoprene content lower than 10% degrades the failure characteristics and one higher than 95%, the crack growth resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐亀裂成長性に優れたタイヤサイドウオール
用ゴム組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rubber composition for tire sidewalls that has excellent crack growth resistance.

[従来の技術] 乗用車用タイヤの偏平化が近年急速に進みつつあり、こ
れに伴ないサイドウオール部にかかる負担が増え、歪み
が増加方向にあるため耐亀裂成長性の向上が望まれてい
る。
[Prior art] Passenger car tires have been rapidly becoming flatter in recent years, and as a result, the load placed on the sidewalls has increased and distortion is increasing, so it is desired to improve crack growth resistance. .

亀裂成長性を向上する方法としては、亀裂成長性の優れ
ているポリブタジェンゴムが一般的1: 使用されてい
る。しかしながら、ポリブタジェンを多量あるいは単独
に使用しようとすると、破壊特性が非常に低くなり耐久
上問題がある。
As a method for improving crack growth properties, polybutadiene rubber, which has excellent crack growth properties, is generally used. However, if polybutadiene is used in large amounts or singly, the fracture properties will be extremely low and there will be problems in terms of durability.

以上のような理由から、ポリブタジェンゴムは破壊特性
の優れた天然ゴムとブレンドして使用されることが多い
が、天然ゴムは耐亀裂成長性があまり良好でなく、この
問題も満足させるものではない。
For the reasons mentioned above, polybutadiene rubber is often used in blends with natural rubber, which has excellent fracture properties, but natural rubber does not have very good crack growth resistance, and there is no way to satisfy this problem. isn't it.

[発明が解決しようとする問題点コ 本発明の目的は、耐亀裂成長性と破壊特性に優れたタイ
ヤサイドウオール用ゴム組成物を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a rubber composition for tire sidewalls that has excellent crack growth resistance and fracture properties.

[問題点を解決するための手段] 本発明は、イソプレン部のミクロ構造のトランス1,4
−結合含有率が90%以上で、イソプレン含有量が10
〜95重量%で、かつムーニー粘度(ML   、10
0℃)が30〜100である1+4 イソプレン−ブタジェン共重合ゴムを主成分として含有
するタイヤサイドウオール用ゴム組成物であり、これに
よって前記問題点を解決するものである。
[Means for Solving the Problems] The present invention provides transformers 1 and 4 of the microstructure of the isoprene portion.
- bond content of 90% or more and isoprene content of 10
~95% by weight and Mooney viscosity (ML, 10
The present invention is a rubber composition for a tire sidewall, which contains as a main component a 1+4 isoprene-butadiene copolymer rubber having a temperature of 30 to 100 (0°C), and thereby solves the above-mentioned problems.

本発明に使用するイソプレン−ブタジェン共重合ゴムの
トランス1,4−結合含有率は90%以上、好ましくは
92〜99%であり、90%未満では本発明の目的であ
る耐亀裂成長性が劣る。
The trans-1,4-bond content of the isoprene-butadiene copolymer rubber used in the present invention is 90% or more, preferably 92 to 99%; if it is less than 90%, the crack growth resistance, which is the object of the present invention, is poor. .

共重合ゴムのムーニー粘麿(ML   、100■+4 ℃)は30〜100、好ましくは40〜90、さらに好
ましくは45〜75であり、30未満では耐亀裂成長性
が劣り、100を超えると加工性が悪くなる。
The Mooney viscosity (ML, 100cm + 4℃) of the copolymer rubber is 30 to 100, preferably 40 to 90, more preferably 45 to 75. If it is less than 30, the crack growth resistance will be poor, and if it exceeds 100, it will be difficult to process. Sexuality becomes worse.

共重合ゴムのイソプレン含有世は10〜95重量%、好
ましくは20〜90、さらに好ましくは50〜90重量
%であり、10%未満では破壊特性が、95%を超える
と耐亀裂成長性が悪くなる。
The isoprene content of the copolymer rubber is 10 to 95% by weight, preferably 20 to 90%, and more preferably 50 to 90% by weight. If it is less than 10%, the fracture properties will be poor, and if it exceeds 95%, the crack growth resistance will be poor. Become.

本発明の共重合ゴムは、例えばMg化合物に担持された
Ti化合物と有機アルミニウム化合物よりなる触媒系の
存在下で、不活性有機溶液中でイソプレンとブタジェン
とを同時に、または逐次的に溶液重合することにより好
適に製造される。
The copolymer rubber of the present invention is obtained by solution polymerizing isoprene and butadiene simultaneously or sequentially in an inert organic solution in the presence of a catalyst system consisting of a Ti compound supported on an Mg compound and an organoaluminum compound, for example. It is suitably manufactured by this method.

本発明のゴム組成物は、通常の加工装置、例えばロール
、バンバリーミキサ−、ニーダ−などにより混練するこ
とにより得られる。
The rubber composition of the present invention can be obtained by kneading it using conventional processing equipment such as rolls, Banbury mixers, kneaders, etc.

また、配合剤としては、通常使用される配合剤、例えば
カーボンブラックなどの補強剤、加硫促進剤、老化防止
剤、硫黄なども適宜使用することができる。
In addition, commonly used compounding agents such as reinforcing agents such as carbon black, vulcanization accelerators, anti-aging agents, sulfur, etc. can also be used as appropriate.

補強剤の好ましい配合量は、原料ゴム100重全部に対
して30〜150重量部、さら好ましくは40〜100
重量部である。多すぎると耐亀裂成長性が劣る傾向にあ
り、少なすぎると破壊特性が低下してくる。
The preferred amount of the reinforcing agent is 30 to 150 parts by weight, more preferably 40 to 100 parts by weight, based on 100 parts by weight of the raw rubber.
Parts by weight. If it is too large, the crack growth resistance tends to be poor, and if it is too small, the fracture properties are reduced.

本発明の組成物は、ゴム成分として本発明のイソプレン
−ブタジェン共重合ゴムを主成分として用いるが、50
重量%未満の範囲で、他のゴム(例えば、ポリブタジェ
ンゴム、天然ゴム、ポリイソプレンゴムなど)をブレン
ドして用いることができる。
The composition of the present invention uses the isoprene-butadiene copolymer rubber of the present invention as a main component as a rubber component.
Other rubbers (for example, polybutadiene rubber, natural rubber, polyisoprene rubber, etc.) can be blended and used within a range of less than % by weight.

[実 施 例] 以下、実施例および比較例により本発明を具体的に説明
する。なお、表中のゴム組成物の配合数値はすべて重量
部とし、またゴムの特性は下記の試験方法で評価した。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. All compounding figures for the rubber compositions in the table are parts by weight, and the properties of the rubber were evaluated by the following test methods.

く試験方法〉 (1)引張強さ:JIS  K6301に準じた。Test method> (1) Tensile strength: According to JIS K6301.

(2)耐亀裂成長性:JIS  K6301 3号ダン
ベルの中央にダンベルと直角方向に長さ0.7龍、幅0
.1關の傷を入れ、振動数600サイクル/分、歪30
%の条件下で伸長歪を与え、これが破断するまでの回数
を比較例3を100として指数で表わした。
(2) Crack growth resistance: JIS K6301 No. 3 dumbbell with a length of 0.7 length and a width of 0 in the center of the dumbbell in the direction perpendicular to the dumbbell.
.. 1 degree scratch, vibration frequency 600 cycles/min, strain 30
%, and the number of times it takes to break is expressed as an index, with Comparative Example 3 set as 100.

(3)  ミクロ構造の分析法とイソプレン/ブタジェ
ン組成比の決定: あらかじめ、ポリブタジェンとポリイソプレンを実施例
と同様の条件で得た。これらのポリマーを各々0−ジク
ロルベンゼンに溶解し、キャスティング法によりフィル
ムとした。各フィルムを赤外吸光分析により、ポリブタ
ジェンについては、モレ口などの方法CD、Morer
o ; Chemie 1rad、。
(3) Microstructure analysis method and determination of isoprene/butadiene composition ratio: Polybutadiene and polyisoprene were obtained in advance under the same conditions as in the example. Each of these polymers was dissolved in 0-dichlorobenzene and formed into a film by a casting method. Each film was analyzed by infrared absorption analysis, and for polybutadiene, method CD, Morer et al.
o ; Chemie 1rad,.

41、758 (1959))の吸光係数を用い分析し
た。ポリイソプレンについては、P、C1alpell
iなどの方法[Macromol、 Cheap、、 
61.250 (1983) )の吸光係数を用いた。
41, 758 (1959)). For polyisoprene, P, C1alpell
Methods such as i [Macromol, Cheap,
61.250 (1983)) was used.

このようにして、あらかじめミクロ構造の明らかになっ
たポリブタジェンとポリイソプレンとを任意の割合で混
合しフィルムとした。赤外吸光分析法により、D138
5/D967とイソプレン/ブタジェン比またはD13
85/D911とイソプレン/ブタジェン比の検量線を
作成し、共重合体中のイソプレン/ブタジェン比組成比
を決定した。また共重合体のミクロ構造は、ホモポリマ
ーの混合フィルムと差がないことから上記方法によって
確認した。
In this way, polybutadiene and polyisoprene, whose microstructures had been clarified in advance, were mixed in an arbitrary ratio to form a film. D138 by infrared absorption spectrometry
5/D967 and isoprene/butadiene ratio or D13
A calibration curve of 85/D911 and the isoprene/butadiene ratio was created to determine the isoprene/butadiene ratio composition in the copolymer. Furthermore, the microstructure of the copolymer was confirmed by the above method since it was no different from that of a homopolymer mixed film.

また、実施例に使用するイソプレン−ブタジェン共重合
ゴムは、以下の方法で製造した。
Moreover, the isoprene-butadiene copolymer rubber used in the examples was manufactured by the following method.

触媒の調製 窒素置換した500m1のフラスコにパラジウムカーボ
ン粉末(パラジウム含量5%)1.5g。
Preparation of catalyst 1.5 g of palladium carbon powder (palladium content 5%) was placed in a 500 ml flask purged with nitrogen.

乾燥した1、2−ジクロルエタン300m1および四塩
化チタン11m1を仕込み、撹拌しつつ、n−ジプチル
エーテル43m1滴下した。フラスコを25℃に保ち、
撹拌しつつ、水素を0. 21/m1nの速度で15時
間吹き込み、黄黒色の溶液を生成した。この溶液を窒素
下で沢過し、粉末状のパラジウムカーボンを戸別した。
300 ml of dried 1,2-dichloroethane and 11 ml of titanium tetrachloride were charged, and 43 ml of n-dibutyl ether was added dropwise while stirring. Keep the flask at 25°C.
While stirring, add 0.0% hydrogen. Bubbling was carried out at a rate of 21/ml for 15 hours to produce a yellow-black solution. The solution was filtered under nitrogen and the powdered palladium carbon was removed from door to door.

P液は均一な黄黒色の溶液であった。この均一溶液を酸
化還元滴定法により分析したところ、四塩化チタンの還
元率はほぼ100%であり、三塩化チタンの均一溶液と
なっていた。この溶液に1,2−ジクロルエタンを加え
て、三塩化チタンの濃度を0. 2 mol/ 1に調
製した。
The P solution was a uniform yellow-black solution. When this homogeneous solution was analyzed by redox titration, the reduction rate of titanium tetrachloride was approximately 100%, indicating that it was a homogeneous solution of titanium trichloride. 1,2-dichloroethane was added to this solution to bring the concentration of titanium trichloride to 0. It was adjusted to 2 mol/1.

次に、十分に乾燥し、窒素置換した12のフラスコに無
水の粉末状塩化マグネシウム25g(0゜262モル)
を入れ、ジ(2−エチルへキシルオキシ)(2−エチル
ヘキシル)ホスフィンオキシト360m1 (0,78
7モル)を加えて撹拌下に溶解した。この中に、n−へ
キサンを加えて全量を524m1 (MgC12で0.
50 mol/jりとした。
Next, 25 g (0°262 mol) of anhydrous powdered magnesium chloride was placed in 12 flasks that had been thoroughly dried and purged with nitrogen.
and di(2-ethylhexyloxy)(2-ethylhexyl)phosphine oxide 360ml (0,78
7 mol) was added and dissolved under stirring. Add n-hexane to this and make a total volume of 524ml (0.0ml with MgC12).
The amount was set at 50 mol/j.

32のフラスコに上記塩化マグネシウムを含む均一溶液
200m1 (MgC12で0.1モル)を入れ、次に
、前記の二酸化チタン溶液150m1(30ミリモル)
を加えた。さらに、n−ヘキサン1500mlを加え、
緑色の均一溶液が得られた。
200 ml of the above homogeneous solution containing magnesium chloride (0.1 mol of MgC12) was placed in a No. 32 flask, and then 150 ml of the above titanium dioxide solution (30 mmol) was added.
added. Furthermore, add 1500ml of n-hexane,
A green homogeneous solution was obtained.

このように生成した均一溶液に、析出化剤として四塩化
チタン80m1を撹拌下にゆっくり滴下すると濃緑色の
微粉末固体が生成した。1時間撹拌した後、微粉末を析
出させた。上澄みは黒色均一溶液であった。上澄みをP
別除去し、微粉末固体を新たなn−ヘキサン2000m
1で洗浄した。この操作を3回繰り返した。この微粉末
固体にn −ヘキサン2000m1を加え、さらにジイ
ソブチルアルミニウムモノクロリドを30ミリモル含む
ヘキサン溶液2000m1を加え、30℃にて1時間撹
拌の後静置し、上澄みをP別除去し、残った微粉末固体
に新たなn、−ヘキサン2000m1を加えて洗浄した
。この操作を6回繰り返した。n−ヘキサンを加えて全
量を2000m1とし、微黄緑色の微粉末固体のn−ヘ
キサン懸濁液を得た。Ti濃度を比色分析により求めた
ところ、0.003mol/Aであった。
When 80 ml of titanium tetrachloride as a precipitating agent was slowly added dropwise to the homogeneous solution thus produced while stirring, a dark green fine powder solid was produced. After stirring for 1 hour, fine powder was precipitated. The supernatant was a black homogeneous solution. P the supernatant
Separately remove the finely powdered solid in 2000ml of fresh n-hexane.
Washed with 1. This operation was repeated three times. 2,000 ml of n-hexane was added to this finely powdered solid, and 2,000 ml of a hexane solution containing 30 mmol of diisobutylaluminum monochloride was added. After stirring at 30°C for 1 hour, the mixture was allowed to stand, the supernatant was removed separately from P, and the remaining fine The powdered solid was washed by adding fresh 2000 ml of n,-hexane. This operation was repeated six times. N-hexane was added to bring the total volume to 2000 ml to obtain an n-hexane suspension of a slightly yellow-green fine powder solid. The Ti concentration was determined by colorimetric analysis and was 0.003 mol/A.

重   合 52オートクレーブにn−ヘキサン1590gとイソプ
レン425 g、ブタジェン75g、hジイソブチルア
ルミニウム15.3モルを入れ撹拌を行なった。内容物
温度は23℃であった。次に、上記で作製した固体触媒
懸濁液(Ti原子基準で1.53ミリモル)を加えた後
、50℃にて3゜5時間重合を行ない、常法に従って後
処理を行なった。真空乾燥の後183gのポリマーを得
た(資料IBR−I)。生成したポリマーのブタジェン
部分は98%トランス1.4−結合を有し、イソプレン
部分は97%トランス−1,4−結合の組成を有してい
た。ポリマーのムーニー粘度ML   (100℃)は
60であった。ポリマー中1+4 のイソプレン含量は58重量%であった。同様にして表
−1に示す試料I BR−II〜IBR−mを重合した
Polymerization 52 1590 g of n-hexane, 425 g of isoprene, 75 g of butadiene, and 15.3 moles of diisobutylaluminum were placed in an autoclave and stirred. The content temperature was 23°C. Next, after adding the solid catalyst suspension prepared above (1.53 mmol based on Ti atoms), polymerization was carried out at 50° C. for 3.5 hours, and post-treatment was carried out according to a conventional method. After vacuum drying, 183 g of polymer was obtained (Document IBR-I). The butadiene portion of the resulting polymer had a composition of 98% trans-1,4-bonds, and the isoprene portion had a composition of 97% trans-1,4-bonds. The Mooney viscosity ML (100°C) of the polymer was 60. The 1+4 isoprene content in the polymer was 58% by weight. Samples I BR-II to IBR-m shown in Table 1 were polymerized in the same manner.

実施例1〜3、 比較例1〜4 表−2に配合処方および145℃で加硫した加硫物の試
験結果を示す。
Examples 1 to 3, Comparative Examples 1 to 4 Table 2 shows the formulation and the test results of the vulcanizate cured at 145°C.

以 下 余 白 実施例1〜3に見られるように、この発明のゴム組成物
は耐亀裂成長性に優れ、かつ耐久性の指標にもなる破壊
特性とのバランスも良好であり、タイヤサイドウオール
用ゴム組成物として好適である。これに対し、比較例2
.4は破壊特性は優れるが耐亀裂成長性が大幅に劣り、
比較例1.3は耐亀裂成長性、破壊特性ともに劣るので
タイヤサイドウオール用ゴム組成物として適当でない。
As seen in Examples 1 to 3 below, the rubber composition of the present invention has excellent crack growth resistance and has a good balance with fracture properties, which are also indicators of durability. It is suitable as a composition. On the other hand, comparative example 2
.. 4 has excellent fracture properties but significantly poor crack growth resistance;
Comparative Examples 1.3 are not suitable as rubber compositions for tire sidewalls because they are inferior in both crack growth resistance and fracture properties.

[発明の効果] 以上の実施例および比較例で示したように、この発明の
イソプレン−ブタジェン共重合ゴム組成物は、タイヤサ
イドウオールに必要な耐亀裂成長性を大幅に改良させ破
壊特性にも優れるので、タイヤサイドウオール用として
極めて好ましく有用なゴム組成物である。
[Effects of the Invention] As shown in the above Examples and Comparative Examples, the isoprene-butadiene copolymer rubber composition of the present invention significantly improves the crack growth resistance required for tire sidewalls and also improves the fracture properties. This rubber composition is extremely preferable and useful for tire sidewalls.

Claims (1)

【特許請求の範囲】[Claims] (1)イソプレン部のミクロ構造のトランス1,4−結
合含有率が90%以上で、イソプレン含有量が10〜9
5重量%で、かつムーニー粘度(ML_1_+_4、1
00℃)が30〜100であるイソプレン−ブタジエン
共重合ゴムを主成分として含有するタイヤサイドウォー
ル用ゴム組成物。
(1) The trans-1,4-bond content of the microstructure of the isoprene part is 90% or more, and the isoprene content is 10 to 9
5% by weight, and Mooney viscosity (ML_1_+_4, 1
A rubber composition for tire sidewalls, which contains as a main component an isoprene-butadiene copolymer rubber having a temperature of 30 to 100 (00C).
JP2004322A 1990-01-11 1990-01-11 Rubber composition for tire sidewall Pending JPH03210344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322A JPH03210344A (en) 1990-01-11 1990-01-11 Rubber composition for tire sidewall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322A JPH03210344A (en) 1990-01-11 1990-01-11 Rubber composition for tire sidewall

Publications (1)

Publication Number Publication Date
JPH03210344A true JPH03210344A (en) 1991-09-13

Family

ID=11581226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322A Pending JPH03210344A (en) 1990-01-11 1990-01-11 Rubber composition for tire sidewall

Country Status (1)

Country Link
JP (1) JPH03210344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197676A (en) * 2005-12-27 2007-08-09 Sumitomo Rubber Ind Ltd Rubber composition for sidewall and method for producing the same
US20150096654A1 (en) * 2013-10-08 2015-04-09 The Goodyear Tire & Rubber Company Rubbery blend containing trans isoprene-butadiene copolymer
CN107033406A (en) * 2016-11-29 2017-08-11 株洲时代新材料科技股份有限公司 Resilient sleeper-bearing under a kind of arctic rubber composite and preparation method thereof and the iron chair made by the arctic rubber composite
US10308792B2 (en) 2013-10-08 2019-06-04 The Goodyear Tire & Rubber Company Rubbery blend containing trans isoprene-butadiene copolymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197676A (en) * 2005-12-27 2007-08-09 Sumitomo Rubber Ind Ltd Rubber composition for sidewall and method for producing the same
US20150096654A1 (en) * 2013-10-08 2015-04-09 The Goodyear Tire & Rubber Company Rubbery blend containing trans isoprene-butadiene copolymer
CN104513411A (en) * 2013-10-08 2015-04-15 固特异轮胎和橡胶公司 Rubbery blend containing trans isoprene-butadiene copolymer
JP2015078365A (en) * 2013-10-08 2015-04-23 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニーThe Goodyear Tire & Rubber Company Rubber blend containing trans isoprene-butadiene copolymer
US10308792B2 (en) 2013-10-08 2019-06-04 The Goodyear Tire & Rubber Company Rubbery blend containing trans isoprene-butadiene copolymer
CN107033406A (en) * 2016-11-29 2017-08-11 株洲时代新材料科技股份有限公司 Resilient sleeper-bearing under a kind of arctic rubber composite and preparation method thereof and the iron chair made by the arctic rubber composite

Similar Documents

Publication Publication Date Title
ES2412979T3 (en) Highly functionalized Cis-1,4-polybutadiene prepared using new functionalizing agents
JP5612567B2 (en) Polar group-containing copolymer, rubber composition and studless tire
JP4129619B2 (en) Conjugated diolefin (co) polymer rubber, method for producing the (co) polymer rubber, rubber composition and tire
EP3059258A1 (en) Modified conjugated diene-based polymer, method for preparing same, and rubber composition comprising same
WO2007066651A1 (en) Process for producing conjugated diene polymer, conjugated diene polymer, and rubber composition
JPH09118785A (en) Elastomeric composition useful as tire tread
JP2012513516A (en) Novel initiator system for anionic polymerization of conjugated dienes and process for producing diene elastomers
JPS59140240A (en) Rubber composition
JP6178508B2 (en) Functionalized polymer composition
EP3348588A1 (en) Diene polymer, method for producing diene polymer, and rubber composition
JPH01188501A (en) Production of rubber composition
JP2018532005A (en) Elastomer polymer
EP3106473A1 (en) Catalyst composition for polymerization of conjugated diene
JPH03190943A (en) Rubber composition
JP3438742B2 (en) Rubber composition and method for producing the same
KR20180104099A (en) Rubber composition for tire and pneumatic tire
EP3098260B1 (en) Conjugated diene-based polymer rubber composition containing dispersant
EP3222639B1 (en) Conjugated diene-based polymer
EP3312205A1 (en) Polymer compound, method for preparing modified conjugated diene-based polymer by using same, and modified conjugated diene-based polymer
JP7133092B2 (en) Modified conjugated diene polymer, method for producing the same, and rubber composition containing the same
JP6907599B2 (en) Rubber composition for tires and pneumatic tires
JPH03210344A (en) Rubber composition for tire sidewall
JP2005133017A (en) Rubber composition for sidewall
JP2006137858A (en) Conjugative diene base polymer and rubber composition containing the same
WO2017038087A1 (en) Emulsion-polymerized styrene-butadiene rubber, rubber composition, and tire