JPH03209887A - Narrow band laser device - Google Patents

Narrow band laser device

Info

Publication number
JPH03209887A
JPH03209887A JP2004984A JP498490A JPH03209887A JP H03209887 A JPH03209887 A JP H03209887A JP 2004984 A JP2004984 A JP 2004984A JP 498490 A JP498490 A JP 498490A JP H03209887 A JPH03209887 A JP H03209887A
Authority
JP
Japan
Prior art keywords
optical path
wavelength
light
resonator
polarization separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004984A
Other languages
Japanese (ja)
Other versions
JP2715608B2 (en
Inventor
Nobuaki Furuya
古谷 伸昭
Takuhiro Ono
小野 拓弘
Naoya Horiuchi
直也 堀内
Keiichiro Yamanaka
山中 圭一郎
Takeo Miyata
宮田 威男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP498490A priority Critical patent/JP2715608B2/en
Priority to EP90103985A priority patent/EP0402570B1/en
Priority to US07/487,080 priority patent/US4985898A/en
Priority to DE69031884T priority patent/DE69031884T2/en
Priority to CA002011361A priority patent/CA2011361C/en
Priority to KR1019900003141A priority patent/KR930002821B1/en
Priority to US07/626,145 priority patent/US5150370A/en
Publication of JPH03209887A publication Critical patent/JPH03209887A/en
Application granted granted Critical
Publication of JP2715608B2 publication Critical patent/JP2715608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection

Abstract

PURPOSE:To prevent a laser device of this design from varying in wavelength and deteriorating in output by a method wherein a wavelength selection element is provided into an optical path other than an output optical path which extends from a laser medium passing through a polarized light separator, and a wavelength phase shifter and a third reflective mirror are provided into an optical path other than a resonator optical path which branches off from a partial polarized light separator. CONSTITUTION:An optical resonator composed of a first reflective mirror 2 and a second reflective mirror 3, a partial polarized light separator 4 and a polarized light separator 5 provided into a resonator optical path, a wave length selection element provided into the resonator optical path other than an output optical path passing through the polarization light separator 5, and a wavelength phase shifter 7 and a third reflector mirror 8 provided into an optical light path other than the resonator optical path branching off from the partial polarized light separator 4 are provided. A part of light, which is specified in wavelength and formed in the optical resonator passing through the laser medium and the wavelength selection element 6, is extracted from the partial polarized light separator 4, converted in plane of polarization through a wavelength phase shifter 7, amplified again through the laser medium, and then outputted from the polarized light separator 5. By this setup, optical energy is made decrease to such an extent that an output light is divided by the amplification factor of the laser medium, and a wavelength selection element is sharply decreased in deformation and deterioration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体集積回路の超微細加工等の露3べ−7 光用光源として用いられる狭帯域化レーザ装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a narrowband laser device used as a light source for exposure light in ultrafine processing of semiconductor integrated circuits, etc.

従来の技術 従来よシ、半導体集積回路の微細パターンの露光用光源
としてエキシマレーザが注目されている。
2. Description of the Related Art Excimer lasers have been attracting attention as a light source for exposing fine patterns of semiconductor integrated circuits.

エキシマレーザはレーザ媒質としてクリプトン、キセノ
ン等の希ガスとふっ素、塩素等のハロゲンガスを組み合
わせることにより353nmから193 nmの間のい
くつかの波長でパターン露光に十分な出力を有する発振
線を得ることができる。
An excimer laser uses a combination of a rare gas such as krypton or xenon and a halogen gas such as fluorine or chlorine as a laser medium to obtain an oscillation line with sufficient output for pattern exposure at several wavelengths between 353 nm and 193 nm. I can do it.

これらエキシマレーザの利得バンド幅ハ、約1nmと広
く、光共振器と組み合わせて発振させた場合、発振線が
0.5nm程度の帯域幅(半値全幅)を持つ。このよう
に比較的広い帯域幅を持つレザ光を露光用光源として用
いた場合、露光光学系に色収差を補正した結像光学系を
採用する必要がある。ところが、波長が350nm以下
の紫外域では、結像光学系に用いるレンズの光学材料の
選択の幅が限られ、色収差の補正が困難となる。エキシ
マレーザを露光装置に用いる場合、レーザ発振線の帯域
幅を0.005nm程度にまで単色化できれば色収差補
正をしない結像光学系を利用することが可能となり、露
光装置の光学系の簡略化、更には、露光装置全体の小型
化、価格の低減を実現することができる。
The gain bandwidth of these excimer lasers is as wide as about 1 nm, and when oscillated in combination with an optical resonator, the oscillation line has a bandwidth (full width at half maximum) of about 0.5 nm. When laser light having such a relatively wide bandwidth is used as an exposure light source, it is necessary to employ an imaging optical system that corrects chromatic aberration in the exposure optical system. However, in the ultraviolet region where the wavelength is 350 nm or less, the range of selection of optical materials for lenses used in the imaging optical system is limited, making it difficult to correct chromatic aberration. When using an excimer laser in an exposure device, if the bandwidth of the laser oscillation line can be made monochromatic to about 0.005 nm, it becomes possible to use an imaging optical system that does not correct chromatic aberration, which simplifies the optical system of the exposure device. Furthermore, it is possible to realize miniaturization and cost reduction of the entire exposure apparatus.

広い帯域幅を持つレーザ光を単色化するには、狭い透過
帯域を持つ波長選択フィルターを通せば良い。しかし、
この方法では、レーザ出力が著しく減衰し、露光用光源
として実用に供することができない。そこで、波長選択
素子を共振器内に設置し、出力を減衰させることなく単
色化する方法が一般に採用されている。この−例として
、例えば、特開昭63−160287号公報記載の構成
が知られている。
To make laser light with a wide bandwidth monochromatic, it can be passed through a wavelength selection filter with a narrow transmission band. but,
In this method, the laser output is significantly attenuated and cannot be used practically as an exposure light source. Therefore, a method is generally adopted in which a wavelength selection element is installed in a resonator to monochromate the output without attenuating it. As an example of this, the configuration described in Japanese Patent Application Laid-open No. 160287/1987 is known.

以下、簡単にその構成を説明すると、第8図にその構成
を示すように、全反射鏡102および半透過鏡103か
らなる光共振器内に放電管101が設置されている。放
電管101には希ガスとノ・ロゲンガスを含む媒質ガス
が封入されておシ、放電励起によってレーザ発振する。
The configuration will be briefly described below. As shown in FIG. 8, a discharge tube 101 is installed within an optical resonator consisting of a total reflection mirror 102 and a semi-transmission mirror 103. The discharge tube 101 is filled with a medium gas containing rare gas and nitrogen gas, and generates laser oscillation by discharge excitation.

光共振器中には51\−7 波長選択素子であるファンリベローエタン104が設置
されている。
In the optical resonator, a 51\-7 wavelength selection element, ie, a van Riverot ethane 104, is installed.

このような構成のエキシマレーザ装置は、ファブリペロ
ーエタロン104で選択された特定の波長の光106.
107.108.109だけが増幅、発振するので、非
常に狭い帯域幅で、かつ高い出力光105を得ることが
できる。
An excimer laser device having such a configuration emits light 106 .of a specific wavelength selected by the Fabry-Perot etalon 104 .
Since only 107, 108, and 109 are amplified and oscillated, it is possible to obtain high output light 105 with a very narrow bandwidth.

発明が解決しようとする課題 しかし、上記従来の狭帯域化レーザ装置では、光共振器
内に定在する高いエネルギーの光が波長選択素子を通過
するため、波長選択素子の変形や劣化を招き、選択波長
の変動や、出力の低下が発生し、その結果、露光装置の
光源として用いた場合、製品には不良を生じるなどの課
題があった。
Problems to be Solved by the Invention However, in the above-mentioned conventional narrowband laser device, the high-energy light that resides within the optical resonator passes through the wavelength selection element, leading to deformation and deterioration of the wavelength selection element. Variations in the selected wavelength and reduction in output occur, resulting in problems such as product defects when used as a light source for an exposure device.

本発明は、このような従来技術の課題を解決するもので
、波長選択素子の変形、劣化による波長変動や出力の低
下がない狭帯域化レーザ装置を提供することを目的とす
る。
The present invention solves the problems of the prior art, and aims to provide a narrowband laser device that is free from wavelength fluctuations and output drops due to deformation and deterioration of wavelength selection elements.

課題を解決するだめの手段 上記目的を達成するだめの本発明の技術的解決6ベー。A means to solve problems The technical solution of the present invention is 6 bases to achieve the above object.

手段は、少なくともレーザ媒質と、このレーザ媒質を貫
く共振器光路を作る第1および第2の反射鏡からなる光
共振器と、上記共振器光路中に設けられた部分偏光分離
器および偏光分離器と、上記レーザ媒質から上記偏光分
離器を通り、出力光が出力される出力光路以外の上記共
振器光路中に設けられた波長選択素子と、上記部分偏光
分離器から分かれる共振器光路以外の光路中に設けられ
た波長位相器および第3の反射鏡、を備えたものである
The means includes an optical resonator comprising at least a laser medium, first and second reflecting mirrors forming a resonator optical path passing through the laser medium, and a partial polarization separator and a polarization separator provided in the resonator optical path. and a wavelength selection element provided in the resonator optical path other than the output optical path through which output light is output from the laser medium through the polarization separator, and an optical path other than the resonator optical path separated from the partial polarization separator. It is equipped with a wavelength phase shifter and a third reflecting mirror provided therein.

そして、上記反射鏡、波長位相器、部分偏光分離器、偏
光分離器および波長選択素子は、これらの素子の機能の
少なくとも一部を複合化することができる。また、上記
波長位相器はファーストオーダ、マルチプルオーダの波
長板、フエーズリタダミラー、フェニズリターダープリ
ズムから選ぶことができ、また、上記偏光分離器に誘電
体多層膜の偏光分離鏡を用い、また、上記部分偏光分離
器に誘電体多層膜の偏光分離鏡を用いることができる。
The reflecting mirror, wavelength phase shifter, partial polarization separator, polarization separator, and wavelength selection element can combine at least some of the functions of these elements. Further, the wavelength phaser can be selected from a first-order or multiple-order wave plate, a phase retarder mirror, or a phenyl retarder prism. , a dielectric multilayer polarization splitting mirror can be used as the partial polarization splitter.

また、上記レーザ媒質が希ガスとノ・ロゲ7ベー。In addition, the above laser medium is a rare gas.

ンガスを組み合わせたエキシマを用いることができる。Excimer combined with gas can be used.

また、上記部分偏光分離器は偏光分離器と半透過鏡の組
み合わせにより構成し、または、透明基板の両面に偏光
分離膜と半透過膜を形成して構成することができる。
Further, the partial polarization separator can be constructed by combining a polarization separator and a semi-transparent mirror, or can be constructed by forming a polarization separation film and a semi-transmission film on both sides of a transparent substrate.

作    用 本発明によれは、レーザ媒質を貫き波長選択素子を通る
光共振器で作られた特定の波長面の光が一部j分だけ部
分偏光分離器より取り出され、波長位相器で偏光面を変
換、され、再度、レーザ媒質で増幅された後、偏光分離
器により出力光として出力される。したがって、波長選
択素子を通過する光エネルギーは、レーザ媒質の増幅率
で出力光を割算した程度に低下し、波長選択素子の変形
、劣化は著しぐ低減する。
According to the present invention, a part of light of a specific wavelength plane created by an optical resonator that passes through a laser medium and passes through a wavelength selection element is extracted by a partial polarization splitter, and the polarization plane is changed by a wavelength phase shifter. After being converted and amplified again by a laser medium, it is output as output light by a polarization splitter. Therefore, the light energy passing through the wavelength selection element is reduced to the extent that the output light is divided by the amplification factor of the laser medium, and deformation and deterioration of the wavelength selection element are significantly reduced.

実施例 以下、図面を参照しながら本発明の実施例について説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本発明の第1の実施例について説明する。First, a first embodiment of the present invention will be described.

第1図は本発明の第1の実施例における狭帯域化レーザ
装置を示す構成図である。第1図に示すように、希ガス
とハロゲンガスの混合気体をレザ媒質とする放電管′1
と、レーザ媒質を貫°く共振器光路を作る第1−J、−
よび第2の全反射鏡2および3からなる光共振器により
、紫外域でレーザ発振する。光共振器の作る共振器光路
中には放電管1と第1の全反射鏡2の間で部分偏光分離
器4が設置されると共に、放電管1と第2の反射鏡3の
間で偏光分離器5が設置されている。部分偏光分離器4
は偏光の異なる光の伝播方向を分離するが、完全に分離
せず、一方の偏光成分については部分的に透過や反射を
行なう。例えば、S偏光の光については100%反射す
るが、P偏光の光については比率Tだけ透過させ、比率
(L−T)だけ反射する機能を有する。この比率Tにつ
いては後に詳細に説明するが、0.05〜0.8程度の
曝値である。偏光分離器5は偏光の異なる光の伝播方向
を分離するもので、例えば、P偏光の光については10
0%透過させ、S偏光の光については100%反射する
機能を有する。放電管1で放電励起に9ノ、2 より発振した光が偏光分離器5を通り、出力光19とし
て出力される出力光路以外の共振器光路中、すなわち、
部分偏光分離器4と第1の全反射鏡2との間に波長選択
素子であるファブリペロエタロイ6が設置されている0
部分偏光分離器4から分かれる共振器光路以外の光路中
に偏光を変換する1/4波長位相器7と第3の全反射鏡
8が設置されている。
FIG. 1 is a configuration diagram showing a band narrowing laser device in a first embodiment of the present invention. As shown in Fig. 1, a discharge tube '1 whose laser medium is a mixture of rare gas and halogen gas.
and the first -J, - which creates a resonator optical path that penetrates the laser medium.
The laser oscillates in the ultraviolet region by an optical resonator consisting of the second total reflection mirror 2 and the second total reflection mirror 3. In the resonator optical path created by the optical resonator, a partial polarization separator 4 is installed between the discharge tube 1 and the first total reflection mirror 2, and a polarization separator 4 is installed between the discharge tube 1 and the second total reflection mirror 3. A separator 5 is installed. Partial polarization separator 4
Although it separates the propagation directions of light with different polarizations, it does not completely separate them, and only partially transmits or reflects one polarization component. For example, it has the function of reflecting 100% of S-polarized light, but transmitting P-polarized light by a ratio T and reflecting a ratio (L−T). Although this ratio T will be explained in detail later, it is an exposure value of about 0.05 to 0.8. The polarization separator 5 separates the propagation directions of light of different polarization, for example, 10 for P-polarized light.
It has the function of transmitting 0% of light and reflecting 100% of S-polarized light. The light oscillated by discharge excitation in the discharge tube 1 passes through the polarization separator 5 and is output as output light 19 in the resonator optical path other than the output optical path, that is,
A Fabry-Perot etalloy 6, which is a wavelength selection element, is installed between the partial polarization separator 4 and the first total reflection mirror 2.
A quarter wavelength phase shifter 7 for converting polarization and a third total reflection mirror 8 are installed in an optical path other than the resonator optical path separated from the partial polarization separator 4.

以上のような構成において、以下、その動作について説
明する。
The operation of the above configuration will be described below.

放電管1で発振した光は、部分偏光分離器4でP偏光し
た光の一部分が透過する。この光9は波長選択素子であ
るファブリペローエタロン6により特定の波長の光だけ
が選択され、第1の全反射鏡2で反射されて光10とな
って帰る。光10は上記のようにP偏光であるので、部
分偏光分離器4を一部分が通過して光11となり、放電
管1で増幅されて光12となる。光12はP偏光である
ので、偏光分離器5を通過し、第2の全反射鏡3で反射
されて再び偏光分離器5を通過し、光1310へ−7 となる。光13は放電管1で増幅され、光14となシ、
その一部分が部分偏光分離器4を通p1光9となって上
記と同様に発振を継続する。光14の他の一部分は部分
偏光分離器4で反射されて光15となシ、1/4波長位
相器を通り、第3の全反射鏡8で反射されて再び1/4
波長位相器7をaD、p偏光がS偏光に変換されて光1
6となる。
A portion of the light oscillated by the discharge tube 1 is P-polarized by the partial polarization separator 4 and transmitted therethrough. Only light of a specific wavelength is selected from this light 9 by a Fabry-Perot etalon 6, which is a wavelength selection element, and is reflected by the first total reflection mirror 2 to return as light 10. Since the light 10 is P-polarized as described above, a portion thereof passes through the partial polarization separator 4 to become light 11, which is amplified by the discharge tube 1 and becomes light 12. Since the light 12 is P-polarized light, it passes through the polarization separator 5, is reflected by the second total reflection mirror 3, passes through the polarization separator 5 again, and becomes light 1310 -7. The light 13 is amplified by the discharge tube 1 and becomes the light 14,
A part of it passes through the partial polarization separator 4 and becomes p1 light 9, which continues to oscillate in the same manner as above. The other part of the light 14 is reflected by the partial polarization separator 4, becomes light 15, passes through a 1/4 wavelength phaser, is reflected by the third total reflection mirror 8, and becomes 1/4 light again.
The wavelength phase shifter 7 is converted to aD, and the p polarized light is converted to S polarized light and becomes light 1.
It becomes 6.

一般に光を1/4波長位相器7に2度通過させると、こ
の1/4波長位相器7は1/2波長位相器と同等の機能
となり、位相器7の光軸方向を入射光の偏波面と45°
傾けて設定すると、P偏光の入射光は全部S偏光の光に
変換されることが知られている。S偏光の光16は部分
偏光分離器4で100%反射されてS偏光の光17とな
シ、放電管1で増幅され、S偏光の光18となり、偏光
分離器5で100%反射されてS偏光の出力光19とな
って出力される。
Generally, when light passes through the 1/4 wavelength phase shifter 7 twice, the 1/4 wavelength phase shifter 7 has the same function as a 1/2 wavelength phase shifter, and the optical axis direction of the phase shifter 7 is used to polarize the incident light. Wave front and 45°
It is known that when set at an angle, all incident P-polarized light is converted to S-polarized light. The S-polarized light 16 is 100% reflected by the partial polarization separator 4 to become S-polarized light 17, amplified by the discharge tube 1 to become S-polarized light 18, and 100% reflected by the polarization separator 5. It is output as S-polarized output light 19.

このような構成によシ、ファブリペローエタロン6に入
射する光9の強度に比較して、出力光19は放電管1に
より増幅された後で取り出され11 l\−ノ るので、レーザ媒質の増幅率程度が大きく、相対的に波
長選択素子であるファブリペローエタロン6の変形、劣
化が著しく低減することとなる。
With such a configuration, compared to the intensity of the light 9 incident on the Fabry-Perot etalon 6, the output light 19 is extracted after being amplified by the discharge tube 1, so that the intensity of the laser medium is The amplification factor is large, and deformation and deterioration of the Fabry-Perot etalon 6, which is a wavelength selection element, is relatively significantly reduced.

以上の説明から本実施例の構成によれば、波長選択素子
であるファブリペローエタロン6の光負荷を大幅に低減
させることが可能であることについては明確であるが、
更に、定量的に数式を用いて説明する。
From the above description, it is clear that according to the configuration of this embodiment, it is possible to significantly reduce the optical load on the Fabry-Perot etalon 6, which is a wavelength selection element.
Furthermore, it will be explained quantitatively using mathematical formulas.

第1図において、光10〜18の強度をrlO〜118
とする。光9は特にファブリペローエタロン6の負荷光
となるので、強度をIEとし、光19は出力光であるの
で、強度をI outとした。
In Figure 1, the intensity of lights 10 to 18 is rlO to 118
shall be. Since the light 9 is particularly a load light for the Fabry-Perot etalon 6, its intensity is designated as IE, and since the light 19 is an output light, its intensity is designated as I out.

ただし、光9〜15はP偏光の光であり、光16〜19
はS偏光の光である。前述のように部分偏光分離器4は
P偏光の光を比率Tだけ透過させ、比率(1−T’)だ
け反射させ、S偏光の光を100%反射させる。第1、
第2、第3の全反射鏡2.3.8は100%反射率とし
、ファブリペローエタロン6は損失をAEとして、(′
t−AE)を透過率とする。また、放電管1よυ光が出
る部分は、通常、窓があるため、この部分でも光損失を
生じるので、その損失をAとする。すなわち、(1−A
)が窓の透過率とする。1/4波長位相器7はP偏光の
光を100%S偏光に変換すると想定し、偏光分離器5
はS偏光を100%反射させ、P偏光を100%透過さ
せる。レーザ媒質の微小光での単位当りの増幅率をgo
とし、放電管1の長さをLとする。
However, lights 9 to 15 are P-polarized lights, and lights 16 to 19
is S-polarized light. As described above, the partial polarization separator 4 transmits the P-polarized light by a ratio T, reflects the ratio (1-T'), and reflects 100% of the S-polarized light. First,
The second and third total reflection mirrors 2.3.8 have 100% reflectance, and the Fabry-Perot etalon 6 has a loss of AE ('
t-AE) is the transmittance. In addition, the portion from which υ light exits from the discharge tube 1 usually has a window, so light loss occurs in this portion as well, and this loss is designated as A. That is, (1-A
) is the transmittance of the window. Assuming that the 1/4 wavelength phase shifter 7 converts P-polarized light into 100% S-polarized light, the polarization separator 5
reflects 100% of S-polarized light and transmits 100% of P-polarized light. Go to the amplification factor per unit of minute light in the laser medium.
Let the length of the discharge tube 1 be L.

ここで、エキシマレーザのような高い増幅率のレーザを
解析する時によく適合するとされる解析方法として、リ
グロッドによるサチュレーション・エフェクトイン・ハ
イケイン・レーザ、ジャナル・オブ・アプライド・フィ
ジソスク、第36巻、No8.2487〜2490頁、
1965年、(W、 W、 RI GROD、  ” 
5aturationEffects in High
−Gain La5ers  、 Journalof
 Applied Physics、 Vol、 36
. No8゜P2487〜P2490.August 
1965 )に記載された方法がある。
Here, as an analysis method that is considered to be well suited when analyzing a laser with a high amplification factor such as an excimer laser, the method described by Rigrod, Saturation Effect in High-Cain Laser, Journal of Applied Physics, Vol. 36, No. 8 .2487-2490 pages,
1965, (W, W, RI GROD, ”
5aturationEffects in High
-Gain La5ers, Journalof
Applied Physics, Vol. 36
.. No8゜P2487~P2490. August
There is a method described in (1965).

次に、上記文献中の式を引用して解析を説明す131、
−7 る。
Next, the analysis will be explained by quoting the formula in the above document131,
-7.

上記文献のレーザ解析式を本実施例に適合すると、次式
が得られる(文献中の(力、(和式使用)。
If the laser analysis formula in the above literature is adapted to this example, the following formula is obtained ((force, (Japanese formula used) in the literature.

ここで、β4、γ1、γ2は文献中に表わされた値で、
本実施例の構成では次の式で与えられる。
Here, β4, γ1, γ2 are the values expressed in the literature,
The configuration of this embodiment is given by the following equation.

β4 =I out/((17A) (1−R) I 
s )   ++++++・++(21γ1=β1/β
4−(1−A)2R・・・・・・・・・(5)γ2−β
3/β2−(1−A)2T2(1−AE )2/R・・
・(4)ここで、定数Rは放電管1を左方向に伝播する
光の線強度に対するP偏光成分強度の比率であシ、次式
で与えられる。また、Isは飽和光強度である。
β4 = I out/((17A) (1-R) I
s ) ++++++++・++(21γ1=β1/β
4-(1-A)2R・・・・・・(5)γ2-β
3/β2-(1-A)2T2(1-AE)2/R...
(4) Here, the constant R is the ratio of the P polarization component intensity to the line intensity of light propagating leftward in the discharge tube 1, and is given by the following equation. Moreover, Is is the saturation light intensity.

・・・・・・・・・・・・・・・(5)上記(11〜(
5)式から出力光強度I outは次式で求められる。
・・・・・・・・・・・・・・・(5) Above (11~(
From equation 5), the output light intensity I out is determined by the following equation.

14ペー。14 pages.

・・・・・・・・・・・・(6) エタロン負荷光IEは次式により与えられる。・・・・・・・・・・・・(6) Etalon load light IE is given by the following equation.

IE=T114=T(I  A)β2Is     ・
・・・・・・・・・・・(7)上記(71式に上記(1
)、(2)、(5)、(4)、(5)式を使用すると、
エタロン負荷光IEが次式で求められる。
IE=T114=T(I A)β2Is ・
・・・・・・・・・・・・(7) Adding the above (1) to the above (71 formula)
), (2), (5), (4), and (5), we get
The etalon load light IE is determined by the following equation.

第2図に上記(6)、(8)式の計最結果を具体的に示
す。部分偏光分離器4のP偏光の透過率Tに対する飽和
光強度Isで規格化した出力光強度I out/Isと
、エタロン負荷光強度IE/Isを計算した結果である
FIG. 2 specifically shows the total results of equations (6) and (8) above. These are the results of calculating the output light intensity I out/Is normalized by the saturated light intensity Is with respect to the transmittance T of P-polarized light of the partial polarization separator 4 and the etalon load light intensity IE/Is.

次に、比較のため第8図で示した上記従来例の構成につ
いて同様の式を作って検討する。半透過鏡103の反射
率をRとし、他は第1図の本発明実施例と同一条件とす
ると、上記の方法により、以下の式が求められる。ただ
し、第8図で示した従来の構成では偏光していないので
、各部の光強15 l<−。
Next, for comparison, a similar formula will be created and studied for the configuration of the conventional example shown in FIG. Assuming that the reflectance of the semi-transmissive mirror 103 is R and the other conditions are the same as in the embodiment of the present invention shown in FIG. 1, the following equation can be obtained by the above method. However, in the conventional configuration shown in FIG. 8, the light is not polarized, so the light intensity at each part is 15 l<-.

度は光105.106.107.108.109に対し
て工1051工106箋 110ハ ■108  とし
)エタロンの光損失をAEとし、窓の損失をAとするこ
とは実施例と同様である。
The degree is 105, 106, 107, 108, 109 for light 105.

β2=I+o6/((1−A)Is) γ1=(I  A)211o9/11osγ2−(1−
A)2I+o7/I 1a61107=RI 106 1109= (1−AE)21108 Iout=11os−(I  R)110にれらの(1
1′および(9)〜(141式よ求めると、次式が得ら
れる。
β2=I+o6/((1-A)Is) γ1=(I A)211o9/11osγ2-(1-
A) 2I+o7/I 1a61107=RI 106 1109= (1-AE)21108 Iout=11os-(I R)
1' and equations (9) to (141), the following equation is obtained.

・・・・・・・・・・・・(9 ・・・・・・・・・・・・(10) ・・・・・・・・・・・・(11) ・・・・・・・・・・・・(12) ・・・・・・・・・・・・(15) ・・・・・・・・・・べ釦 多出力I outを ・・・・・・・・・・・・(15) 次に、エタロンの負荷光強度は、上記文献より次式のよ
うに求めることができる。
・・・・・・・・・・・・(9 ・・・・・・・・・・・・(10) ・・・・・・・・・・・・(11) ・・・・・・・・・・・・(12) ・・・・・・・・・・・・(15) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(15) Next, the load light intensity of the etalon can be determined from the above-mentioned literature as shown in the following equation.

β2/β4−675丁 ・・・・・・・・・・・・(11′ 次に、エタロンの負荷光強度IEとβ4の関・1系は次
式となる。
β2/β4-675 units (11') Next, the relationship between the load light intensity IE of the etalon and β4 is expressed by the following equation.

I” = 11oa = (1−A)β4 I s  
   −・−・−・−・(%1上記(1ビ、(9)〜(
161式より、工Eが次式と求まる。
I” = 11oa = (1-A)β4 Is
−・−・−・−・(%1above(1bi, (9)~(
From formula 161, engineering E can be found as the following formula.

第9図に上記(15)、(171式の計算結果を具体的
に示す。P偏光の透過率Tに対する飽和光強度Isで規
格化した出力光強度I out/ I sとエタロン負
荷光強度I E / I sの計算した結果である。
Figure 9 specifically shows the calculation results of formulas (15) and (171) above. Output light intensity I out / I s normalized by saturation light intensity Is with respect to transmittance T of P-polarized light and etalon load light intensity I This is the result of calculating E/Is.

ここで、第2図に示す本発明の実施例と第9図に示す従
来例を比較すると、同−IoutでのIEについて本発
明の実施例の方が小さな値が得られることが明白である
。すなわち、第2図においてI out/ Is = 
0.3のとき、IE/l5=0.004であるのに対し
、第8図においては、IE/Is−〇、41と100倍
以上の差があシ、大幅なファブリペローエタロン6の入
射光強度の低減が行なわれている。また、注目すべき特
徴として、従来例の第9図では、Rの値が0.15で、
出力の最大17−、−L 値I out/Is = 0.31となシ、低い出力し
か得られないが、本発明の実施例ではT=0.58で、
最大値I out/I s = 0.83が得られ、出
力においても2.7倍の高出力となり、レーザ装置とし
ての効果も優れていることを示している。
Here, when comparing the embodiment of the present invention shown in FIG. 2 and the conventional example shown in FIG. 9, it is clear that the embodiment of the present invention can obtain a smaller value for IE at the same -Iout. . That is, in FIG. 2, I out/Is =
0.3, IE/l5=0.004, but in Fig. 8, there is a difference of more than 100 times from IE/Is-〇, 41, which is a large incidence of Fabry-Perot etalon 6. Light intensity is being reduced. Also, as a noteworthy feature, in the conventional example shown in FIG. 9, the value of R is 0.15,
The maximum output value is 17-, -L value Iout/Is = 0.31, and only a low output can be obtained, but in the embodiment of the present invention, T = 0.58,
The maximum value I out/I s = 0.83 was obtained, and the output was 2.7 times as high, indicating that the laser device was also excellent in effect.

以上述べたように本実施例においては、波長選択素子で
あるファブリペローエタロン6を通過する光エネルギー
を大幅に低減すると共に、効率でも優れた特性を示す狭
帯域化レーザ装置が得られる。
As described above, in this embodiment, it is possible to obtain a narrowband laser device that significantly reduces the optical energy passing through the Fabry-Perot etalon 6, which is a wavelength selection element, and exhibits excellent characteristics in terms of efficiency.

上記実施例では、波長選択素子としてファブリペローエ
タロン6を用いて説明を行なったが、他の波長選択素子
を用いても本発明を適用することができる。以下、これ
らの構成について説明する。
Although the above embodiment has been described using the Fabry-Perot etalon 6 as the wavelength selection element, the present invention can also be applied using other wavelength selection elements. These configurations will be explained below.

まず、第3図に示す構成図を参照しながら本発明の第2
の実施例について説明する。第3図において、20はグ
レーティングであシ、他の部分は上記第1の実施例と同
様である。波長選択素子として光反射によ−て波長選択
されるグレーティング20を第1、第2の全反射鏡2.
3の作る共振18ベー。
First, while referring to the configuration diagram shown in FIG.
An example will be described. In FIG. 3, 20 is a grating, and other parts are the same as in the first embodiment. A grating 20 that selects a wavelength by light reflection as a wavelength selection element is connected to first and second total reflection mirrors 2.
3 creates a resonance of 18 bases.

4光路中に設置し、グレーティング20の回折光によっ
て共振器光路を形成する。他の部分の機能は上記第1の
実施例と同様であるので、その説明を省略する。
It is installed in four optical paths, and a resonator optical path is formed by the diffracted light of the grating 20. Since the functions of other parts are the same as those of the first embodiment, their explanation will be omitted.

次に、第4図に示す構成図を参照しながら本発明の第3
の実施例について説明する。第4図において、30はプ
リズムであシ、他の部分は上記第1の実施例と同様であ
る。波長選択素子として光屈折によって波長選択される
プリズム30を第1、第2の全反射鏡2.3の作る共振
器光路中に設置し、プリズム30の屈折光によって共振
器光路を形成する。他の部分の機能は上記第1の実施例
と同様であるので、その説明を省略する。
Next, referring to the configuration diagram shown in FIG.
An example will be described. In FIG. 4, 30 is a prism, and the other parts are the same as in the first embodiment. A prism 30 that selects a wavelength by optical refraction as a wavelength selection element is installed in the resonator optical path formed by the first and second total reflection mirrors 2.3, and the refracted light of the prism 30 forms the resonator optical path. Since the functions of other parts are the same as those of the first embodiment, their explanation will be omitted.

次に、他の波長位相器と第3の反射鏡を用いた、本発明
の第4の実施例について説明する。
Next, a fourth embodiment of the present invention using another wavelength phase shifter and a third reflecting mirror will be described.

第5図および第6図は本発明の第4の実施例を示し、第
5図(atは構成図、第5図(blは、フェーズリター
ダープリズムの底面図、第6図はフェーズリーターダー
プリズムの詳細な構成図である。第5因(at、fbl
において、40はフェーズリターダープ19・\ 7 リズムであり、他の部分は上記第1の実施例と同様であ
る。、フェーズリターダープリズム40は第6図に示す
ように、入射するP偏光の光15’eS偏光に変換して
逆方向の光16として返す機能、すなわち、上記第1の
実施例における1/4浜長板7と第3の全反射鏡8の機
能を一体化した機能・′を有する。このフェーズリータ
ーダープリズム40は第5図(al、(blに示すよう
に、45°傾けて設置され、P偏光の入射光15を10
0%S偏光に変換して逆方向の光16として出射させる
。一般にはO〜45°まで傾は角を変化することでS偏
光に変換する割合を0〜100%まで自由に設定するこ
とができる。、フェーズリターダープリズム40は合成
石英CaF2などの高透過率材料で作られ、第6図に示
すように、光15、光16が入射、出射する面43は無
反射コート(ARコート)され、入射光(光15)の表
面直反射が出射光(光16)と混合しないように、表面
を2度程度傾けている。このため、通常の45°プリズ
ムと異なり、45°、47°、88°が使用されている
。光15がプリズム内部に入って反射する面が90°位
相反射面42で形成されている。この面42は誘電体多
層膜で誘電体の構成と厚みを設計することにより、P偏
光波とS偏光波の反射に90°位相差を持たせたもので
、1/4波長板と光学的には同等の機能を有する。90
°位相反射面42で反射した光は全反射面41によシ正
反射され、逆コースで出射光(光16)となる。全反射
面41も誘電体多層膜で容易に形成することができる。
5 and 6 show a fourth embodiment of the present invention, FIG. 5 (at is a configuration diagram, FIG. 5 (bl is a bottom view of the phase retarder prism, and FIG. This is a detailed configuration diagram of the fifth factor (at, fbl
, 40 is a phase retarderp 19.\7 rhythm, and the other parts are the same as in the first embodiment. As shown in FIG. 6, the phase retarder prism 40 has the function of converting the incident P-polarized light into 15'eS-polarized light and returning it as light 16 in the opposite direction. It has a function of integrating the functions of the long plate 7 and the third total reflection mirror 8. This phase leader prism 40 is installed at an angle of 45 degrees, as shown in FIGS.
It is converted into 0% S polarized light and emitted as light 16 in the opposite direction. Generally, by changing the angle of inclination from 0 to 45 degrees, the ratio of conversion to S-polarized light can be freely set from 0 to 100%. The phase retarder prism 40 is made of a high transmittance material such as synthetic quartz CaF2, and as shown in FIG. The surface is tilted approximately 2 degrees so that the direct reflection of the light (light 15) from the surface does not mix with the emitted light (light 16). For this reason, unlike a normal 45° prism, 45°, 47°, and 88° prisms are used. The surface on which the light 15 enters the prism and is reflected is formed by a 90° phase reflecting surface 42. This surface 42 is a dielectric multilayer film that has a 90° phase difference in the reflection of P-polarized light waves and S-polarized light waves by designing the structure and thickness of the dielectric film, and is used as a 1/4 wavelength plate and an optical has equivalent functionality. 90
The light reflected by the phase reflection surface 42 is specularly reflected by the total reflection surface 41, and becomes outgoing light (light 16) on a reverse course. The total reflection surface 41 can also be easily formed using a dielectric multilayer film.

このように本実施例によれは、上記第1の実施例の1/
4波長位相器7と第3の全反射@8を一体化した機能を
有するフェーズリタータープリズム40を用いるので、
構成を簡略化すると共に、調整を容易に行なうことがで
きる。なお、波長選択素子には、ファブリペローエタロ
ン6を用いても良く、また、上記第2、若しくは第3の
実施例で用いたグレーティング20、若しくはプリズム
30を用いても良い。
In this way, this embodiment has a difference that is 1/1 of that of the first embodiment.
Since the phase retarder prism 40 having the function of integrating the four-wavelength phase shifter 7 and the third total reflection@8 is used,
The configuration can be simplified and adjustments can be made easily. Note that the Fabry-Perot etalon 6 may be used as the wavelength selection element, and the grating 20 or prism 30 used in the second or third embodiment may also be used.

以上の各実施例では、P偏光の光で発振させ、S偏光の
光に変換して増幅し、出力する構成につ21 へ=−7 いて説明したが、これとは逆に、S偏光の光で発振させ
、P偏光の光に変換して増幅し、出力するように構成し
ても良く、このときには、部分偏光分離器4や偏光分離
器5の反射率透過率の割合をS偏光とP偏光で上述の実
施例と逆転させれば良く、実施が容易な偏光を選ぶこと
が可能である。
In each of the above embodiments, the configuration was explained in which P-polarized light is oscillated, converted to S-polarized light, amplified, and output. It may be configured to oscillate with light, convert it into P-polarized light, amplify it, and output it. In this case, the ratio of the reflectance transmittance of the partial polarization separator 4 and polarization separator 5 to that of S-polarized light may be used. It is sufficient to use P-polarized light and reverse the above embodiment, and it is possible to select a polarized light that is easy to implement.

以上、本発明について実施例を用いながら説明したが上
記実施例の1/4波長位相器7はこの他にフレネルの菱
形プリズム、3回全反射超色消1/4波長板等、種々あ
るが、露光用の大口径ビームを得るには、水晶板まだは
MgF2を使用したファーストオーダー、またはマルチ
プルオーダーの1/4波長板が良く、1/4波長位相器
7は正確に174波長の位相器でなくとも、偏光の成分
比率を変えることが可能であるものであれば良い。
The present invention has been described above using examples, but there are various other types of quarter-wave phase shifter 7 in the above-mentioned embodiments, such as a Fresnel rhombic prism, a three-time total reflection super achromatic quarter-wave plate, etc. In order to obtain a large diameter beam for exposure, a first-order or multiple-order quarter-wave plate using MgF2 is better than a quartz plate, and the quarter-wave phase shifter 7 is a phase shifter with exactly 174 wavelengths. It is not necessary that the polarized light be used as long as it can change the component ratio of polarized light.

また、上記実施例の部分偏光分離器4は第7図(alに
示すように、完全な偏光分離器50と反透過鏡51を組
み合わせて同じ機能に構成し、または、第7図(b)に
示すように、−板の石英やCaF2などの透明基板の一
面を誘電体多層膜の偏光分離膜22・\−7 52で形成し、他面を半透過膜53で形成して実効的に
部分偏光分離器を構成するようにしても良い。
Further, the partial polarization separator 4 of the above embodiment may be constructed by combining a complete polarization separator 50 and an anti-transmitting mirror 51 to have the same function as shown in FIG. 7(a), or as shown in FIG. 7(b). As shown in the figure, one side of a transparent substrate made of quartz or CaF2 is formed with a dielectric multilayer polarization separation film 22. A partial polarization separator may also be configured.

また、上記実施例の偏光分離器5は多層膜キュプ偏光器
や、ブリュースター角度の透明板、ウォラストンプリズ
ム等、種々あるが、露光用の大口径ビームを得るには誘
電体多層膜蒸着の偏光分離鏡が良好である。
There are various types of polarization separator 5 in the above embodiment, such as a multilayer Cupp polarizer, a Brewster angle transparent plate, and a Wollaston prism. The polarization splitting mirror is good.

また、上記実施例では波長選択素子を部分偏光分離器4
と第1の全反射鏡2の間に設けたが、この場所以外でも
最も強い光である出力光が通るレーザ媒体から偏光分離
器5に到る出力光路以外の共振器光路中であれば光強度
は弱いので、波長選択素子を設けることができる。
Further, in the above embodiment, the wavelength selection element is used as the partial polarization separator 4.
and the first total reflection mirror 2, however, the light can be transmitted in any optical path of the resonator other than the output optical path from the laser medium to the polarization splitter 5 through which the output light, which is the strongest light, passes. Since the intensity is weak, a wavelength selection element can be provided.

また、波長選択素子は上記実施例で用いたファブリペロ
ーエタロン6、グレーティング20、プリズム30等を
複数個使用しても良いし、また、組み合わせても良い。
Furthermore, as the wavelength selection element, a plurality of the Fabry-Perot etalons 6, gratings 20, prisms 30, etc. used in the above embodiments may be used, or they may be combined.

また、波長選択素子と全反射鏡を一体化した素子、例え
ば、グレーティングでエシャレ格子やエシェロン格子よ
り直接グレー23べ−7 ティングの反射光の波長選択性を使用したり、プリズム
の片面を全反射鋳、化して用いても良いし、1/4波長
位相器と全反射鏡を一体化し、MgF2や水晶位相板の
片面を全反射鏡化、すなわち、上記波長選択素子、全反
射鏡、1/4波長位相器、偏光分離器等はこれらの機能
を複合化した素子を使用して素子数を減らしても良い。
In addition, elements that integrate a wavelength selection element and a total reflection mirror, such as a grating that uses the wavelength selectivity of the reflected light directly from the Echare grating or Echelon grating, or a grating that uses one side of a prism for total reflection. It may be used as a cast material, or by integrating the 1/4 wavelength phase shifter and the total reflection mirror, one side of the MgF2 or quartz phase plate may be made into a total reflection mirror, that is, the wavelength selection element, the total reflection mirror, and the 1/4 wavelength phase plate may be used as a total reflection mirror. For the four-wavelength phase shifter, polarization separator, etc., the number of elements may be reduced by using elements that combine these functions.

また、上記実施例で用いた、フェーズリターダープリズ
ム40は類似の反射面がフェーズリタード機能を有する
フェーズリターダ−ミラーであっても良い。
Furthermore, the phase retarder prism 40 used in the above embodiments may be a phase retarder mirror whose reflective surface has a phase retard function.

また、上記実施例で用いた全反射鏡2.3は100%の
反射率である必要はなく、共振器を構成する反射率であ
れば良い。
Further, the total reflection mirror 2.3 used in the above embodiment does not need to have a reflectance of 100%, but may have a reflectance that constitutes a resonator.

発明の効果 以上述べたように、本発明によれば、レーザ媒質を貫き
波長選択素子を通る光共振器で作られた特定の波長面の
光が一部分だけ部分偏光分離器よシ取り出され、波長位
相器で偏光面を変換され、再度、レーザ媒質で増幅され
た後、偏光分離器により出力光として出力される。した
がって、波長選択素子を通過する光エネルギーは、レー
ザ媒質の増幅率で出力光を割算した程度に低下し、波長
選択素子の変形、劣化は著しく低減するので、選択波長
の変動や、出力の低下がなく、露光用光源に最適な狭帯
域化レーザ装置を提供することができる。
Effects of the Invention As described above, according to the present invention, only a portion of the light of a specific wavelength plane created by the optical resonator that passes through the laser medium and passes through the wavelength selection element is extracted by the partial polarization splitter, and the wavelength The plane of polarization is converted by a phase shifter, amplified again by a laser medium, and then output as output light by a polarization splitter. Therefore, the light energy passing through the wavelength selection element is reduced to the extent that the output light is divided by the amplification factor of the laser medium, and deformation and deterioration of the wavelength selection element are significantly reduced. It is possible to provide a narrowband laser device that does not deteriorate and is optimal for an exposure light source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における狭帯域化レーザ
装置を示す構成図、第2図は上記実施例の部分偏光分離
器の透過率に対する出力光強度およびファブリペローエ
タロン入射光強度の計算結果を示す特性図、第3図は本
発明の第2の実施例における狭帯域化レーザ装置を示す
構成図、第4図は本発明の第3の実施例における狭帯域
化レーザ装置を示す構成図、第5図参参≠mは本発第6
又はフェーズリ タータ゛−プリズムの詳細な構成図、第7図(al、(
b125べ−7 はそれぞれ本発明に用いる部分偏光分離器の他の例を示
す構成図、第8図は従来の狭帯域化レーザ装置を示す構
成図、第9因は上記従来の狭帯域化レーザ装置における
半透過鏡反射率に対する出力光強度およびエタロン入射
強度の計算結果を示す特性図である。 1・・・放電管、2,3・・・全反射鏡、4・・・部分
偏光分離器、5・・・偏光分離器、6・・・ファブリペ
ローエタロン(波長選択素子)、7・・・1/4波長位
相器、8・・・全反射鏡、19・・・出力光、20・・
・グレーティング(波長選択素子)、30・・・プリズ
ム(波長選択素子)。
FIG. 1 is a configuration diagram showing a band narrowing laser device in the first embodiment of the present invention, and FIG. 2 shows the relationship between the output light intensity and the Fabry-Perot etalon incident light intensity with respect to the transmittance of the partial polarization separator of the above embodiment. A characteristic diagram showing calculation results, FIG. 3 is a configuration diagram showing a band narrowing laser device in a second embodiment of the present invention, and FIG. 4 shows a band narrowing laser device in a third embodiment of the present invention. Please refer to the configuration diagram, Figure 5.
Or a detailed configuration diagram of the phase retarder prism, FIG. 7 (al, (
b125B-7 is a block diagram showing another example of a partial polarization separator used in the present invention, FIG. 8 is a block diagram showing a conventional narrowband laser device, and the ninth factor is the above conventional narrowband laser device. FIG. 2 is a characteristic diagram showing calculation results of output light intensity and etalon incident intensity with respect to semi-transmissive mirror reflectance in the device. DESCRIPTION OF SYMBOLS 1... Discharge tube, 2, 3... Total reflection mirror, 4... Partial polarization separator, 5... Polarization separator, 6... Fabry-Perot etalon (wavelength selection element), 7...・1/4 wavelength phase shifter, 8... Total reflection mirror, 19... Output light, 20...
- Grating (wavelength selection element), 30... prism (wavelength selection element).

Claims (1)

【特許請求の範囲】 (1)少なくともレーザ媒質と、このレーザ媒質を貫く
共振器光路を作る第1および第2の反射鏡からなる光共
振器と、上記共振器光路中に設けられた部分偏光分離器
および偏光分離器と、上記レーザ媒質から上記偏光分離
器を通り、出力光が出力される出力光路以外の上記共振
器光路中に設けられた波長選択素子と、上記部分偏光分
離器から分かれる共振器光路以外の光路中に設けられた
波長位相器および第3の反射鏡を備えた狭帯域化レーザ
装置。 (2)反射鏡、波長位相器、部分偏光分離器、偏光分離
器および波長選択素子は、これらの素子の機能の少なく
とも一部が複合化されている請求項1記載の狭帯域化レ
ーザ装置。(5)波長位相器はファーストオーダ、マル
チプルオーダの波長板、フェーズリターダミラー、フェ
ーズリターダープリズムから選ばれる請求項1または2
記載の狭帯域化レーザ装置。 (4)偏光分離器が誘電体多層膜の偏光分離鏡からなる
請求項1または2記載の狭帯域化レーザ装置。 (5)部分偏光分離器が誘電体多層膜の偏光分離鏡から
なる請求項1または2記載の狭帯域化レーザ装置。 (6)レーザ媒質が希ガスとハロゲンガスを組み合わせ
たエキシマを用いた請求項1記載の狭帯域化レーザ装置
。 (7)部分偏光分離器が偏光分離器と半透過鏡の組み合
わせにより構成された請求項1または2記載の狭帯域化
レーザ装置。 (8)部分偏光分離器が透明基板と、その両面に形成さ
れた偏光分離膜および半透過膜からなる請求項1または
2記載の狭帯域化レーザ装置。
[Scope of Claims] (1) An optical resonator comprising at least a laser medium, first and second reflecting mirrors forming a resonator optical path passing through the laser medium, and a partially polarized light provided in the resonator optical path. a separator, a polarization separator, a wavelength selection element provided in the optical path of the resonator other than the output optical path through which the output light passes from the laser medium through the polarization separator, and is separated from the partial polarization separator. A band narrowing laser device including a wavelength phase shifter and a third reflecting mirror provided in an optical path other than a resonator optical path. (2) The band narrowing laser device according to claim 1, wherein the reflecting mirror, the wavelength phase shifter, the partial polarization separator, the polarization separator, and the wavelength selection element have at least a part of their functions combined. (5) Claim 1 or 2 in which the wavelength phaser is selected from a first order or multiple order wave plate, a phase retarder mirror, or a phase retarder prism.
The band-narrowing laser device described. (4) The band-narrowing laser device according to claim 1 or 2, wherein the polarization separator comprises a polarization separation mirror made of a dielectric multilayer film. (5) The band narrowing laser device according to claim 1 or 2, wherein the partial polarization separator comprises a polarization separation mirror made of a dielectric multilayer film. (6) The band narrowing laser device according to claim 1, wherein the laser medium uses an excimer that is a combination of rare gas and halogen gas. (7) The band narrowing laser device according to claim 1 or 2, wherein the partial polarization separator is constituted by a combination of a polarization separator and a semi-transmissive mirror. (8) The band narrowing laser device according to claim 1 or 2, wherein the partial polarization separator comprises a transparent substrate, and a polarization separation film and a semi-transparent film formed on both sides of the transparent substrate.
JP498490A 1989-06-14 1990-01-12 Narrow band laser device Expired - Lifetime JP2715608B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP498490A JP2715608B2 (en) 1990-01-12 1990-01-12 Narrow band laser device
US07/487,080 US4985898A (en) 1989-06-14 1990-03-01 Narrow-band laser apparatus
DE69031884T DE69031884T2 (en) 1989-06-14 1990-03-01 Narrow band laser device
EP90103985A EP0402570B1 (en) 1989-06-14 1990-03-01 Narrow-band laser apparatus
CA002011361A CA2011361C (en) 1989-06-14 1990-03-02 Narrow-band laser apparatus
KR1019900003141A KR930002821B1 (en) 1989-06-14 1990-03-09 Narrow band laser apparatus
US07/626,145 US5150370A (en) 1989-06-14 1990-12-12 Narrow-band laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP498490A JP2715608B2 (en) 1990-01-12 1990-01-12 Narrow band laser device

Publications (2)

Publication Number Publication Date
JPH03209887A true JPH03209887A (en) 1991-09-12
JP2715608B2 JP2715608B2 (en) 1998-02-18

Family

ID=11598871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP498490A Expired - Lifetime JP2715608B2 (en) 1989-06-14 1990-01-12 Narrow band laser device

Country Status (1)

Country Link
JP (1) JP2715608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014094262A1 (en) * 2012-12-20 2014-06-26 中国科学院光电研究院 Excimer laser combination cavity
CN109031853A (en) * 2018-09-04 2018-12-18 中国电子科技集团公司第三十四研究所 A kind of phase sensitive optical parametric amplifier and its operation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014094262A1 (en) * 2012-12-20 2014-06-26 中国科学院光电研究院 Excimer laser combination cavity
US9325143B2 (en) 2012-12-20 2016-04-26 Academy Of Opto-Electronics, Chinese Academy Of Science Excimer laser composite cavity
CN109031853A (en) * 2018-09-04 2018-12-18 中国电子科技集团公司第三十四研究所 A kind of phase sensitive optical parametric amplifier and its operation method

Also Published As

Publication number Publication date
JP2715608B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US5150370A (en) Narrow-band laser apparatus
CA2011361C (en) Narrow-band laser apparatus
JP2954938B2 (en) Line narrowing device having diffraction grating with two functions
JPH11145543A (en) Laser with narrow-band output coupler
WO1996031929A1 (en) Narrow-band laser
US5835210A (en) Multi-pass spectrometer
JP2002198588A (en) Fluorine molecular element
JP4907865B2 (en) Multistage amplification laser system
JPH08228038A (en) Narrow-band laser generator
JPH03209887A (en) Narrow band laser device
JP5393725B2 (en) Multistage amplification laser system
JPH0797680B2 (en) Narrow band laser device
US20100027579A1 (en) Linewidth-narrowed excimer laser cavity
JPH05152666A (en) Narrowed-band laser
CA2032054C (en) Narrow-band laser apparatus
US20130235893A1 (en) Transmissive optical device, laser chamber, amplifier stage laser device, oscillation stage laser device and laser apparatus
KR940011104B1 (en) Narrow band laser apparatus
JPH0472782A (en) Narrow band laser oscillation method
JP2715610B2 (en) Narrow band laser device
JP2715609B2 (en) Narrow band laser device
US5012473A (en) Fixed wavelength laser using multiorder halfwave plate
US7254156B2 (en) Line-narrowed dye laser
JP2987644B2 (en) Narrow band laser device
JP2964255B2 (en) Narrow-band oscillation excimer laser
JPH0480981A (en) Narrow bandwidth oscillation laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13