JPH0320956A - Ultraviolet ray suppressing fluorescent lamp and manufacture thereof - Google Patents

Ultraviolet ray suppressing fluorescent lamp and manufacture thereof

Info

Publication number
JPH0320956A
JPH0320956A JP17512489A JP17512489A JPH0320956A JP H0320956 A JPH0320956 A JP H0320956A JP 17512489 A JP17512489 A JP 17512489A JP 17512489 A JP17512489 A JP 17512489A JP H0320956 A JPH0320956 A JP H0320956A
Authority
JP
Japan
Prior art keywords
fluorescent lamp
binder
ultraviolet ray
zinc oxide
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17512489A
Other languages
Japanese (ja)
Inventor
Kanehiro Saito
斎藤 兼広
Mitsumasa Saito
光正 斎藤
Kazuhiko Osada
和彦 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP17512489A priority Critical patent/JPH0320956A/en
Publication of JPH0320956A publication Critical patent/JPH0320956A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fluorescent lamp suppressing ultraviolet ray radiation by coating a paint containing the fine powder of zinc oxide, a binder and a solvent on the inner surface of a glass tubular bulb, and heating it at 60-500 deg.C. CONSTITUTION:25-250 pts.wt. of zinc oxide with the grain size 0.1mum or below as a ultraviolet ray absorbent is combined with 100 pts.wt. of a binder made of soda silicate or the like, and the mixture is coated on the inner face of a glass tubular bulb with xylene or the like as a solvent. It is heated at 60-500 deg.C to form a uniform film with the thickness 1-15mum. This film exerts excellent ultraviolet ray absorbing ability and has no adverse effect on the light color and color rendering property of a light emitting source, and a fluorescent lamp has a high light flux and good light color and color rendering property.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、紫外線の放射を抑制した蛍光ランプとその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a fluorescent lamp with suppressed ultraviolet radiation and a method for manufacturing the same.

「従来の技術」 旭明光源として、例えばデパート、美術館、傅物館など
で使用されるもののように、商品や展示物の逼色に注意
を必要とするものがある。このような照明光源としては
、従来退色防止用のものとして以下に述べるような蛍光
ランプ(NU)が使用されている。
``Prior Art'' Some Rising Light sources, such as those used in department stores, museums, museums, etc., require careful attention to the color contrast of products and exhibits. As such an illumination light source, a fluorescent lamp (NU) as described below has conventionally been used to prevent color fading.

このNUランブは、ガラス管球の内表面に酸化チタン(
Tie−)及びバインダを構成成分とずる彼膜と、蛍光
体及びバインダを構成成分とする披膜との2層を順次形
成したもので、前記の酸化チタンを含有した被膜によっ
て遇色の原因となる400nm以下の紫外線を吸収する
ようにしたものである。
This NU lamp has titanium oxide (
This film is made up of two layers: a film containing titanium oxide and a binder, and a film containing a phosphor and a binder. It is designed to absorb ultraviolet rays of 400 nm or less.

「発明が解決しようとする課題」 しかしながら前記NUランブにあっては、酸化チタン含
有被膜を形成していない同種のランプと比較して次のよ
うな欠点がある。
``Problems to be Solved by the Invention'' However, the NU lamp has the following drawbacks compared to similar lamps that do not have a titanium oxide-containing film.

■ 十分な紫外線吸収能を持たせるためには、酸化チタ
ンの含有量を多くするため酸化チタンを含有する彼膜を
厚くしなければならないが、その場合被膜が厚いことか
ら、NUランプの光束が通常のランプの光束より5〜1
0%程度低下する。
■ In order to have sufficient ultraviolet absorption ability, the film containing titanium oxide must be thickened to increase the content of titanium oxide, but in this case, the thick film reduces the luminous flux of the NU lamp. 5~1 more than the luminous flux of a normal lamp
It decreases by about 0%.

■ 酸化チタンは紫外線及び青色光を吸収するため、N
Uランプの光、色が通常のランプの光色とは異なったも
のとなる。
■ Titanium oxide absorbs ultraviolet and blue light, so N
The light and color of the U lamp will be different from that of a normal lamp.

■ ■との関連で、NOランプはその演色性が低下した
ものとなる。
(2) In relation to (2), the color rendering properties of NO lamps are degraded.

■ このNUランプでは、前述した2層構造の被膜を形
成するため、600℃程度の高温プロセスを2回行わな
ければならず、したがって製造工程が煩雑となり、しか
も2回の高温プロセスを経ることによりガラス管球の強
度が低下する。
■ In this NU lamp, in order to form the aforementioned two-layered film, a high-temperature process of approximately 600°C must be performed twice, making the manufacturing process complicated, and furthermore, The strength of the glass tube decreases.

本発明は前記課題を解決するためになされたもので、そ
の目的とするところは、紫外線の抑制効果か高く、かつ
高い光束を有し、光色、演色性が良好であり、しかも製
造の容易な紫外線抑制蛍光ランプとその製造方法を提供
することにある。
The present invention has been made to solve the above problems, and its purpose is to have a high ultraviolet ray suppressing effect, high luminous flux, good light color and color rendering, and easy manufacturing. An object of the present invention is to provide an ultraviolet suppressing fluorescent lamp and a method for manufacturing the same.

「課題を解決するための手段」 本発明における請求項l記載の紫外線抑制蛍光ランプで
は、発光源を構成するガラス管球の内表面に、酸化亜鉛
の微粉体及びバインダを構成成分とする被膜を形成した
ことを」二記課題の解決手段とした。
``Means for Solving the Problems'' In the ultraviolet suppressing fluorescent lamp according to claim 1 of the present invention, a coating containing fine powder of zinc oxide and a binder is applied to the inner surface of the glass bulb constituting the light emitting source. This was used as a means of solving the second problem.

また請求項2記載の紫外線抑制蛍光ランプの製造方唐で
は、発光源を構成するガラス管球の内表面に、酸化亜鉛
の微粉体、バインダ、及び溶媒を構成成分とする塗布剤
を塗布し、60〜500°Cに加熱することを」二記課
題の解決手段とした。
In the method for producing an ultraviolet suppressing fluorescent lamp according to claim 2, the inner surface of a glass bulb constituting a light emitting source is coated with a coating agent containing fine powder of zinc oxide, a binder, and a solvent; The solution to the second problem was to heat the product to 60-500°C.

以下、本発明を詳しく説明する。The present invention will be explained in detail below.

本発明における3q求項l記載の蛍光.ランプは、ガラ
ス管球の内表面に、酸化亜鉛の微粉体及びバインダを構
成成分とする透明な被膜を形成した乙のである。ここで
、被膜形成に用いられる酸化亜鉛の微粉体は、紫外線吸
収剤として作用するものである。そして、この微粉体と
してはその拉径が0.1μ贋以下であることが望ましく
、粒i%が0.1μlを超えると、その紫外線吸収能及
び可視光透過率が低下して好ましくない。
Fluorescence described in 3q requirement l in the present invention. The lamp has a transparent coating formed on the inner surface of the glass bulb, which consists of fine zinc oxide powder and a binder. Here, the fine powder of zinc oxide used to form the film acts as an ultraviolet absorber. It is desirable that the diameter of this fine powder be 0.1 μl or less, and if the particle i% exceeds 0.1 μl, the ultraviolet absorption ability and visible light transmittance will decrease, which is undesirable.

また、バインダとしては次のような性質を有するものが
用いられる。すなわち紫外線によって劣化しに<<、可
視光をよく透過し、さらにガラス管球に対する付着性や
模強度、成膜性、乾燥性が良好であること、さらには脱
脂工程が必要でなく、硬化後、真空中においてら有機物
や水分の放出がないことなどである。このような性質を
有するバインダとしては、ケイ酸ソーダのようなアルカ
リノリケート,シリカゾル、アルミナゾルのような無機
コロイド,テトラエトキシンランのようなアルキルシリ
ケート,リン酸アルミニウムのようなリン酸塩,金属ア
ルコキシド、アルミニウムキレート、酢酸スズのような
有機金属化合物が挙げられる。
Further, as the binder, one having the following properties is used. In other words, it is resistant to deterioration by ultraviolet rays, transmits visible light well, has good adhesion to glass tubes, mold strength, film forming properties, and drying properties, and does not require a degreasing process, and after curing. , no release of organic matter or moisture in vacuum, etc. Binders with such properties include alkali silicates such as sodium silicate, inorganic colloids such as silica sol and alumina sol, alkyl silicates such as tetraethoxinlan, phosphates such as aluminum phosphate, and metal alkoxides. , aluminum chelate, and organometallic compounds such as tin acetate.

そして、このようなバインダを用いることにより、以下
に述べる利点が得られる。
By using such a binder, the following advantages can be obtained.

従来のNOランプにあっては、その製造に際し、T i
 O *粉末をエチルセルロース、ポリビニルアルコー
ル、ポリアクリル酸などのバインダと混練し、さらにこ
れをスラリー状にして塗布していたため、これらのバイ
ンダを分解・除去する脱脂工程が不可欠である。そして
この場合、脱脂が不十分であると、蛍光管内に未分解の
有機物が残り、蛍光ランプの寿命が低下し、あるいは輝
度が低下するといった不都合が生じるため、高温で長時
間の加執を行っていた。しかし、前記のような無機系ま
たは有機金属系のバインダを用いることにより、脱晰工
程が不要になり、低温、短時間での焼き付けが可能とな
るのである。
In conventional NO lamps, when manufacturing them, T i
Since the O* powder was kneaded with a binder such as ethyl cellulose, polyvinyl alcohol, or polyacrylic acid and then applied in the form of a slurry, a degreasing process to decompose and remove these binders is essential. In this case, if the degreasing is insufficient, undecomposed organic matter will remain inside the fluorescent lamp, which may shorten the life of the fluorescent lamp or reduce its brightness. was. However, by using the above-mentioned inorganic or organic metal binder, the delucidation step becomes unnecessary and baking can be performed at low temperatures and in a short time.

また、前述した酸化亜鉛の微粉体(紫外線吸収剤)とバ
インダとの配合割合は、通常バインダ100重量部に対
して微粉体10〜900重量部、より好ましくは25〜
250重量部の範囲に設定される。なぜなら、微粉体の
量が前記範囲上り少ないと、十分な紫外線吸収能が得ら
れないため彼膜の膜厚を厚くしなければならず、逆に微
粉体の量が前記範囲より多いと、ガラス管球に対する披
膜の付着ノJが弱くなるとともに彼膜の強度が低下し、
さらに可視光の透過率が低下するからである。
Further, the blending ratio of the above-mentioned zinc oxide fine powder (ultraviolet absorber) and binder is usually 10 to 900 parts by weight of the fine powder to 100 parts by weight of the binder, more preferably 25 to 900 parts by weight.
The range is set at 250 parts by weight. This is because if the amount of fine powder is less than the above range, sufficient ultraviolet absorption ability cannot be obtained and the thickness of the film must be increased.On the other hand, if the amount of fine powder is greater than the above range, The attachment of the arytenoid to the bulb becomes weaker, and the strength of the arytenoid decreases,
This is because the transmittance of visible light further decreases.

また、このような酸化亜鉛の微粉体およびバインダを構
成成分として得られろ被膜としては、その厚さが運常0
.1〜100μR1好ましくは0.5〜30μl1 さ
らに好ましくは1〜15μlの範囲とされる。なぜなら
、披膜の厚さが0.1μmより薄いと、その紫外線吸収
能が低下し、披膜にピンホールが発生しやすくなるから
であり、逆に披膜の膜厚がl00μlより厚いと、その
可視光透過率が低下するとともに、ガラス管球に対ずる
披膜の付着性が損なわれるからである。
In addition, the thickness of a film obtained using such zinc oxide fine powder and a binder as its constituent components is usually 0.
.. The amount is in the range of 1 to 100 μR, preferably 0.5 to 30 μl, and more preferably 1 to 15 μl. This is because if the thickness of the arytenoid is thinner than 0.1 μm, its ultraviolet absorption ability decreases and pinholes are likely to occur in the arytenoid. Conversely, if the arytenoid is thicker than 100 μl, This is because the visible light transmittance decreases and the adhesion of the arytenoid to the glass bulb is impaired.

次に、本発明における請求項2記載の紫外線抑制蛍光ラ
ンプの製造方広の一例を説明する。
Next, an example of the manufacturing method of the ultraviolet suppressing fluorescent lamp according to claim 2 of the present invention will be explained.

まず、以下に連べる塗布剤を用意する。First, prepare the coating agent listed below.

本発明に用いられる塗布剤は、主戊分として前述した微
粉体、バインダ及び溶媒を含有してなるものである。こ
の塗布剤を構成する溶媒は、バインダを溶解するもので
あればどのようなものでもよい。たたしこの溶媒は、低
温で乾燥が可能となるように、その沸点が60〜200
℃であるものが望ましい。このような溶媒としては、キ
ンレン、l・ルエンのような芳香族炭化水素.n−ブタ
ノールのようなアルコール.酢酸ブチルのようなエステ
ル.メチルイソブチルケトンのようなケトン.エチルセ
ロソルブのようなグリコールエーテル,n−ヘキサン、
リグロイン、ミネラルスピリットのような飽和炭化水素
が挙げられる。
The coating agent used in the present invention contains the above-mentioned fine powder, binder, and solvent as main components. The solvent constituting this coating agent may be any solvent as long as it dissolves the binder. This solvent has a boiling point of 60 to 200 to enable drying at low temperatures.
℃ is desirable. Such solvents include aromatic hydrocarbons such as quinolene, l.luene, etc. Alcohols such as n-butanol. Esters such as butyl acetate. Ketones such as methyl isobutyl ketone. Glycol ethers such as ethyl cellosolve, n-hexane,
Examples include saturated hydrocarbons such as ligroin and mineral spirits.

なお、本発明に用いられる塗布剤としては、酸化亜鉛の
微粉体、バインダ、溶媒のほかに、微量の表面処理剤、
分散剤、潤滑剤、乾燥剤、消泡剤、鞭化剤などを適宜添
加したものでもよいのはもちろんである。
The coating agent used in the present invention includes, in addition to zinc oxide fine powder, a binder, and a solvent, a trace amount of a surface treatment agent,
Of course, a dispersant, a lubricant, a desiccant, an antifoaming agent, a whipping agent, etc. may be added as appropriate.

次に、ガラス管球の内表面に前記塗布剤を塗布し、60
〜500℃に加熱することにより、溶媒を蒸発させて乾
燥し、焼付けなどの硬化処理を施す。
Next, apply the coating agent to the inner surface of the glass tube, and
By heating to ~500°C, the solvent is evaporated and dried, and a hardening process such as baking is performed.

次いで、蛍光体を含有する披膜を形成し、電極を取付け
、ガスを封入するなどの通常の方法により蛍光ランプを
作製する。
Next, a fluorescent lamp is manufactured by a conventional method such as forming a membrane containing a phosphor, attaching electrodes, and filling the membrane with gas.

塗布剤の塗布方法については、塗布剤をガラス管内面に
均一に塗布することが可能であればどのような方法でも
よい。例えば、はけ塗り法、タンボ塗り法、スプレー法
、ディッピング法、流し塗り法などが挙げられる。なお
、塗布剤の粘性は塗布方法に応じて異なるので、適潰の
溶媒を使用することにより、塗布剤の粘性を調整する。
As for the method of applying the coating agent, any method may be used as long as it is possible to uniformly apply the coating agent to the inner surface of the glass tube. Examples include a brush coating method, a tumble coating method, a spray method, a dipping method, a flow coating method, and the like. In addition, since the viscosity of the coating agent differs depending on the coating method, the viscosity of the coating agent is adjusted by using a suitable amount of solvent.

本発明の蛍光ランプにあっては、紫外線吸収剤として作
用する酸化亜鉛の微粉体を含有した被膜を、ガラス管球
の内表面に形成したので、この被膜が良好な紫外線吸収
能を発揮し、よって紫外線の放射を十分抑制することが
できる。また、被膜を構成する酸化亜鉛微粉体の粒径を
0.1μl以下とすれば、被膜を非常に薄膜とすること
ができ、しかも微粉体が可視光線の波長0.4μR〜0
.8μRよりも十分に小さく、かつ屈折率ら1.9位で
比較的小さいことから、可視光線を吸収、散乱させるこ
となくf分に透過させることができ、よって発光源の光
束の低下を抑制することができる。
In the fluorescent lamp of the present invention, a coating containing fine powder of zinc oxide that acts as an ultraviolet absorber is formed on the inner surface of the glass bulb, so this coating exhibits good ultraviolet absorption ability, Therefore, radiation of ultraviolet rays can be sufficiently suppressed. Furthermore, if the particle size of the fine zinc oxide powder constituting the film is 0.1 μl or less, the film can be made very thin, and the fine powder has a visible light wavelength of 0.4 μR to 0.
.. Since it is sufficiently smaller than 8 μR and has a refractive index of 1.9, which is relatively small, visible light can be transmitted for f minutes without being absorbed or scattered, thereby suppressing a decrease in the luminous flux of the light emitting source. be able to.

また、被膜を形成したことによって発光源の光色、演色
性が影響を受ける程度ら少なくなり、さらに彼膜の厚さ
が薄いことから、披膜を形成するのに要する材料コスト
ら安価となる。
In addition, by forming the film, the light color and color rendering of the light emitting source are less affected, and since the film is thinner, the material cost required to form the film is lower. .

また本発明の蛍光ランプの製造方法にあっては、酸化亜
鉛の微粉体、バインダ、及び溶媒を構成成分とする塗布
剤を用いて披膜を形成するので、溶媒の揮発温度程度の
加熟処理で披膜形成を行うことができ、よってガラス管
球の内表面に酸化チタンを含有する被膜を形成する場合
と比較して焼付け温度を低く抑えることができる。また
、焼付け温度を低く抑えることができるので、ガラス管
球の強度劣化を防止することができる。
In addition, in the method for manufacturing a fluorescent lamp of the present invention, since the film is formed using a coating agent containing zinc oxide fine powder, a binder, and a solvent, a maturing treatment is performed at about the volatilization temperature of the solvent. Therefore, the baking temperature can be kept low compared to the case where a film containing titanium oxide is formed on the inner surface of the glass bulb. Furthermore, since the baking temperature can be kept low, deterioration in the strength of the glass tube can be prevented.

「実施例」 以下、本発明を実施例によってさらに具体的に説明する
"Examples" The present invention will be described in more detail below with reference to Examples.

テトラエトキシシラン100重量部、イソプロビルアル
コールIOOffi量部、O.IN塩酸35重量部を屁
合し、60℃で2時間撹拌しながら反応させてテトラエ
トキンシランを加水分解させた後、イソプロビルアルコ
ール245重量部を加えてテトラエトキンンラン加水分
解肢を凋製し、これをバインダ溶液とした。このバイン
ダ溶aloo重量部に対して、粒径0.01μlの超微
粒子酸化亜鉛10重量部を配合し、ボールミル中で10
0時間分散させて塗布剤を調製した。
100 parts by weight of tetraethoxysilane, IOOffi parts of isopropyl alcohol, O. 35 parts by weight of IN hydrochloric acid were combined and reacted at 60°C with stirring for 2 hours to hydrolyze tetraethquinsilane, and then 245 parts by weight of isopropyl alcohol was added to quench the hydrolysis of tetraethquinsilane. This was used as a binder solution. 10 parts by weight of ultrafine zinc oxide having a particle size of 0.01 μl were added to 10 parts by weight of this binder melt aloo, and
A coating agent was prepared by dispersing for 0 hours.

この塗布剤を蛍光ランプのガラス管球の内表面ヘ流し塗
布し、200゜Cて10分間乾燥して厚さ2μlの透明
被膜を形成した。
This coating agent was poured onto the inner surface of a glass bulb of a fluorescent lamp and dried at 200° C. for 10 minutes to form a transparent film with a thickness of 2 μl.

次に、道常の方法にしたがい、蛍光体を含有する被膜を
形成し、電極を取り付け、ガスを封入してランプを製造
した。
Next, a film containing a phosphor was formed, electrodes were attached, and gas was filled in to manufacture a lamp according to a conventional method.

また、この蛍光ランプと比較するために、ガラス管球の
内表面に被膜を形成していない蛍光ランプ(比較例I)
と、ガラス管球の内表面に酸化チタン層及び蛍光体層の
2層が順次形成された蛍光ランプ(比較例2)とを使用
した。
In addition, in order to compare with this fluorescent lamp, a fluorescent lamp without a coating formed on the inner surface of the glass bulb (Comparative Example I)
and a fluorescent lamp (Comparative Example 2) in which two layers, a titanium oxide layer and a phosphor layer, were sequentially formed on the inner surface of a glass bulb were used.

以上の実施例および比較例1,2の蛍光ランプの特性を
調べ、その結果を第1表に示す。なお、第l表中Raは
平均演色評価数であり、UVは紫外線の放射量である。
The characteristics of the fluorescent lamps of the above Examples and Comparative Examples 1 and 2 were investigated, and the results are shown in Table 1. In Table 1, Ra is the average color rendering index, and UV is the amount of ultraviolet radiation.

ここで、紫外線放射量の測定には紫外線強度計( UV
R−365,東京光学製)を使用し、ランプと受光部と
の距離を30cxに設定して測定した。また、第1表中
UVの欄のーは前記紫外線強度計では紫外線が検出され
なかったことを示す。
To measure the amount of ultraviolet radiation, use an ultraviolet intensity meter (UV
R-365, manufactured by Tokyo Optical Co., Ltd.), and the distance between the lamp and the light receiving section was set to 30 cx. Furthermore, the symbol - in the UV column in Table 1 indicates that no ultraviolet light was detected by the ultraviolet intensity meter.

また、実施例の蛍光ランプの分光エネルギー分布凹線を
調べ、得られた蛍光ランプの分光エネルギー分布lII
I線を第1図に示す。なお、比較のため比校例lの分光
エネルギー分布dl線を第2図に、比較例2の分光エネ
ルギー分布曲線を第3図にそれぞれ示す。
In addition, the spectral energy distribution concave line of the fluorescent lamp of the example was investigated, and the spectral energy distribution lII of the fluorescent lamp obtained was
The I line is shown in FIG. For comparison, the spectral energy distribution dl line of ratio example 1 is shown in FIG. 2, and the spectral energy distribution curve of comparative example 2 is shown in FIG. 3.

以下余白 第1表から明らかむように、実施例の蛍光ランプは、被
膜を形成していない蛍光ランプ(比較例l)と比較して
全光束がほぼ等しいことが確認された。また、第1図と
第2図との比較より、実施例の蛍光ランプは紫外線を十
分に抑制できることが分かった。なお、実施例の蛍光ラ
ンプと比較例lの蛍光ランプとの間では、光色の差がほ
とんど見られなかった。また、実施例の蛍光ランプは、
ガラス管球の内表面に酸化チタン層を形成した蛍光ラン
プ(比較例2)と比較すると、全光束が大幅に向」ニし
ていた。
As is clear from Table 1 below, it was confirmed that the total luminous flux of the fluorescent lamp of the example was almost equal to that of the fluorescent lamp without a coating (Comparative Example 1). Further, from a comparison between FIG. 1 and FIG. 2, it was found that the fluorescent lamp of the example can sufficiently suppress ultraviolet rays. It should be noted that there was almost no difference in light color between the fluorescent lamp of Example and the fluorescent lamp of Comparative Example 1. In addition, the fluorescent lamp of the example is
Compared to the fluorescent lamp (Comparative Example 2) in which a titanium oxide layer was formed on the inner surface of the glass bulb, the total luminous flux was significantly improved.

「発明の効果」 以上説明したように、本発明における請求項l記載の蛍
光ランプは、紫外線吸収剤として作用する酸化亜鉛の微
粉体を含有した被膜を、ガラス管球の内表面に形成した
ものであるから、この被膜が良好な紫外線吸収能を発揮
し、よって紫外線の放射を十分抑制するものとなる。ま
た、被膜を形威したことによる発光源の光色、演色性へ
の悪影響がなく、高い光束を有し、良好な光色および演
色性を呈するものとなる。
"Effects of the Invention" As explained above, the fluorescent lamp according to claim 1 of the present invention has a coating containing fine powder of zinc oxide that acts as an ultraviolet absorber formed on the inner surface of the glass bulb. Therefore, this coating exhibits good ultraviolet absorption ability, and therefore sufficiently suppresses ultraviolet radiation. In addition, there is no adverse effect on the light color and color rendering properties of the light emitting source due to the appearance of the coating, and the light emitting source has a high luminous flux and exhibits good light color and color rendering properties.

また請求項2記載の蛍光ランプの製造方法にあっては、
酸化亜鉛の微粉体、バインダ、及び溶媒を構成戊分とす
る塗布剤を用いて被膜を形成するので、溶媒の揮発温度
程度の加熱処理で被膜形或を行うことができ、よって従
来の方法に比較して焼付け温度を低く抑えることができ
、したがってガラス管球の強度劣化を防止することがで
きる。また、従来に比較して製造が容易になり、製造コ
ストの低減を図ることができる。
Further, in the method for manufacturing a fluorescent lamp according to claim 2,
Since the film is formed using a coating agent consisting of zinc oxide fine powder, a binder, and a solvent, the film can be formed by heat treatment at about the volatilization temperature of the solvent, which makes it possible to form the film using a heat treatment that is at about the volatilization temperature of the solvent. In comparison, the baking temperature can be kept low, thus preventing deterioration in the strength of the glass tube. Furthermore, manufacturing is easier than in the past, and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る紫外線抑制蛍光ランプの一実施例
の分光エネルギー分布lh線を示すグラフ、第2図およ
び第3図はいずれも従来の蛍光ランプの分光エネルギー
分布dlt線を示すグラフである。
FIG. 1 is a graph showing the spectral energy distribution lh line of one embodiment of the ultraviolet suppressing fluorescent lamp according to the present invention, and FIGS. 2 and 3 are graphs showing the spectral energy distribution dlt line of a conventional fluorescent lamp. be.

Claims (2)

【特許請求の範囲】[Claims] (1)発光源を構成するガラス管球の内表面に、酸化亜
鉛の微粉体及びバインダを構成成分とする被膜を形成し
たことを特徴とする紫外線抑制蛍光ランプ。
(1) An ultraviolet-suppressing fluorescent lamp characterized in that a coating containing zinc oxide fine powder and a binder is formed on the inner surface of a glass bulb constituting a light emitting source.
(2)発光源を構成するガラス管球の内表面に、酸化亜
鉛の微粉体、バインダ、及び溶媒を構成成分とする塗布
剤を塗布し、60〜500℃に加熱することを特徴とす
る紫外線抑制蛍光ランプの製造方法。
(2) Ultraviolet rays characterized by applying a coating agent containing fine powder of zinc oxide, a binder, and a solvent to the inner surface of the glass tube constituting the light source and heating it to 60 to 500°C. Method of manufacturing suppressed fluorescent lamps.
JP17512489A 1989-07-06 1989-07-06 Ultraviolet ray suppressing fluorescent lamp and manufacture thereof Pending JPH0320956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17512489A JPH0320956A (en) 1989-07-06 1989-07-06 Ultraviolet ray suppressing fluorescent lamp and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17512489A JPH0320956A (en) 1989-07-06 1989-07-06 Ultraviolet ray suppressing fluorescent lamp and manufacture thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15361489A Division JPH0320955A (en) 1989-06-16 1989-06-16 Ultraviolet ray suppressing fluorescent lamp, coating material for it, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0320956A true JPH0320956A (en) 1991-01-29

Family

ID=15990705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17512489A Pending JPH0320956A (en) 1989-07-06 1989-07-06 Ultraviolet ray suppressing fluorescent lamp and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0320956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338292A (en) * 1993-03-31 1994-12-06 Toshiba Lighting & Technol Corp Rapid start type fluorescent lamp and lighting system using same
US7036972B2 (en) 2000-12-18 2006-05-02 Zeon Corporation Lighting unit for liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338292A (en) * 1993-03-31 1994-12-06 Toshiba Lighting & Technol Corp Rapid start type fluorescent lamp and lighting system using same
US7036972B2 (en) 2000-12-18 2006-05-02 Zeon Corporation Lighting unit for liquid crystal display device

Similar Documents

Publication Publication Date Title
KR920010701B1 (en) Light sources lessening ultra violet radiation and its manufacturing method
KR940007442B1 (en) Display device
HUT68532A (en) A light-transmissive article, a lamp and a reflector as well as method for forming light scattering coating
JPS61101949A (en) Bulb
US5578892A (en) Bug free linear quartz halogen lamp
US5214345A (en) Ultraviolet ray-shielding agent and tube
US2706691A (en) Method of coating glass bulbs
US4421803A (en) Glass envelope for electric light sources
JPH01503662A (en) Silicon dioxide layer for selective reflection for mercury vapor discharge lamps
EP0389717A2 (en) Ultraviolet ray-shielding tube
US6508573B1 (en) Incandescent lamp
JPH0320956A (en) Ultraviolet ray suppressing fluorescent lamp and manufacture thereof
US2392095A (en) Light filter
US5336969A (en) Highly thermally loaded electric lamp with reduced UV light emission, and method of its manufacture
JPH0320955A (en) Ultraviolet ray suppressing fluorescent lamp, coating material for it, and manufacture thereof
US20060290284A1 (en) Lamp with phosphor layer on an exterior surface and method of applying the phosphor layer
JPS6356593A (en) Fluorescent material for projection-type cathode ray tube
JP2012032441A (en) Light-diffusing plate for illumination and method for manufacturing the same
JPH0992213A (en) Ultraviolet ray restraining light emmision source
Ma et al. Surface Coating and Luminescence Performance of BAM Phosphor.
KR101121892B1 (en) Light diffusing composition
JPH0762277A (en) Ultraviolet-absorbing product
RU2036535C1 (en) Light-diffusing coating for light sources
JPH03163730A (en) Manufacture of ultraviolet ray suppressing lamp
JPS6040656B2 (en) Manufacturing method of metal vapor discharge lamp