JP2012032441A - Light-diffusing plate for illumination and method for manufacturing the same - Google Patents

Light-diffusing plate for illumination and method for manufacturing the same Download PDF

Info

Publication number
JP2012032441A
JP2012032441A JP2010169415A JP2010169415A JP2012032441A JP 2012032441 A JP2012032441 A JP 2012032441A JP 2010169415 A JP2010169415 A JP 2010169415A JP 2010169415 A JP2010169415 A JP 2010169415A JP 2012032441 A JP2012032441 A JP 2012032441A
Authority
JP
Japan
Prior art keywords
glass
illumination
light
glass powder
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010169415A
Other languages
Japanese (ja)
Inventor
Satoshi Fujimine
哲 藤峰
Koichi Shibuya
幸一 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010169415A priority Critical patent/JP2012032441A/en
Publication of JP2012032441A publication Critical patent/JP2012032441A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-diffusing plate for illumination having high transmittance and a high haze value.SOLUTION: The light-diffusing plate is manufactured by applying a paste prepared by mixing two kinds of glass powder having different dielectric constants from each other, with the difference of the dielectric constant being 1 or more and 10 or less, on a glass substrate and calcining at a calcination temperature of 540°C to 590°C. Thus, a light-diffusing layer is formed on the glass substrate, the light-diffusing layer containing the two kinds of glass components having different dielectric constants from each other, with the difference of the dielectric constant of 1 or more and 10 or less, and having a matrix formed of one glass component and containing the other glass component dispersed in the matrix.

Description

本発明は、高透過率でかつ高い光散乱率(ヘイズ値)を有する照明用光拡散板及びその製造方法に関する。   The present invention relates to an illumination light diffusing plate having a high transmittance and a high light scattering rate (haze value), and a method for producing the same.

従来の照明用の蛍光灯は、ガラス管保護のため樹脂製の保護カバーが使われている。しかし、新幹線や通勤電車等の車両では、火災時に樹脂が燃え、液化して滴下する危険性があるため、車両に関する法律上、樹脂の使用は制限されている。   Conventional fluorescent lamps for illumination use a protective cover made of resin to protect the glass tube. However, in vehicles such as the Shinkansen and commuter trains, there is a risk that the resin will burn in the event of a fire and liquefy and dripping, so the use of the resin is restricted by laws relating to the vehicle.

また、近年、照明用として、省エネ、長寿命の観点より蛍光灯からLEDへの置き換えが急速に進みつつある。LEDは、点光源であり、指向性が高いため、光拡散板を用いて光を拡散させ、防眩効果を持たせている。CMなどで見られるLED電球もその一例である。   In recent years, replacement of fluorescent lamps with LEDs has been rapidly progressing from the viewpoint of energy saving and long life for lighting. Since the LED is a point light source and has high directivity, the light is diffused using a light diffusing plate to provide an antiglare effect. An example of this is an LED bulb that can be found in commercials.

従来、光拡散板は、アクリルなどで作られていることが一般的であった。   Conventionally, the light diffusing plate is generally made of acrylic or the like.

一方、有機物を全く含まない拡散板としては、オパールガラスや、ガラスをサンドブラストなどにより表面を粗くするものなどがある。しかし、前者は透過率が低く、後者はガラスに傷をつけるため強度低下が懸念される。   On the other hand, examples of the diffusion plate that does not contain any organic substance include opal glass and a glass whose surface is roughened by sandblasting. However, the former has a low transmittance, and the latter damages the glass, so there is a concern that the strength may decrease.

これに対して、放熱の関係でガラス板等に拡散層を塗布して光拡散板を作製する技術が確立されている。   On the other hand, a technique for producing a light diffusing plate by applying a diffusing layer to a glass plate or the like in relation to heat radiation has been established.

例えば、特許文献1には、透明ガラス板の少なくとも片面に低融点ガラス粉と、耐熱性無機質フィラーとを含むペーストを塗布し、加熱処理して散光性皮膜を形成した防眩ガラスが開示されている。   For example, Patent Document 1 discloses an antiglare glass in which a paste containing a low-melting glass powder and a heat-resistant inorganic filler is applied to at least one surface of a transparent glass plate, and a light-diffusing film is formed by heat treatment. Yes.

特開平10−81545号公報JP-A-10-81545

しかしながら、上記防眩ガラスでは、無機材質フィラーを添加しているため透過率が低下してしまい、かつヘイズ値も十分とは言えなかった。   However, in the antiglare glass, since the inorganic material filler is added, the transmittance is lowered and the haze value is not sufficient.

そこで、本発明は、高透過率でかつ高いヘイズ値を有する照明用光拡散板を提供することを目的とする。   Then, an object of this invention is to provide the light diffusing plate for illumination which has a high transmittance and a high haze value.

上記課題を解決すべく、本発明の照明用光拡散板は、誘電率が異なる2種類のガラス成分を含み、一方のガラス成分がマトリックスを形成し、他方のガラス成分が前記マトリックス中に分散して形成されている光拡散層をガラス基板上に設けたことを特徴とする。   In order to solve the above-mentioned problems, the illumination light diffusion plate of the present invention includes two types of glass components having different dielectric constants, one glass component forms a matrix, and the other glass component is dispersed in the matrix. The light diffusing layer thus formed is provided on a glass substrate.

また、本発明の照明用光拡散板は、誘電率が異なる2種類のガラス成分を含み、一方のガラス成分が粒状に分散され、かつその周囲を覆うように他方のガラス成分が形成されている光拡散層をガラス基板上に設けたことを特徴とする。   Moreover, the light diffusion plate for illumination of the present invention includes two types of glass components having different dielectric constants, one glass component is dispersed in a granular form, and the other glass component is formed so as to cover the periphery thereof. The light diffusing layer is provided on the glass substrate.

更に本発明の照明用光拡散板の製造方法は、ガラス基板上に、誘電率が異なる2種類のガラス粉末を混合したペーストを塗布後、所定の焼成温度で焼成することにより光拡散層を形成することを特徴とする。   Furthermore, the manufacturing method of the light diffusing plate for illumination of this invention forms a light-diffusion layer by apply | coating the paste which mixed two types of glass powders with different dielectric constants on a glass substrate, and baking at a predetermined baking temperature. It is characterized by doing.

本発明によれば、高透過率でかつ高いヘイズ値を有する照明用光拡散板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light diffusing plate for illumination which has a high transmittance | permeability and a high haze value can be provided.

サンプルa、及びその原料としてのガラス粉末1、ガラス粉末5についての全光線透過率の焼成温度依存性を示すグラフ。The graph which shows the baking temperature dependence of the total light transmittance about the sample a and the glass powder 1 and the glass powder 5 as the raw material. サンプルa、及びその原料としてのガラス粉末1、ガラス粉末5についてのヘイズ値の焼成温度依存性を示すグラフ。The graph which shows the baking temperature dependence of the haze value about the sample a and the glass powder 1 and the glass powder 5 as the raw material. ガラス基板にサンプルaを塗布して550℃で焼成した場合の断面を示すSEM写真。The SEM photograph which shows the cross section at the time of apply | coating the sample a to a glass substrate and baking at 550 degreeC. サンプルa〜サンプルdについての全光線透過率の焼成温度依存性を示すグラフ。The graph which shows the calcination temperature dependence of the total light transmittance about the sample a-sample d. サンプルa〜サンプルdについてのヘイズ値の焼成温度依存性を示すグラフ。The graph which shows the baking temperature dependence of the haze value about the sample a-the sample d. サンプルe−1、e−2、e−3、及びその原料としてのガラス粉末1、ガラス粉末5についての全光線透過率の焼成温度依存性を示すグラフ。The graph which shows the baking temperature dependence of the total light transmittance about sample e-1, e-2, e-3, and the glass powder 1 and the glass powder 5 as the raw material. サンプルe−1、e−2、e−3、及びその原料としてのガラス粉末1、ガラス粉末5についてのヘイズ値の焼成温度依存性を示すグラフ。The graph which shows the calcination temperature dependence of the haze value about sample e-1, e-2, e-3, and the glass powder 1 and the glass powder 5 as the raw material. サンプルf−1、f−2、f−3、及びその原料としてのガラス粉末1、ガラス粉末6についての全光線透過率の焼成温度依存性を示すグラフ。The graph which shows the baking temperature dependence of the total light transmittance about sample f-1, f-2, f-3, and the glass powder 1 and the glass powder 6 as the raw material. サンプルf−1、f−2、f−3、及びその原料としてのガラス粉末1、ガラス粉末6についてのヘイズ値の焼成温度依存性を示すグラフ。The graph which shows the baking temperature dependence of the haze value about sample f-1, f-2, f-3, and the glass powder 1 and the glass powder 6 as the raw material. ガラス基板にサンプルf−2を塗布して570℃で焼成した場合の断面を示すSEM写真。The SEM photograph which shows the cross section at the time of apply | coating sample f-2 to a glass substrate and baking at 570 degreeC.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、屈折率(屈折率の2乗が誘電率と比例するため、誘電率をパラメーターとしても良い)の異なる2種類以上のガラス粉末を混ぜて板ガラス(平面タイプ)もしくは管ガラス(適宜半割などに形状加工したものを含む)(蛍光灯タイプ)表面に焼き付けることにより、無機材質フィラーを使用することなく膜内で光を散乱させ、高透過率でかつ高いヘイズを有する拡散層付きの有機物を含まない拡散板を作ることに成功し、更にその微細組織を観察することにより知見を得て本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have two or more types of glasses having different refractive indices (since the square of the refractive index is proportional to the dielectric constant, the dielectric constant may be used as a parameter). Light is scattered in the film without using inorganic material filler by baking on the surface of plate glass (planar type) or tube glass (including those processed into halves as appropriate) (fluorescent lamp type) by mixing powder. And succeeded in producing a diffusion plate with a diffusion layer having a high transmittance and a high haze and not containing an organic substance, and further observing the fine structure to obtain knowledge and completing the present invention.

即ち、本発明の好適な実施形態の照明用光拡散板は、誘電率が異なる2種類のガラス成分を含み、一方のガラス成分が粒状に分散され、かつその周囲を覆うように他方のガラス成分が形成されている光拡散層をガラス基板上に設けたものであり、更に以下の特徴を備えている。   That is, the light diffusion plate for illumination according to a preferred embodiment of the present invention includes two kinds of glass components having different dielectric constants, and one glass component is dispersed in a granular form and the other glass component is covered so as to cover the periphery thereof. Is provided on a glass substrate, and further has the following characteristics.

先ず、2種類のガラス成分の誘電率の差は1以上10以下であり、好ましくは2以上8以下である。誘電率の差を1以上としたのは、1未満では後述する実施例1の結果からも明らかなように、ヘイズ値が50%を切ってしまい、光散乱効果が不十分になってしまうためである。また、10以下としたのは、10を超えると、粒子間の屈折率の差が大きくなりすぎ、界面で光が全反射を起こし、透過率が低下する恐れがあるからである。   First, the difference between the dielectric constants of the two glass components is 1 or more and 10 or less, preferably 2 or more and 8 or less. The reason why the difference in dielectric constant is 1 or more is that if it is less than 1, the haze value falls below 50% and the light scattering effect becomes insufficient, as is apparent from the results of Example 1 described later. It is. Moreover, the reason why it is 10 or less is that when it exceeds 10, the difference in refractive index between particles becomes too large, and light is totally reflected at the interface, which may reduce the transmittance.

次に、2種類のガラス成分のうち、高誘電率のガラス成分の割合は25%以上50%以下、好ましくは30%以上40%以下である。25%以上50%以下としたのは、25%未満では高誘電率のガラス成分を添加した効果が十分に発揮されず、50%を超えると、後述する実施例2、3の結果からも明らかなように、ヘイズ値等の光学特性が不安定になるためである。   Next, of the two types of glass components, the ratio of the high dielectric constant glass component is 25% or more and 50% or less, preferably 30% or more and 40% or less. 25% or more and 50% or less is less than 25%, the effect of adding a glass component having a high dielectric constant is not sufficiently exhibited, and when it exceeds 50%, it is also apparent from the results of Examples 2 and 3 described later. This is because the optical characteristics such as the haze value become unstable.

更に、2種類のガラス成分の平均粒径は、1μm以上であることが好ましい。1μm以上としたのは、1μm未満であるとガラスの比表面積が大きくなりすぎ、ペーストを焼成して基板に焼き付けるときに脱バインダが不十分になる恐れがある。また、ガラス成分の平均粒径は膜厚の1/4以下であることが好ましい。平均粒径が膜厚の1/4を超えるとガラス層での異種ガラスの混合が不十分となり、ヘイズが低下する恐れがあるからである。   Furthermore, the average particle size of the two types of glass components is preferably 1 μm or more. The reason why the thickness is 1 μm or more is that if it is less than 1 μm, the specific surface area of the glass becomes too large, and the binder may be insufficiently baked when the paste is baked and baked onto the substrate. Moreover, it is preferable that the average particle diameter of a glass component is 1/4 or less of a film thickness. This is because if the average particle diameter exceeds 1/4 of the film thickness, mixing of different types of glass in the glass layer becomes insufficient and haze may be reduced.

本実施形態の照明用光拡散板は、ソーダライムガラス基板上に、誘電率が異なる2種類のガラス粉末を混合したペーストを塗布後、540℃〜590℃の焼成温度、好ましくは550℃〜580℃の焼成温度で焼成して光拡散層を形成することにより製造することができる。   The light diffusion plate for illumination according to this embodiment is a baking temperature of 540 ° C. to 590 ° C., preferably 550 ° C. to 580 ° C., after applying a paste obtained by mixing two kinds of glass powders having different dielectric constants on a soda lime glass substrate. It can be manufactured by firing at a firing temperature of ° C. to form a light diffusion layer.

540℃〜590℃の焼成温度としたのは、540℃未満では焼成が不十分となって光拡散層の強度が上がらず、590℃を超えるとガラス粉末の軟化点を超えてしまい、ガラス成分の流動により異なるガラス成分同士の界面が少なくなってヘイズ値が減少してしまう可能性があるからである。   The firing temperature of 540 ° C. to 590 ° C. is that if the temperature is less than 540 ° C., the firing becomes insufficient and the strength of the light diffusion layer does not increase. This is because there is a possibility that the interface between different glass components decreases due to the flow of haze and the haze value decreases.

また、2種類のガラス粉末の軟化点は、530℃以上600℃以下であることが好ましい。上記範囲としたのは、530℃未満では、焼成温度との関係でガラス粉末の軟化点を超えてしまい、ガラス成分の流動により異なるガラス成分同士の界面が少なくなってヘイズ値が減少してしまう可能性があり、600℃を超えると、ガラス基板自体が変形してしまう可能性があるからである。   Moreover, it is preferable that the softening point of two types of glass powder is 530 degreeC or more and 600 degrees C or less. When the temperature is lower than 530 ° C., the softening point of the glass powder is exceeded in relation to the firing temperature, and the interface between different glass components decreases due to the flow of the glass component, resulting in a decrease in haze value. This is because there is a possibility that if the temperature exceeds 600 ° C., the glass substrate itself may be deformed.

以下、実施例により、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail by way of examples.

(各ガラス粉末の作製と特性評価)
表1に示す組成のガラス粉末1〜ガラス粉末6を用意し、転移点(Tg)、軟化点(Ts)、誘電率(ε)、屈折率、線膨張係数(α)及び平均粒径を測定した。
(Production and characteristic evaluation of each glass powder)
Prepare glass powder 1 to glass powder 6 having the composition shown in Table 1, and measure transition point (Tg), softening point (Ts), dielectric constant (ε), refractive index, linear expansion coefficient (α), and average particle size. did.

転移点(Tg)及び軟化点(Ts)については、ガラス粉末を約50mgを白金セルに詰め、昇温速度10℃/minにて800℃までの範囲で示差熱分析計(例えば、リガク社製TG8110)を用いて測定し、第一変曲点を転移点(Tg)、第四変曲点を軟化点(Ts)とした。   As for the transition point (Tg) and softening point (Ts), about 50 mg of glass powder is packed in a platinum cell, and a differential thermal analyzer (for example, manufactured by Rigaku Corporation) at a temperature rising rate of 10 ° C./min up to 800 ° C. TG8110), the first inflection point was the transition point (Tg), and the fourth inflection point was the softening point (Ts).

また、誘電率(ε)については、ガラス粉末を再溶融し板状に成形後、加工して直径45mm×厚さ3mmの測定試料とした。測定試料の両面にアルミニウム電極を蒸着により作製し、LCRメータ(例えばHP社製のLF IMPEADANCE ANALYZER 4192A)を用いて周波数1MHzでの比誘電率を測定した。   Regarding the dielectric constant (ε), the glass powder was remelted and formed into a plate shape and then processed to obtain a measurement sample having a diameter of 45 mm × thickness of 3 mm. Aluminum electrodes were formed on both surfaces of the measurement sample by vapor deposition, and the relative dielectric constant at a frequency of 1 MHz was measured using an LCR meter (for example, LF IMPEADANCE ANALYZER 4192A manufactured by HP).

更に、線膨張係数(α)については、ガラス粉末を加圧成形後、Tsより30℃高い温度で10分間焼成して得た焼成体を直径5mm、長さ2cmの円柱状に加工し、熱膨張計(例えばリガク社製TMA8310)で50〜350℃における平均線膨張係数を測定した。   Furthermore, regarding the linear expansion coefficient (α), after the glass powder was pressure-molded, the fired body obtained by firing for 10 minutes at a temperature 30 ° C. higher than Ts was processed into a cylindrical shape having a diameter of 5 mm and a length of 2 cm. The average linear expansion coefficient at 50 to 350 ° C. was measured with an dilatometer (eg, TMA8310 manufactured by Rigaku Corporation).

また、平均粒径については、レーザー回折式粒子径分布測定装置HEROS&RODOS(独SYMPATEC社製)を用いて平均粒径D50を以下の条件で測定した。   Moreover, about the average particle diameter, the average particle diameter D50 was measured on condition of the following using the laser diffraction type particle size distribution measuring apparatus HEROS & RODOS (made by SYMPATEC, Germany).

ガラス粉末重量:約0.1〜0.2g(試料濃度目安2〜15%)、レンズ焦点距離:20mm、分散方式:自動乾式分散ユニットRODOS/M、分散圧:1.5bar
更に、屈折率については、参考文献としての「ア・ア・アッペン著 ガラスの化学(1974)」中に記載されているモル屈折の値から計算を行い求めている。
Glass powder weight: about 0.1-0.2 g (sample concentration standard 2-15%), lens focal length: 20 mm, dispersion method: automatic dry dispersion unit RODOS / M, dispersion pressure: 1.5 bar
Further, the refractive index is obtained by calculating from the value of molar refraction described in “A-A Appen Glass Chemistry (1974)” as a reference.

これらの結果について、表2に示す。
These results are shown in Table 2.

次に、これらの誘電率の異なるガラス粉末を組み合わせて、ガラスサンプルを作製した。   Next, glass samples having different dielectric constants were combined to produce a glass sample.

[誘電率の違いが光拡散板の特性に及ぼす影響]
(サンプルの作製)
誘電率の異なるガラス粉末の組み合わせとして、表3に示すように、サンプルa(ガラス粉末1:ガラス粉末5=1:1、誘電率差3.3)、サンプルb(ガラス粉末2:ガラス粉末5=1:1、誘電率差2.2)、サンプルc(ガラス粉末3:ガラス粉末5=1:1、誘電率差1.1)、サンプルd(ガラス粉末4:ガラス粉末5=1:1、誘電率差0.6)の4種類を用意した。
[Effect of difference in dielectric constant on characteristics of light diffusion plate]
(Sample preparation)
As a combination of glass powders having different dielectric constants, as shown in Table 3, sample a (glass powder 1: glass powder 5 = 1: 1, dielectric constant difference 3.3), sample b (glass powder 2: glass powder 5) = 1: 1, dielectric constant difference 2.2), sample c (glass powder 3: glass powder 5 = 1: 1, dielectric constant difference 1.1), sample d (glass powder 4: glass powder 5 = 1: 1) 4 types of dielectric constant difference 0.6) were prepared.

(光拡散板の作製と特性評価)
各サンプルを、ターピネオール、ブチルカルビトールアセテート等の溶剤、各種樹脂等を適宜組み合わせた有機ビヒクルに混入してペーストを作製し、これをスピンコート、ブレードコート、スクリーン印刷等の適宜塗布手段でソーダライムガラス基板上に約50μmの膜厚に塗布した。
(Production and characteristic evaluation of light diffusion plate)
Each sample is mixed with an organic vehicle appropriately combined with a solvent such as terpineol and butyl carbitol acetate, and various resins, etc., and a paste is prepared. It apply | coated to the film thickness of about 50 micrometers on the glass substrate.

ペースト塗布後、これを乾燥し、さらに加熱炉で540〜590℃の温度で30分間保持した後、冷却して光拡散板とした。   After applying the paste, this was dried, further held in a heating furnace at a temperature of 540 to 590 ° C. for 30 minutes, and then cooled to obtain a light diffusion plate.

得られた光拡散板について、スガ試験機社製 ヘーズメーター HZ−1により全光線透過率および光散乱率(ヘイズ値)を求めた。   About the obtained light diffusing plate, the total light transmittance and the light scattering rate (haze value) were calculated | required by Suga Test Instruments company haze meter HZ-1.

まず、サンプルa、及びその原料としてのガラス粉末1、ガラス粉末5について、全光線透過率の焼成温度依存性を図1に、ヘイズ値の焼成温度依存性を図2に示す。   First, regarding the sample a and the glass powder 1 and the glass powder 5 as the raw materials, the dependency of the total light transmittance on the firing temperature is shown in FIG. 1, and the dependency of the haze value on the firing temperature is shown in FIG.

これより、サンプルaでは、ガラス粉末1及びガラス粉末5と比較して全光線透過率はあまり変化しないが、ヘイズ値は540〜590℃間の全範囲にわたって極めて高い値になることが判明した。   From this, it was found that in sample a, the total light transmittance did not change much as compared with glass powder 1 and glass powder 5, but the haze value was extremely high over the entire range between 540 and 590 ° C.

図3に、ガラス基板にサンプルaを塗布して550℃で焼成した場合の断面のSEM写真を示す。   In FIG. 3, the SEM photograph of the cross section at the time of apply | coating the sample a to a glass substrate and baking at 550 degreeC is shown.

図3より、サンプルaの焼成膜は、コントラストが異なる2つの部分が存在しており、明色部分がガラス粉末5由来の部分(ガラス5部分)で、暗色部がガラス粉末1由来の部分(ガラス1部分)であると推定される。   From FIG. 3, the fired film of sample a has two parts with different contrasts, the light color part is a part derived from glass powder 5 (glass 5 part), and the dark color part is a part derived from glass powder 1 ( 1 part of glass).

これより、焼成時に軟化点の低いガラス粉末5が流動してマトリックスを形成し、そのマトリックス中に軟化点の高いガラス粉末1由来の部分が分散した組織となることにより、より具体的には、軟化点の低いガラス粉末5由来の部分が流動して、粒状に分散している軟化点の高いガラス粉末1由来の部分の周囲を覆う組織となることにより、ガラス1部分及びガラス5部分の界面での光の散乱度合いが大きくなってヘイズ値が向上したものと推察される。   From this, the glass powder 5 having a low softening point flows during firing to form a matrix, and more specifically, a structure in which a portion derived from the glass powder 1 having a high softening point is dispersed in the matrix, When the portion derived from the glass powder 5 having a low softening point flows and forms a structure covering the periphery of the portion derived from the glass powder 1 having a high softening point dispersed in a granular form, the interface between the glass 1 portion and the glass 5 portion. It is inferred that the degree of light scattering at the point of time increases and the haze value improves.

次に、サンプルa〜サンプルdについて、全光線透過率の焼成温度依存性を図4に、ヘイズ値の焼成温度依存性を図5に示す。   Next, regarding samples a to d, the dependency of the total light transmittance on the firing temperature is shown in FIG. 4, and the dependency of the haze value on the firing temperature is shown in FIG.

これより、550℃〜580℃の間のいずれの焼成温度においても、サンプルaからサンプルdへ行くに従って、即ち、組み合わせた2種類のガラス粉末の誘電率の差が小さくなるに従って、ヘイズ値は減少していることが判った。また、SEMによる組織観察においても、組み合わせた2種類のガラス粉末の誘電率の差が小さくなるに従って、ガラス同士の粒界が見えにくくなっていた。   Accordingly, at any firing temperature between 550 ° C. and 580 ° C., the haze value decreases as the difference from the dielectric constant of the two kinds of glass powders combined decreases from sample a to sample d. I found out. Moreover, also in the structure | tissue observation by SEM, it became difficult to see the grain boundary of glass as the difference of the dielectric constant of two types of combined glass powder became small.

以上のことより、組み合わせるガラス粉末の誘電率の差は大きい方が良く、その差が1以上、好ましくは2以上とする。その差を1以上としたのは、図5からも明らかなように、その差が1未満では、ヘイズ値が50%を切ってしまい、光散乱効果が不十分になってしまうためである。   From the above, it is better that the difference in dielectric constant of the glass powder to be combined is larger, and the difference is 1 or more, preferably 2 or more. The reason why the difference is set to 1 or more is that if the difference is less than 1, as shown in FIG. 5, the haze value is less than 50% and the light scattering effect becomes insufficient.

次に、誘電率の異なるガラス粉末の混合比率が光拡散板の特性に及ぼす影響について検討した。   Next, the effect of the mixing ratio of glass powders having different dielectric constants on the characteristics of the light diffusion plate was examined.

[混合比率が光拡散板の特性に及ぼす影響]
(サンプルの作製)
誘電率の異なるガラス粉末の組み合わせとして、表4に示すように、ガラス粉末1及びガラス粉末5を用いてサンプルe(誘電率差3.3)とした。
[Effect of mixing ratio on characteristics of light diffusion plate]
(Sample preparation)
As a combination of glass powders having different dielectric constants, as shown in Table 4, glass powder 1 and glass powder 5 were used as sample e (dielectric constant difference 3.3).

更に、サンプルeについて、表5に示すようにガラス粉末1及びガラス粉末5の混合比率を3種類に変化させたサンプルe−1、e−2、e−3を用意した。
Further, as to sample e, samples e-1, e-2, and e-3 were prepared in which the mixing ratio of glass powder 1 and glass powder 5 was changed to three types as shown in Table 5.

(光拡散板の作製と特性評価)
サンプルe−1、e−2、e−3を、実施例1と同様に、ターピネオール、ブチルカルビトールアセテート等の溶剤、各種樹脂等を適宜組み合わせた有機ビヒクルに混入してペーストを作製し、これをスピンコート、ブレードコート、スクリーン印刷等の適宜塗布手段でソーダライムガラス基板上に約50μmの膜厚に塗布した。
(Production and characteristic evaluation of light diffusion plate)
Samples e-1, e-2, e-3 were mixed with an organic vehicle appropriately combined with a solvent such as terpineol and butyl carbitol acetate, various resins, etc., as in Example 1, to prepare a paste. Was applied on a soda lime glass substrate to a film thickness of about 50 μm by an appropriate application means such as spin coating, blade coating, screen printing or the like.

ペースト塗布後、これを乾燥し、さらに加熱炉で550〜600℃の温度で30分間保持した後、冷却して光拡散板とした。   After applying the paste, this was dried, further kept in a heating furnace at a temperature of 550 to 600 ° C. for 30 minutes, and then cooled to obtain a light diffusion plate.

得られた光拡散板について、スガ試験機社製 ヘーズメーター HZ−1により全光線透過率および光散乱率(ヘイズ値)を求めた。   About the obtained light diffusing plate, the total light transmittance and the light scattering rate (haze value) were calculated | required by Suga Test Instruments company haze meter HZ-1.

サンプルe−1、e−2、e−3、及びその原料としてのガラス粉末1、ガラス粉末5について、全光線透過率の焼成温度依存性を図6に、ヘイズ値の焼成温度依存性を図7に示す。   Regarding samples e-1, e-2, e-3, and glass powder 1 and glass powder 5 as raw materials thereof, the dependency of total light transmittance on the firing temperature is shown in FIG. 6, and the dependency of haze value on the firing temperature is shown. 7 shows.

これより、透過率についてはサンプルの違いによる明確な傾向は認められないが、ヘイズ値については、サンプルe−1では、焼成温度を上げるに従って急激に低下することが判明した。これは、ガラス1がガラス5に焼成中に溶け込んでしまったためと考えられる。   From this, it was found that the transmittance does not show a clear tendency due to the difference in the samples, but the haze value of Sample e-1 rapidly decreases as the firing temperature is increased. This is presumably because the glass 1 was dissolved in the glass 5 during firing.

一方、ガラス粉末1が50%以上の組み合わせであるe−2、e−3では、高温焼成でもヘイズは高く保たれている。   On the other hand, in e-2 and e-3 in which the glass powder 1 is a combination of 50% or more, the haze is kept high even at high temperature firing.

以上のことより、高誘電率のガラスであるガラス粉末5の割合が50%以下の方がヘイズ値等の光学特性が安定し、焼成条件のマージンも広いと考えられる。   From the above, it is considered that when the ratio of the glass powder 5 which is a glass having a high dielectric constant is 50% or less, the optical characteristics such as the haze value are stabilized and the margin for the firing condition is wide.

[混合比率が光拡散板の特性に及ぼす影響]
(サンプルの作製)
誘電率の異なるガラス粉末の組み合わせとして、表4に示すように、ガラス粉末1及びガラス粉末6を用いてサンプルf(誘電率差3.2)とした。
[Effect of mixing ratio on characteristics of light diffusion plate]
(Sample preparation)
As a combination of glass powders having different dielectric constants, as shown in Table 4, glass powder 1 and glass powder 6 were used as sample f (dielectric constant difference 3.2).

更に、サンプルfについて、表6に示すようにガラス粉末1及びガラス粉末6の混合比率を3種類に変化させたサンプルf−1、f−2、f−3を用意した。
Furthermore, as for sample f, samples f-1, f-2, and f-3 were prepared in which the mixing ratio of glass powder 1 and glass powder 6 was changed to three types as shown in Table 6.

(光拡散板の作製と特性評価)
サンプルf−1、f−2、f−3を、実施例1と同様に、ターピネオール、ブチルカルビトールアセテート等の溶剤、各種樹脂等を適宜組み合わせた有機ビヒクルに混入してペーストを作製し、これをスピンコート、ブレードコート、スクリーン印刷等の適宜塗布手段でソーダライムガラス基板上に約50μmの膜厚に塗布した。
(Production and characteristic evaluation of light diffusion plate)
Samples f-1, f-2, and f-3 were mixed with an organic vehicle in which solvents such as terpineol and butyl carbitol acetate, various resins, and the like were appropriately combined in the same manner as in Example 1 to prepare a paste. Was applied on a soda lime glass substrate to a film thickness of about 50 μm by an appropriate application means such as spin coating, blade coating, screen printing or the like.

ペースト塗布後、これを乾燥し、さらに加熱炉で550〜600℃の温度で30分間保持した後、冷却して光拡散板とした。   After applying the paste, this was dried, further kept in a heating furnace at a temperature of 550 to 600 ° C. for 30 minutes, and then cooled to obtain a light diffusion plate.

得られた光拡散板について、スガ試験機社製 ヘーズメーター HZ−1により全光線透過率および光散乱率(ヘイズ値)を求めた。   About the obtained light diffusing plate, the total light transmittance and the light scattering rate (haze value) were calculated | required by Suga Test Instruments company haze meter HZ-1.

サンプルf−1、f−2、f−3、及びその原料としてのガラス粉末1、ガラス粉末6について、全光線透過率の焼成温度依存性を図8に、ヘイズ値の焼成温度依存性を図9に示す。   Regarding samples f-1, f-2, and f-3, and glass powder 1 and glass powder 6 as raw materials thereof, FIG. 8 shows the firing temperature dependence of the total light transmittance, and the firing temperature dependence of the haze value. 9 shows.

これより、透過率についてはサンプルの違いによる明確な傾向は認められないが、ヘイズ値については、サンプルf−1では、焼成温度を上げるに従って急激に低下することが判明した。これは、ガラス1がガラス6に焼成中に溶け込んでしまったためと考えられる。   From this, it was found that the transmittance does not show a clear tendency due to the difference in the samples, but the haze value of Sample f-1 rapidly decreases as the firing temperature is increased. This is presumably because the glass 1 was melted into the glass 6 during firing.

一方、ガラス粉末1が50%以上の組み合わせであるf−2、f−3では、高温焼成でもヘイズは高く保たれている。   On the other hand, in f-2 and f-3 in which the glass powder 1 is a combination of 50% or more, the haze is kept high even at high temperature firing.

また、ガラス粉末1の比率が50%以上であるf−2、f−3では、550℃の焼成の場合、焼成不足により透過率が低下する懸念があるため、この場合は560℃以上での焼成が好ましい。   In addition, in f-2 and f-3 in which the ratio of the glass powder 1 is 50% or more, in the case of firing at 550 ° C., there is a concern that the transmittance may decrease due to insufficient firing. Firing is preferred.

以上のことより、高誘電率のガラスであるガラス粉末6の割合が50%以下の方がヘイズ値等の光学特性が安定し、焼成条件のマージンも広いと考えられる。   From the above, it can be considered that when the ratio of the glass powder 6 which is a glass having a high dielectric constant is 50% or less, the optical characteristics such as the haze value are stabilized and the margin for the firing condition is wide.

図10に、ガラス基板にサンプルf−2を塗布して570℃で焼成した場合の断面のSEM写真を示す。   FIG. 10 shows an SEM photograph of a cross section when the sample f-2 is applied to a glass substrate and fired at 570 ° C.

図10より、サンプルf−2の焼成膜は、コントラストが異なる2つの部分が存在しており、明色部分がガラス粉末6由来の部分(ガラス6部分)で、暗色部がガラス粉末1由来の部分(ガラス1部分)であると推定される。   From FIG. 10, the fired film of sample f-2 has two parts with different contrasts, the light color part is derived from the glass powder 6 (glass 6 part), and the dark color part is derived from the glass powder 1 Presumed to be a part (glass 1 part).

これより、焼成時に転移点の低いガラス粉末6が流動してマトリックスを形成し、そのマトリックス中に転移点の高いガラス粉末1由来の部分が分散した組織となることにより、ガラス1部分及びガラス6部分の界面での光の散乱度合いが大きくなってヘイズ値が向上したものと推察される。   As a result, the glass powder 6 having a low transition point flows during firing to form a matrix, and a structure in which the portion derived from the glass powder 1 having a high transition point is dispersed in the matrix results in the glass 1 part and the glass 6. It is presumed that the degree of light scattering at the interface of the portion is increased and the haze value is improved.

Claims (9)

誘電率が異なる2種類のガラス成分を含み、一方のガラス成分がマトリックスを形成し、他方のガラス成分が前記マトリックス中に分散して形成されている光拡散層をガラス基板上に設けたことを特徴とする照明用光拡散板。   A glass substrate is provided with a light diffusing layer containing two glass components having different dielectric constants, one glass component forming a matrix, and the other glass component being dispersed in the matrix. A light diffusion plate for illumination. 誘電率が異なる2種類のガラス成分を含み、一方のガラス成分が粒状に分散され、かつその周囲を覆うように他方のガラス成分が形成されている光拡散層をガラス基板上に設けたことを特徴とする照明用光拡散板。   Provided on the glass substrate a light diffusing layer containing two types of glass components having different dielectric constants, wherein one glass component is dispersed in a granular form and the other glass component is formed so as to cover the periphery of the glass component. A light diffusion plate for illumination. 前記2種類のガラス成分の誘電率の差が1以上10以下であることを特徴とする請求項1又は2記載の照明用光拡散板。   The illumination light diffusing plate according to claim 1 or 2, wherein a difference in dielectric constant between the two types of glass components is 1 or more and 10 or less. 前記2種類のガラス成分のうち、高誘電率のガラス成分の割合が25%以上50%以下であることを特徴とする請求項1乃至3のいずれか1項記載の照明用光拡散板。   4. The illumination light diffusion plate according to claim 1, wherein, of the two types of glass components, a ratio of a glass component having a high dielectric constant is 25% or more and 50% or less. 5. 前記2種類のガラス成分の平均粒径は、1μm以上、焼成膜厚の1/4以下であることを特徴とする請求項1乃至4のいずれか1項記載の照明用光拡散板。   5. The light diffusion plate for illumination according to claim 1, wherein an average particle diameter of the two kinds of glass components is 1 μm or more and ¼ or less of a fired film thickness. ヘイズ値が50%以上であることを特徴とする請求項1乃至5のいずれか1項記載の照明用光拡散板。   The light diffusion plate for illumination according to any one of claims 1 to 5, wherein a haze value is 50% or more. ガラス基板上に、誘電率が異なる2種類のガラス粉末を混合したペーストを塗布後、所定の焼成温度で焼成することにより光拡散層を形成することを特徴とする照明用光拡散板の製造方法。   A method for producing a light diffusing plate for illumination, wherein a light diffusion layer is formed by applying a paste in which two kinds of glass powders having different dielectric constants are mixed on a glass substrate and then baking the paste at a predetermined baking temperature. . 前記焼成温度は540℃〜590℃であることを特徴とする請求項7記載の照明用光拡散板の製造方法。   The said baking temperature is 540 degreeC-590 degreeC, The manufacturing method of the light diffusing plate for illumination of Claim 7 characterized by the above-mentioned. 前記2種類のガラス粉末の軟化点は、530℃以上600℃以下であることを特徴とする請求項7又は8記載の照明用光拡散板の製造方法。   The method for producing an illumination light diffusing plate according to claim 7 or 8, wherein the softening point of the two types of glass powder is 530 ° C or higher and 600 ° C or lower.
JP2010169415A 2010-07-28 2010-07-28 Light-diffusing plate for illumination and method for manufacturing the same Withdrawn JP2012032441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169415A JP2012032441A (en) 2010-07-28 2010-07-28 Light-diffusing plate for illumination and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169415A JP2012032441A (en) 2010-07-28 2010-07-28 Light-diffusing plate for illumination and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012032441A true JP2012032441A (en) 2012-02-16

Family

ID=45845963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169415A Withdrawn JP2012032441A (en) 2010-07-28 2010-07-28 Light-diffusing plate for illumination and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012032441A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174676A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Lighting Corp Light diffusion cover and diffusion light source
JP2019503556A (en) * 2015-12-22 2019-02-07 エルジー イノテック カンパニー リミテッド Phosphor plate package, light emitting package, and vehicle headlamp including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4020632Y1 (en) * 1964-07-15 1965-07-17
JPS5641856A (en) * 1979-09-08 1981-04-18 Matsushita Electric Works Ltd Manufacture of frosted glass
JPH1081545A (en) * 1996-09-03 1998-03-31 Central Glass Co Ltd Glare-proof glass
WO2009017035A1 (en) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. Translucent substrate, method for manufacturing the translucent substrate, organic led element and method for manufacturing the organic led element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4020632Y1 (en) * 1964-07-15 1965-07-17
JPS5641856A (en) * 1979-09-08 1981-04-18 Matsushita Electric Works Ltd Manufacture of frosted glass
JPH1081545A (en) * 1996-09-03 1998-03-31 Central Glass Co Ltd Glare-proof glass
WO2009017035A1 (en) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. Translucent substrate, method for manufacturing the translucent substrate, organic led element and method for manufacturing the organic led element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174676A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Lighting Corp Light diffusion cover and diffusion light source
JP2019503556A (en) * 2015-12-22 2019-02-07 エルジー イノテック カンパニー リミテッド Phosphor plate package, light emitting package, and vehicle headlamp including the same

Similar Documents

Publication Publication Date Title
DE102004051846B4 (en) Component with a reflector layer and method for its production
US10580944B2 (en) Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member
US20200255729A1 (en) Wavelength converter, wavelength conversion member and light emitting device
TWI715784B (en) Wavelength conversion member and light-emitting device using the same
EP3244238A1 (en) Diffuse reflection material, diffuse reflection layer, wavelength conversion device and light source system
JP2856754B2 (en) Ultraviolet-suppressed luminescence source, coating agent for ultraviolet-suppressed luminescence source, and method for producing ultraviolet-suppressed luminescence source
WO2011142127A1 (en) Led module, led lamp, and illuminating apparatus
TWI711189B (en) Wavelength conversion member and light-emitting device using the same
JP5679591B2 (en) Method for producing a coated component made of quartz glass
JP7117165B2 (en) SUBSTRATE WITH ANTIGLARE FILM, IMAGE DISPLAY DEVICE, AND DIGITAL SIGNAGE
JP2012032441A (en) Light-diffusing plate for illumination and method for manufacturing the same
RU2654347C2 (en) Transparent diffusive oled substrate and method for producing such substrate
EP4119512A1 (en) Greenhouse, and coating-film-attached glass plate
JP6653182B2 (en) Glass for fluorescent glass dosimeter
RU2656264C2 (en) Transparent diffusive oled substrate and method for producing such substrate
US10450219B2 (en) Composite powder, green sheet, light reflective substrate, and light emitting device using same
JP2013197325A (en) Wavelength conversion member and light-emitting device
JPH02253554A (en) Ultraviolet-ray shielding lamp and its manufacture
JP5888690B2 (en) White ceramic color composition
TW201938757A (en) Wavelength conversion member and light-emitting device using same
JPWO2009031684A1 (en) Glass-coated light-emitting element and glass-coated light-emitting device
WO2011077547A1 (en) Light-emitting device
EP2190000A1 (en) Coating liquid for diffusing film of high-pressure discharge lamp and high-pressure discharge lamp
US9976046B2 (en) Color coating composition for LED lamp diffuser using glass frits and color-coated glass article using the same
JP2007102195A (en) Light diffusing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140121