JPH03209488A - Magnetic brush developing device - Google Patents

Magnetic brush developing device

Info

Publication number
JPH03209488A
JPH03209488A JP569690A JP569690A JPH03209488A JP H03209488 A JPH03209488 A JP H03209488A JP 569690 A JP569690 A JP 569690A JP 569690 A JP569690 A JP 569690A JP H03209488 A JPH03209488 A JP H03209488A
Authority
JP
Japan
Prior art keywords
magnetic
generating means
field generating
developer
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP569690A
Other languages
Japanese (ja)
Inventor
Masaaki Yamaji
山路 雅章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP569690A priority Critical patent/JPH03209488A/en
Priority to US07/640,866 priority patent/US5129357A/en
Publication of JPH03209488A publication Critical patent/JPH03209488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a high-definition image by setting the maximum magnetic flux density of a first magnetic field generating means larger than that of a second magnetic field generating means, and simultaneously the magnetic flux density distribution of the second magnetic field generating means so as to have an inflection point on the upstream side than the position of its maxi mum magnetic flux density. CONSTITUTION:A magnet 13 has a developing magnetic pole S1 as the first magnetic field generating means, a carrier magnetic pole N1 as the second magnetic field generating means of its downstream side, a second carrier mag netic pole S2 as the three magnetic field generating means of its down-stream side, and a magnetic pole N2. The maximum magnetic flux density of the first magnetic field generating means S1 is set larger than that of the second mag netic field generating means N1, and simultaneously the magnetic flux density distribution of the second magnetic field generating means N1 is set so as to have the inflexion point on the upstream side than the position of its maximum magnetic flux density. Thus, the carrying properties of a developer 8 are im proved, and a high-definition image is obtained.

Description

【発明の詳細な説明】 の1 本発明は、電子写真複写機、静電記録機、磁気記録機な
どの画像形成装置番こ適用する現像装置に関し、特に磁
気ブラシ現像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) The present invention relates to a developing device used in image forming apparatuses such as electrophotographic copying machines, electrostatic recording machines, magnetic recording machines, etc., and particularly relates to a magnetic brush developing device.

従」Lp」E術 電子写真複写機、静電記録機、磁気記録機等の画像形成
装置において潜像を現像する手段として、磁気ブラシ現
像装置が広く用いられている。
2. Description of the Related Art Magnetic brush developing devices are widely used as means for developing latent images in image forming apparatuses such as electrophotographic copying machines, electrostatic recording machines, and magnetic recording machines.

磁気ブラシ現像装置は種々の構成が提案されているが、
その代表的なものとしては、現像剤を収容した現像容器
内に現像剤支持手段としての非磁性同筒(以下「スリー
ブ」と称す)を回転自在に配置し、このスリーブ内に、
複数の磁界発生手段、即ち、磁石を配置した磁石ローラ
を固定的に配置した構成の現像装置がある。断る現像装
置は、スリーブの回転により現像剤を現像容器内から潜
像を担持した像担持体と大略対向した現像位置へと搬送
するもので、スリーブ内において像担持体と略対向した
現像位置に磁石(以下「現像磁極」と称す)が配設され
、又、現像位置へと現像剤を搬送するため、現像磁極の
下流側に別の磁石(以下「第1搬送磁極」と称す)が配
設されている。
Various configurations of magnetic brush developing devices have been proposed;
As a typical example, a non-magnetic cylinder (hereinafter referred to as a "sleeve") serving as a developer support means is rotatably arranged in a developer container containing developer, and inside this sleeve,
There is a developing device having a structure in which a plurality of magnetic field generating means, that is, a magnet roller having magnets arranged thereon is fixedly arranged. The developing device conveys the developer from inside the developer container to the developing position approximately opposite to the image bearing member carrying the latent image by rotation of the sleeve. A magnet (hereinafter referred to as a "developing magnetic pole") is disposed, and another magnet (hereinafter referred to as a "first conveying magnetic pole") is disposed downstream of the developing magnetic pole in order to convey the developer to a developing position. It is set up.

又、上記第1の搬送磁極を現像容器から開放して配設す
ると、第1搬送磁極で穂立ちした現像剤が飛散し易いこ
とからこれを防止する目的で、上記第1搬送磁極を現像
容器又はガイド部材で覆う工夫が試みられている。
Furthermore, if the first transport magnetic pole is disposed in an open position from the developer container, the developer that has stood up on the first transport magnetic pole is likely to scatter. Alternatively, attempts have been made to cover it with a guide member.

又、カブリ防止などの画質を向上させるため、上記現像
位置における磁束密度を大きくすることがなされている
、と(に、2成分現像剤を用いた2成分磁気ブラシ現像
においてはキャリア付着を防止するためにも、現像磁極
の磁束密度を大きくすることがなされている。
In addition, in order to improve image quality such as preventing fogging, the magnetic flux density at the development position is increased (in addition, in two-component magnetic brush development using a two-component developer, carrier adhesion is prevented. For this reason, efforts have been made to increase the magnetic flux density of the developing magnetic pole.

また、近来、高画質画像の要求が高まっており、例えば
2成分磁気ブラシ現像において、トナーを小粒径にする
ことにより高解像、高精細画像を得ようとしたものがあ
るが、ただ単にトナーを小粒径にしただけではトナーの
供給能力が低下するのでキャリアを小粒径化することが
必要となってくる。キャリアを小粒径にすると、キャリ
アが像担持体に付着し易(なるので、これを防止するた
めに、現像磁極の磁束密度を大きくすることがなされて
おり、スリーブ上で900ガウス以上、更に大きいもの
で1000ガウス以上のものさえある。このため、相対
的に第1搬送磁極の磁束密度が現像磁極の磁束密度より
も小さくならざるを得ないこととなる。
In addition, in recent years, the demand for high-quality images has increased, and for example, in two-component magnetic brush development, there have been attempts to obtain high-resolution and high-definition images by reducing the toner particle size. If the particle size of the toner is reduced only, the toner supply ability will be reduced, so it is necessary to reduce the particle size of the carrier. When the particle size of the carrier is reduced, the carrier tends to adhere to the image bearing member, so in order to prevent this, the magnetic flux density of the developing magnetic pole is increased, and the magnetic flux density on the sleeve is 900 Gauss or more. Some are even larger than 1000 Gauss.For this reason, the magnetic flux density of the first transport magnetic pole must be relatively smaller than the magnetic flux density of the developing magnetic pole.

が       よ   と   る しかしながら、上記従来装置では、第1搬送磁極の最大
磁束密度が、現像磁極の最大磁束密度よりも小さいこと
から、第1搬送磁極部での現像剤の搬送性が悪くなり、
現像剤が滞留したり現像容器からあふれ出たりすること
があり、画像欠陥を生じたり、飛散等の問題を生じる場
合があった。
However, in the above-mentioned conventional device, the maximum magnetic flux density of the first transport magnetic pole is smaller than the maximum magnetic flux density of the developing magnetic pole, so that the developer transportability at the first transport magnetic pole portion deteriorates.
The developer may stagnate or overflow from the developer container, resulting in image defects or problems such as scattering.

このことは特に、第1搬送磁極の最大密度が第2搬送磁
束密度よりも大きい場合に顕著であり、更に、小粒径キ
ャリアとトナーからなる2成分現像剤を用いた時に生じ
易く、第1搬送磁極なガイド部材で覆った場合に生じ易
い。
This is particularly noticeable when the maximum density of the first transport magnetic pole is greater than the second transport magnetic flux density, and is more likely to occur when a two-component developer consisting of a small particle diameter carrier and toner is used. This tends to occur when covered with a guide member that is a transport magnetic pole.

従って、本発明の目的は、現像剤の飛散を防止すると共
に、搬送磁極、特に第2搬送磁極による現像剤の搬送性
を向上させ、現像剤の滞留および現像剤のあふれを防止
し、高品質の画像を得ることのできる現像装置、特に磁
気ブラシ現像装置を提供することである。
Therefore, an object of the present invention is to prevent the developer from scattering, improve the developer conveyance by the conveying magnetic pole, especially the second conveying magnetic pole, prevent developer stagnation and developer overflow, and achieve high quality. It is an object of the present invention to provide a developing device, particularly a magnetic brush developing device, capable of obtaining images of 1000 yen.

るための 上記目的は本発明に係る現像装置にて達成される。要約
すれば本発明は、像担持体に対向して現像剤支持体を設
け、該現像剤支持体内側に配設された複数の磁界発生手
段によって上記現像剤支持体外表面に現像剤を担持、搬
送し、上記像担持体に対向する現像位置で現像剤により
上記像担持体上の潜像を顕画化するようにした磁気ブラ
シ現像装置において、現像位置における第1磁界発生手
段と上記現像剤支持体の移動方向下流側に位置する第2
磁界発生手段とが互いに異極であり、かつ第2磁界発生
手段と更に下流側に位置する第3磁界発生手段とが互い
に異極であって、第1磁界発生手段の最大磁束密度が第
2磁界発生手段の最大磁束密度よりも大きく設定される
と共に、第2磁界発生手段の磁束密度分布がその最大磁
束密度の位置よりも上流側において変曲点を有するよう
に設定されていることを特徴とする磁気ブラシ現像装置
である。
The above-mentioned object is achieved by the developing device according to the present invention. To summarize, the present invention provides a developer support provided opposite to an image carrier, and a plurality of magnetic field generating means disposed inside the developer support to support the developer on the outer surface of the developer support. In a magnetic brush developing device, the latent image on the image carrier is conveyed and visualized by a developer at a development position opposite to the image carrier, the developer comprising a first magnetic field generating means at the development position and the developer. the second located downstream in the direction of movement of the support;
The magnetic field generating means have different polarities, and the second magnetic field generating means and the third magnetic field generating means located further downstream have different polarities, and the maximum magnetic flux density of the first magnetic field generating means is higher than the second magnetic field generating means. The magnetic flux density is set to be larger than the maximum magnetic flux density of the magnetic field generating means, and the magnetic flux density distribution of the second magnetic field generating means is set to have an inflection point upstream of the position of the maximum magnetic flux density. This is a magnetic brush developing device.

好ましくは、前記第2磁界発生手段の少なくとも極位置
を現像容器で覆い、該第2磁界発生手段の磁極位置が、
該第2磁界発生手段部の中央よりも下流側に位置される
Preferably, at least a pole position of the second magnetic field generating means is covered with a developer container, and the magnetic pole position of the second magnetic field generating means is
It is located downstream of the center of the second magnetic field generating means section.

又、現像剤は重量平均粒径が20〜65μmの磁性粒子
と、体積平均粒径が8μm以下の非磁性トナーを有する
2成分現像剤とされ、好ましくは、前記第2磁界発生手
段の最大磁束密度は前記第3磁界発生手段の最大磁束密
度よりも大きくされる。
Further, the developer is a two-component developer having magnetic particles with a weight average particle size of 20 to 65 μm and a non-magnetic toner with a volume average particle size of 8 μm or less, and preferably, the maximum magnetic flux of the second magnetic field generating means is The density is made larger than the maximum magnetic flux density of the third magnetic field generating means.

実」1例 次に、本発明に係る磁気ブラシ現像装置の一実施例を図
面に即して詳しく説明する。
EMBODIMENT OF THE INVENTION Next, one embodiment of the magnetic brush developing device according to the present invention will be described in detail with reference to the drawings.

第1図は本発明をドラム型感光体を使用する複写機に適
用した第1の実施例の断面図である。
FIG. 1 is a sectional view of a first embodiment in which the present invention is applied to a copying machine using a drum type photoreceptor.

本実施例にて、磁気ブラシ現像装置は、像担持体として
ドラム形状の電子写真感光体、即ち感光ドラム1を有し
た電子写真複写機に使用されている。
In this embodiment, the magnetic brush developing device is used in an electrophotographic copying machine having a drum-shaped electrophotographic photosensitive member, that is, a photosensitive drum 1, as an image carrier.

感光ドラムlの周囲には周知の電子写真プロセスである
帯電機構、画像露光機構、転写機構、クリーニング機構
、除電機構等が配設されるが、第1図には省略されてい
る。
A charging mechanism, an image exposure mechanism, a transfer mechanism, a cleaning mechanism, a static elimination mechanism, etc., which are well-known electrophotographic processes, are arranged around the photosensitive drum 1, but are omitted in FIG. 1.

本実施例の現像装置は、感光ドラムl上に上記電子写真
プロセスにて形成された潜像を現像するものであって、
現像剤8を収容した現像容器2、現像剤支持体としての
現像スリーブ3、現像剤層規制部材としてのブレード4
などを有している。
The developing device of this embodiment is for developing a latent image formed on the photosensitive drum l by the above electrophotographic process,
A developing container 2 containing a developer 8, a developing sleeve 3 serving as a developer support, and a blade 4 serving as a developer layer regulating member.
etc.

即ち、現像容器2の感光ドラムlに近接する位置には開
口部が形成されており、この開口部に現像スリーブ3が
回転可能に設けられる。又、現像スリーブ3の上方には
ブレード4が所定隙間を設けて取り付けられている。
That is, an opening is formed in the developing container 2 at a position close to the photosensitive drum 1, and the developing sleeve 3 is rotatably provided in this opening. Further, a blade 4 is attached above the developing sleeve 3 with a predetermined gap therebetween.

尚、上記現像スリーブ3は非磁性材料で構成され、現像
動作時には図示矢印方向に回転し、その内部には磁界発
生手段である磁石13が固定されている。磁石13は、
第1磁界発生手段としての現像磁極S、と、その下流側
の第2磁界発生手段としての搬送磁極N1と、その下流
側の第3磁界発生手段としての第2搬送磁極S2と、前
記ブレード4と協働して現像剤を薄層均一にする磁極N
2とを有する。
The developing sleeve 3 is made of a non-magnetic material, rotates in the direction of the arrow shown in the figure during the developing operation, and has a magnet 13 fixed therein as a magnetic field generating means. The magnet 13 is
A developing magnetic pole S as a first magnetic field generating means, a conveying magnetic pole N1 as a second magnetic field generating means downstream thereof, a second conveying magnetic pole S2 as a third magnetic field generating means downstream thereof, and the blade 4 Magnetic pole N that works with the developer to make a thin and uniform layer of developer
2.

又、前記ブレード4はアルミニウム(Aβ)などの非磁
性材料にて構成され、これは前述の如く現像スリーブ3
の表面との間に所定の隙間を設けて取り付けられ、この
隙間は現像スリーブ3上を現像部へと搬送される現像剤
8の量、具体的には現像スリーブ3上の現像剤8の厚さ
を規制する。
Further, the blade 4 is made of a non-magnetic material such as aluminum (Aβ), and as described above, the blade 4 is made of a non-magnetic material such as aluminum (Aβ).
The surface of the developer sleeve 3 is attached with a predetermined gap between the surface of the developer sleeve 3 and the surface of the developer sleeve 3. to regulate the

従って、本実施例においては、現像剤8は、非磁性トナ
ー81と磁性粒子(キャリア)82とを有する2成分現
像剤とされるので、ブレード4の先端部と現像スリーブ
3の表面との間を非磁性トナーと磁性粒子の双方が通過
して現像部へ送られる。
Therefore, in this embodiment, since the developer 8 is a two-component developer having a non-magnetic toner 81 and magnetic particles (carrier) 82, there is a gap between the tip of the blade 4 and the surface of the developing sleeve 3. Both non-magnetic toner and magnetic particles pass through and are sent to the developing section.

非磁性トナー81は、8μm以下の体積平均粒径な有す
るものを使用した。体積平均粒径は、100μmのアパ
ーチャーを使用しコールタ−カウンタ〜TA−IIを使
用して測定した。即ち、測定装置としてはコールタ−カ
ウンターTA−II型(コールタ−社製)を用い、個数
平均分布、体積平均分布を出力するインターフェイス(
日科機製)及びCX−1パーソナルコンピユータ(キャ
ノン製)を接続し、電解液は1級塩化ナトリウムを用い
て1%NaCJ2水溶液を調製した。
The nonmagnetic toner 81 used had a volume average particle size of 8 μm or less. Volume average particle size was measured using a Coulter Counter ~TA-II using a 100 μm aperture. That is, a Coulter Counter Model TA-II (manufactured by Coulter Co., Ltd.) was used as the measuring device, and an interface (
A CX-1 personal computer (manufactured by Canon) was connected, and a 1% NaCJ2 aqueous solution was prepared using primary sodium chloride as an electrolyte.

測定に当り、前記電解水溶液100〜 150m1中に分散剤として界面活性剤、好ましくはア
ルキルベンゼンスルホン酸塩を0.1〜5mβ加え、さ
らに測定試料を0.5〜50mg加えた。 試料を懸濁
した電解液は超音波分散器で約1〜3分間分散処理を行
い、前記コールタ−カウンターTA−n型により、アパ
チャーとして100μmアパチャーを用いて2〜40μ
mの粒子の粒度分布を測定して体積平均分布を求めた。
In the measurement, 0.1 to 5 mβ of a surfactant, preferably an alkylbenzene sulfonate, was added as a dispersant to 100 to 150 ml of the electrolytic aqueous solution, and 0.5 to 50 mg of the measurement sample was added. The electrolytic solution in which the sample was suspended was dispersed for about 1 to 3 minutes using an ultrasonic disperser, and then dispersed to 2 to 40 μm using a 100 μm aperture using the Coulter Counter TA-n type.
The particle size distribution of the particles of m was measured to determine the volume average distribution.

これら求めた体積平均分布より1体積平均粒径を得る。One volume average particle diameter is obtained from the volume average distribution thus determined.

磁性粒子82は、上述のトナー81を使用する場合、重
量平均粒径が20〜65μmのものが好ましく使用し得
るが、本実施例では重量平均粒径が約504cmのもの
を使用した。
When using the above-mentioned toner 81, the magnetic particles 82 preferably have a weight average particle diameter of 20 to 65 μm, but in this example, those with a weight average particle diameter of about 504 cm were used.

重量平均粒径はメツシュにより測定し、300/400
メツシユを通過したものが80%、300/350メツ
シユを通過したものが75%であった。磁性粒子はフェ
ライト粒子へ樹脂コーティングしたものを使用し、比透
磁率は5.0であった。
The weight average particle size was measured by mesh and was 300/400.
80% passed the mesh, and 75% passed the 300/350 mesh. The magnetic particles used were ferrite particles coated with a resin, and the relative magnetic permeability was 5.0.

この現像剤8は現像スリーブ3に担持されて現像部、即
ち現像磁極S、へと搬送され、更に該現像スリーブ3に
保持されたまま搬送磁極N、へと搬送される。
The developer 8 is carried by the developing sleeve 3 and conveyed to the developing section, that is, the developing magnetic pole S, and further conveyed to the conveying magnetic pole N while being held by the developing sleeve 3.

現像装置には、更にガイド部材14が設けられており、
現像スリーブ3と所定間隙をもって搬送磁極N、の上流
まで延びている。本実施例でこのガイド部材14の搬送
磁極N、の上流側端部から、搬送磁極N1と対向する部
分までの長さβは7mmとされる。
The developing device is further provided with a guide member 14,
It extends upstream of the transport magnetic pole N with a predetermined gap from the developing sleeve 3. In this embodiment, the length β of the guide member 14 from the upstream end of the transport magnetic pole N1 to the portion facing the transport magnetic pole N1 is 7 mm.

現像部へと送られた現像剤8は、現像スリーブ3に保持
されたまま搬送磁極N、へと搬送されるが、搬送磁極N
lで穂立ちした現像剤はガイド部材14により十分に覆
われているので現像剤が現像容器の外へ飛散するのを防
止している。
The developer 8 sent to the developing section is transported to the transport magnetic pole N while being held by the developing sleeve 3.
Since the developer that has stood up in spikes is sufficiently covered by the guide member 14, the developer is prevented from scattering out of the developer container.

ところで、現像容器2の内部は、第1図の紙面垂直方向
に延在する隔壁5によって現像室(第1室)S−1と撹
拌室(第2室)S−8とに区画され、撹拌室S−オの上
方には隔壁6を隔ててトナー収容室S−1が形成され、
該トナー収容室S−3内には補給用トナー(非磁性トナ
ー)81が収容されている。尚、隔壁6には補給口6a
が開口しており、該補給口6aを経て消費されたトナー
量に見合った量の補給用トナー81が撹拌室S−z内に
落下補給される。又、上記現像室S−1及び撹拌室S−
2内には現像剤8が収容されている。尚、現像容器2の
第1図における手前側と奥側の端部においては前記隔壁
5が形成されておらず、この両端部においては現像室S
−1と撹拌室S−2とを相連通せしめる開口部(図示せ
ず)が形成されている。
Incidentally, the inside of the developing container 2 is divided into a developing chamber (first chamber) S-1 and a stirring chamber (second chamber) S-8 by a partition wall 5 extending perpendicularly to the paper surface of FIG. A toner storage chamber S-1 is formed above the chamber S-O with a partition wall 6 in between.
Replenishment toner (non-magnetic toner) 81 is stored in the toner storage chamber S-3. In addition, the bulkhead 6 has a supply port 6a.
is open, and an amount of replenishment toner 81 commensurate with the amount of consumed toner is dropped and replenished into the stirring chamber S-z through the replenishment port 6a. Moreover, the above-mentioned developing chamber S-1 and stirring chamber S-
A developer 8 is accommodated in the container 2 . Note that the partition wall 5 is not formed at the front and back ends of the developer container 2 in FIG.
An opening (not shown) is formed to allow communication between the stirring chamber S-1 and the stirring chamber S-2.

而して、現像室S−1内には現像スリーブ3近傍の現像
容器2内底部にあって図示矢印方向(反時計方向)に回
転し、現像剤8を第1図の奥側から手前側に搬送する第
1搬送手段9と、該第1搬送手段9の上方にあって図示
矢印方向(反時計方向)に回転し、現像剤8を第1図の
手前側から奥側に搬送する第2搬送手段10とが設けら
れている。又、攪拌室S−3内には上記第1搬送手段9
と略同−水平位置にあって図示矢印方向(時計方向)に
回転し、現像剤8を第1図の手前側から奥側に搬送する
第3搬送手段11が設けられている。
The developer chamber S-1 is located at the inner bottom of the developer container 2 near the developer sleeve 3 and rotates in the direction of the arrow shown in the figure (counterclockwise) to move the developer 8 from the back side to the front side in FIG. 1, and a first conveying means 9, which is located above the first conveying means 9 and rotates in the direction of the arrow shown (counterclockwise), and conveys the developer 8 from the front side to the back side in FIG. 2 conveying means 10 are provided. Further, the first conveying means 9 is provided in the stirring chamber S-3.
A third conveying means 11 is provided which is located at approximately the same horizontal position as the third conveying means 11 and rotates in the direction of the arrow shown in the figure (clockwise) to convey the developer 8 from the front side to the rear side in FIG.

上記第1、第2、第3搬送手段9.10.11は具体的
にはスパイラル形状を成すスクリューで構成されている
Specifically, the first, second, and third conveying means 9.10.11 are constituted by screws having a spiral shape.

第2図は、磁束密度分布の形態を説明するための図であ
り、縦方向は現像スリーブ3上の磁束密度の大きさ[ガ
ウス]を示し、横方向は現像スリーブ周方向の位置を角
度で示している。
FIG. 2 is a diagram for explaining the form of magnetic flux density distribution, where the vertical direction shows the magnitude [Gauss] of the magnetic flux density on the developing sleeve 3, and the horizontal direction shows the circumferential position of the developing sleeve in angles. It shows.

次に、本明細書で用いる「磁極部」の意味について説明
する。
Next, the meaning of "magnetic pole part" used in this specification will be explained.

第1搬送磁極を例にすると、第2図に示すように、第1
搬送磁極部とは、第1搬送磁極の上流側の磁束密度がゼ
ロガウスの位置から第1搬送磁極の下流側で磁束密度が
ゼロガウスを示す位置までである。
Taking the first transport magnetic pole as an example, as shown in FIG.
The transport magnetic pole portion is defined as a region from a position where the magnetic flux density is zero Gauss on the upstream side of the first transport magnetic pole to a position where the magnetic flux density is zero Gauss on the downstream side of the first transport magnetic pole.

即ち、磁束密度がゼロガウスの位置が境界となる。That is, the position where the magnetic flux density is zero Gauss becomes the boundary.

第2図で、KAは、第1搬送磁極部の範囲を角度で示し
たものであり、K、は第1搬送磁極部の上流側境界から
第1搬送磁極までの角度を示す。
In FIG. 2, KA indicates the range of the first carrying magnetic pole section in terms of angle, and K indicates the angle from the upstream boundary of the first carrying magnetic pole section to the first carrying magnetic pole.

次に、第1搬送磁極部の磁束密度分布の形態について説
明すると、第2図中実線は第1搬送磁極の上流に変曲点
がある例であり、破線は変曲点がない例である。変曲点
があるということは、磁束密度Brを2回微分した(a
” B、)/ (a”θ)=0になる時があるというこ
とを意味している。
Next, to explain the form of the magnetic flux density distribution in the first transport magnetic pole part, the solid line in FIG. 2 is an example where there is an inflection point upstream of the first transport magnetic pole, and the broken line is an example where there is no inflection point. . The existence of an inflection point means that the magnetic flux density Br is differentiated twice (a
” B, )/(a”θ)=0.

本発明者が実験により確認したところ、第1搬送磁極N
、の上流に変曲点を設定すると、第1搬送磁極部におけ
る現像剤の搬送性が向上することが確認された。この理
由として本発明者は、第1搬送磁極部における現像スリ
ーブ3上の水平方向の磁気力が関係しているからである
と考えている。即ち、第1搬送磁極部の磁気力が現像剤
を搬送する方向へ変位したためであると考えている。
The inventor confirmed through experiments that the first transport magnetic pole N
It has been confirmed that when the inflection point is set upstream of , the developer transportability in the first transport magnetic pole portion is improved. The present inventor believes that the reason for this is that the magnetic force in the horizontal direction on the developing sleeve 3 in the first transport magnetic pole portion is related. That is, it is believed that this is because the magnetic force of the first transport magnetic pole portion was displaced in the direction of transporting the developer.

本実施例では、現像磁極Slの直ぐ下流の第1搬送磁極
N、は飛散防止の目的でガイド部材14に覆われている
ため、現像剤の搬送性は不利となる。更に、カブリ防止
やキャリア付着防止のため、現像磁極S1の磁束密度を
大きくしているため、第1搬送磁極N1の磁束密度は現
像磁極と比較してかなり小さいものとなっており、第1
搬送磁極部の現像剤はかなり搬送しずらい構成となって
いる。
In this embodiment, since the first transporting magnetic pole N immediately downstream of the developing magnetic pole Sl is covered with the guide member 14 for the purpose of preventing scattering, the transportability of the developer is disadvantageous. Furthermore, in order to prevent fogging and carrier adhesion, the magnetic flux density of the developing magnetic pole S1 is increased, so the magnetic flux density of the first transport magnetic pole N1 is considerably smaller than that of the developing magnetic pole.
The developer in the transport magnetic pole portion is configured to be quite difficult to transport.

このような構成においては、特に、第1搬送磁極部の磁
束密度の形態が重要であり、詳細は後述するが、第1搬
送磁極部の第1搬送磁極N1の上流に磁束密度の変曲点
を設けることにより、第1搬送磁極部の現像剤の搬送性
を向上させることができる。
In such a configuration, the form of the magnetic flux density of the first transport magnetic pole part is particularly important, and although the details will be described later, there is an inflection point of the magnetic flux density upstream of the first transport magnetic pole N1 of the first transport magnetic pole part. By providing this, the developer transportability of the first transport magnetic pole portion can be improved.

次に、第1図に示す現像装置を利用して更に具体的に本
発明を実施例に則して説明する。
Next, the present invention will be described in more detail with reference to examples using the developing device shown in FIG.

第1図の現像装置において、磁石13を内包した現像ス
リーブ3からなる部材を「現像ローラ」と称することと
する。
In the developing device shown in FIG. 1, a member consisting of the developing sleeve 3 containing the magnet 13 will be referred to as a "developing roller."

表1に示す諸元に基づき、各種現像ローラを用いて現像
スリーブ3上の第1搬送磁極部の現像剤の搬送性と現像
剤の飛散状態について得られた実験データを表2に示す
Based on the specifications shown in Table 1, Table 2 shows experimental data obtained regarding the developer transportability of the first transport magnetic pole portion on the developing sleeve 3 and the developer scattering state using various developing rollers.

なお、表2に示した実施例4は、第1図における現像装
置に飛散防止部材を設けたものであり詳細は後述する。
In Example 4 shown in Table 2, a scattering prevention member was provided in the developing device shown in FIG. 1, and the details will be described later.

表    1 先ず、実施例1〜3について説明すると、表2から、第
1搬送磁極の上流に変曲点のない比較例1は現像剤の搬
送性が悪く、現像剤の滞留による現像剤のあふれ、飛散
などを生じることがあったが、第1搬送磁極の上流に変
曲点のある実施例1〜3は現像剤の搬送性は良好であり
、現像剤の溢れは全(生じなかったし、現像剤の飛散は
殆どな(良好であることが分かる。即ち、第1搬送磁極
の上流に磁束密度の変曲点を設けることにより現像剤の
搬送性が良好になることが分かる。
Table 1 First, Examples 1 to 3 will be explained. Table 2 shows that Comparative Example 1, which does not have an inflection point upstream of the first transporting magnetic pole, has poor developer transportability and is prone to developer overflow due to developer retention. However, in Examples 1 to 3, which had an inflection point upstream of the first transport magnetic pole, the developer transportability was good, and developer overflow did not occur at all. It can be seen that there is almost no scattering of the developer (which is good. In other words, it can be seen that the developer transportability is improved by providing an inflection point of the magnetic flux density upstream of the first transporting magnetic pole.

又、実施例1及び2のように、第1搬送磁極N、の極位
置(K、)を第1搬送磁極部の中央(坏KA)よりも下
流側(K、〉イKA)とし、現像磁極との位置を離した
ものは、現像剤の飛散が極めて少ないことが分かる。
In addition, as in Examples 1 and 2, the pole position (K,) of the first transport magnetic pole N is set downstream (K,>I KA) from the center (K KA) of the first transport magnetic pole part, and the developing It can be seen that when the position is far from the magnetic pole, there is very little developer scattering.

実施例4は、実施例3の現像ローラを使用し、第3図に
示した現像装置を用い、更に飛散防止部材12を設けた
ものである。飛散防止部材12は、一端がガイド部材1
4に固設され、他端が自由端となっておりその一部が搬
送磁極N、の上流で現像剤と接触している。本実施例に
よると、この飛散防止部材12がなくても現像剤の飛散
は十分に許容できる程度のものであったが、飛散防止部
材12を設けることにより更に飛散が少な(なり、極め
て良好な状態となった。尚、現像剤の搬送性も、実施例
3と同様に極めて良好であった。
In Example 4, the developing roller of Example 3 was used, the developing device shown in FIG. 3 was used, and a scattering prevention member 12 was further provided. The scattering prevention member 12 has one end connected to the guide member 1.
4, the other end is a free end, and a part of it is in contact with the developer upstream of the transport magnetic pole N. According to this embodiment, even without the scattering prevention member 12, the scattering of the developer was sufficiently tolerable, but by providing the scattering prevention member 12, the scattering was further reduced (and extremely good). Note that the developer transportability was also very good as in Example 3.

なお、前記実施例では、現像剤として、非磁性トナー8
1と磁性粒子のキャリア82を有した2成分現像剤が用
いられたが、1成分現像剤を用いてもよい。
In the above embodiment, the non-magnetic toner 8 is used as the developer.
Although a two-component developer having a magnetic particle carrier 82 and a carrier 82 of magnetic particles was used, a one-component developer may also be used.

また、上記実施例では、現像位置において、現像磁極S
、により現像剤を穂立てした状態で現像する極位置現像
の方式を採用したが、現像剤を寝かせた状態で現像する
極間現像の方式を採用した現像装置にも本発明は好適に
採用し得る。この場合には、現像磁極群の下流側現像磁
極とその下流側の第1搬送磁極及び第2搬送磁極との関
係を前記実施例で説明したように構成すればよい。
Further, in the above embodiment, at the development position, the development magnetic pole S
Although the method of pole position development in which the developer is developed with the developer standing up is adopted, the present invention can also be suitably adopted in a developing device that adopts the method of pole-to-pole development in which the developer is developed in a state where it is laid down. obtain. In this case, the relationship between the downstream developing magnetic pole of the developing magnetic pole group and the downstream first and second transporting magnetic poles may be configured as described in the above embodiment.

1豆二皇1 本発明は以上詳述したように、第1磁界発生手段(現像
磁極)の最大磁束密度より第2磁界発生手段(搬送磁極
)の最大磁束密度が小さい場合であって、第2磁界発生
手段とその下流側に位置した第3磁界発生手段とが異極
とされた場合であっても、第2磁界発生手段の磁束密度
分布がその最大磁束密度の位置より上流側において変曲
点を有するように設定したので、現像剤の飛散を防止す
ると共に、第2&11界発生手段による現像剤の搬送性
を向上でき、現像剤の滞留、こぼれ溢れを防止でき、高
品質画像を得ることができるという特長を有する。
As detailed above, the present invention applies to a case where the maximum magnetic flux density of the second magnetic field generating means (conveying magnetic pole) is smaller than the maximum magnetic flux density of the first magnetic field generating means (developing magnetic pole), and Even if the second magnetic field generating means and the third magnetic field generating means located downstream thereof have different polarities, the magnetic flux density distribution of the second magnetic field generating means changes upstream from the position of maximum magnetic flux density. Since it is set to have a curved point, it is possible to prevent the developer from scattering, improve the conveyance of the developer by the second and eleventh field generating means, prevent the developer from stagnation and overflow, and obtain a high quality image. It has the advantage of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る磁気ブラシ現像装置の一実施例
を示す縦断側面図である。 第2図は、現像スリーブにおける磁束密度分布を示す図
表である。 第3図は、本発明に係る磁気ブラシ現像装置の他の実施
例を示す縦断側面図である。 :像担持体 :現像スリーブ(現像剤支持体) :現像磁極(第1磁界発生手段) :搬送磁極(第2FI!i界発生手段):搬送磁極(第
3磁界発生手段) 第 1 図 第3図
FIG. 1 is a longitudinal sectional side view showing an embodiment of a magnetic brush developing device according to the present invention. FIG. 2 is a chart showing the magnetic flux density distribution in the developing sleeve. FIG. 3 is a longitudinal sectional side view showing another embodiment of the magnetic brush developing device according to the present invention. : Image carrier: Developing sleeve (developer support) : Developing magnetic pole (first magnetic field generating means) : Transporting magnetic pole (second FI! i field generating means): Transporting magnetic pole (third magnetic field generating means) Fig. 1 figure

Claims (1)

【特許請求の範囲】 1)像担持体に対向して現像剤支持体を設け、該現像剤
支持体内側に配設された複数の磁界発生手段によって上
記現像剤支持体外表面に現像剤を担持、搬送し、上記像
担持体に対向する現像位置で現像剤により上記像担持体
上の潜像を顕画化するようにした磁気ブラシ現像装置に
おいて、現像位置における第1磁界発生手段と上記現像
剤支持体の移動方向下流側に位置する第2磁界発生手段
とが互いに異極であり、かつ第2磁界発生手段と更に下
流側に位置する第3磁界発生手段とが互いに異極であっ
て、第1磁界発生手段の最大磁束密度が第2磁界発生手
段の最大磁束密度よりも大きく設定されると共に、第2
磁界発生手段の磁束密度分布がその最大磁束密度の位置
よりも上流側において変曲点を有するように設定されて
いることを特徴とする磁気ブラシ現像装置。 2)前記第2磁界発生手段の少なくとも極位置を現像容
器で覆い、該第2磁界発生手段の磁極位置が、該第2磁
界発生手段部の中央よりも下流側に位置することを特徴
とする請求項1記載の磁気ブラシ現像装置。 3)現像剤は重量平均粒径が20〜65μmの磁性粒子
と、体積平均粒径が8μm以下の非磁性トナーを有する
2成分現像剤であることを特徴とする請求項1記載の磁
気ブラシ現像装置。 4)前記第2磁界発生手段の最大磁束密度が前記第3磁
界発生手段の最大磁束密度よりも大きいことを特徴とす
る請求項1記載の磁気ブラシ現像装置。
[Scope of Claims] 1) A developer support is provided opposite to the image carrier, and the developer is supported on the outer surface of the developer support by a plurality of magnetic field generating means arranged inside the developer support. , a magnetic brush developing device configured to convey a latent image on the image carrier with a developer at a development position opposite to the image carrier, the magnetic brush developing device comprising: a first magnetic field generating means at the development position; The second magnetic field generating means located downstream in the direction of movement of the agent support have different polarities, and the second magnetic field generating means and the third magnetic field generating means located further downstream have different polarities. , the maximum magnetic flux density of the first magnetic field generating means is set larger than the maximum magnetic flux density of the second magnetic field generating means, and the second
A magnetic brush developing device characterized in that the magnetic flux density distribution of the magnetic field generating means is set to have an inflection point upstream of the position of maximum magnetic flux density. 2) At least a pole position of the second magnetic field generating means is covered with a developer container, and the magnetic pole position of the second magnetic field generating means is located downstream of the center of the second magnetic field generating means section. A magnetic brush developing device according to claim 1. 3) The magnetic brush development according to claim 1, wherein the developer is a two-component developer having magnetic particles having a weight average particle size of 20 to 65 μm and a non-magnetic toner having a volume average particle size of 8 μm or less. Device. 4) The magnetic brush developing device according to claim 1, wherein the maximum magnetic flux density of the second magnetic field generating means is greater than the maximum magnetic flux density of the third magnetic field generating means.
JP569690A 1990-01-12 1990-01-12 Magnetic brush developing device Pending JPH03209488A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP569690A JPH03209488A (en) 1990-01-12 1990-01-12 Magnetic brush developing device
US07/640,866 US5129357A (en) 1990-01-12 1991-01-14 Magnetic brush developing apparatus wherein a point of inflection in the magnetic flux density distribution is provided upstream from the maximum flux density position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP569690A JPH03209488A (en) 1990-01-12 1990-01-12 Magnetic brush developing device

Publications (1)

Publication Number Publication Date
JPH03209488A true JPH03209488A (en) 1991-09-12

Family

ID=11618267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP569690A Pending JPH03209488A (en) 1990-01-12 1990-01-12 Magnetic brush developing device

Country Status (1)

Country Link
JP (1) JPH03209488A (en)

Similar Documents

Publication Publication Date Title
JP4289735B2 (en) Developing device, image forming apparatus, and process cartridge
US4873551A (en) Developing apparatus using magnetic carrier under AC field
JP3382541B2 (en) Developing device
JP2703992B2 (en) Developing device
JPH034264A (en) Magnetic brush developing device
JP2006146286A (en) Developing device
JP4328421B2 (en) Developing device, image forming apparatus, and process cartridge
JP4951223B2 (en) Development device
JP2001209240A (en) Developing device, process cartridge and image forming device
JPH03209488A (en) Magnetic brush developing device
JP2800053B2 (en) Magnetic brush developing device
JPS601621B2 (en) Developer replenishment device
JP2000206791A (en) Developing device
JPH11327305A (en) Developing device and image forming device
JPH0264586A (en) Developing device
JPH034268A (en) Developing device
JPH034263A (en) Magnetic brush developing device
JP2001034066A (en) Image forming device and developing device
JP2004219577A (en) Developing device
JPH03252686A (en) Developing device
JP2901197B2 (en) Developing device
JP3634638B2 (en) Development device
JP3677443B2 (en) Development device
JPH05232820A (en) Image forming device
JPH04254879A (en) Picture image forming device