JPH03209177A - Measurement of insulation resistance - Google Patents

Measurement of insulation resistance

Info

Publication number
JPH03209177A
JPH03209177A JP395590A JP395590A JPH03209177A JP H03209177 A JPH03209177 A JP H03209177A JP 395590 A JP395590 A JP 395590A JP 395590 A JP395590 A JP 395590A JP H03209177 A JPH03209177 A JP H03209177A
Authority
JP
Japan
Prior art keywords
measurement
signal
conversion
filter
frequency signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP395590A
Other languages
Japanese (ja)
Other versions
JPH0743403B2 (en
Inventor
Hiroshi Yamamoto
博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TENPAALE KOGYO KK
Tempearl Industrial Co Ltd
Original Assignee
TENPAALE KOGYO KK
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TENPAALE KOGYO KK, Tempearl Industrial Co Ltd filed Critical TENPAALE KOGYO KK
Priority to JP395590A priority Critical patent/JPH0743403B2/en
Publication of JPH03209177A publication Critical patent/JPH03209177A/en
Publication of JPH0743403B2 publication Critical patent/JPH0743403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To separate and remove noise components adjacent to a signal frequency for measurement and to attain the measurement with high accuracy by subjecting to a high speed Fourier transformation the waveform data converted to digital values from the output of filter at a constant time interval. CONSTITUTION:A leak current passing through an insulation resistance Rg and an electrostatic capacitance Cg to the earth is generated by a low frequency signal for measurement impressed to the earth line through an injection transformer. This leak current is detected by a current transformer and inputted to an A/D conversion part through the filter. A control signal for A/D conversion is sent out to the A/D conversion part by a control part with making the low frequency signal as a trigger. The digital data subjected to A/D conversion are stored in a specified address by a waveform storing part. This address is decided by the control part. At the time point when a series of A/D conversion is finished and a storage of digital data into the waveform storing part is finished, the high speed Fourier transformation is performed for the digital data in the waveform storing part by an arithmetic part in accordance with a calculation executing signal of the control part. Further, real number parts only are extracted among the frequency components same as those of low frequency signal for measurement, then outputted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は活線状態で電路の絶縁抵抗を測定する方法、特
に大きな絶縁抵抗値を測定する場合無視てきなくなる変
流器の過渡応答やる波器て除去できない測定用低周波信
号周波数近傍の雑音周波数成分の影響を補償した絶縁抵
抗測定方法に間する.〔従来技術〕 従来の絶縁抵抗測定方法を第2図(a)に示す。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring the insulation resistance of an electrical circuit under live conditions, and in particular to a method for measuring the transient response and waves of current transformers, which cannot be ignored when measuring large insulation resistance values. This paper develops an insulation resistance measurement method that compensates for the effects of noise frequency components near the measurement low-frequency signal frequency that cannot be removed by any means. [Prior Art] A conventional method for measuring insulation resistance is shown in FIG. 2(a).

測定用低周波信号発生部で発生させた信号を注入用変圧
器を介して接地線に注入し、この信号電圧により絶縁抵
抗R0及び対地静電容量C,を流れ接地線に帰還する電
流を変流器で検出し、ろ波器で測定用低周波信号の漏洩
電流成分のみを取り出した後、同期整流部で絶縁抵抗成
分のみを検出することで電路の絶縁抵抗を測定する方法
が用いられる。又、同期整流を行うための同期信号は注
入用変圧器を介して接地線に注入した測定用低周波信号
電圧と位相を合わす必要があり、測定用低周波信号の漏
洩電流は変流器及び、ろ波器により注入した測定用低周
波信号電圧と位相がずれるため、ずれた位相差分を補正
する位相補正部を設ける方法が一般的である。
The signal generated by the measurement low frequency signal generator is injected into the grounding wire via the injection transformer, and this signal voltage changes the current that flows through the insulation resistance R0 and ground capacitance C, and returns to the grounding wire. A method is used to measure the insulation resistance of an electrical circuit by detecting it with a flowmeter, extracting only the leakage current component of the measurement low-frequency signal with a filter, and then detecting only the insulation resistance component with a synchronous rectifier. In addition, the synchronization signal for synchronous rectification needs to be in phase with the measurement low-frequency signal voltage injected into the grounding wire via the injection transformer, and the leakage current of the measurement low-frequency signal is caused by the current transformer and , the phase is shifted from the measurement low frequency signal voltage injected by the filter, so a common method is to provide a phase correction section to correct the shifted phase difference.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の!!縁抵抗測定方法を用いた場合の測定可能絶縁
抵抗値は変流器に続く、ろ波器の人カ換算雑音電圧と通
過帯域幅内に含まれる雑音電圧の大きさにより決まる。
Traditional! ! The measurable insulation resistance value when using the edge resistance measurement method is determined by the human power equivalent noise voltage of the filter following the current transformer and the magnitude of the noise voltage included within the passband width.

まず、人力換算雑音電圧について絶縁抵抗Rgを含む電
路、注入用変圧器及び変流器を等価回路で示す第2図(
b)を用いて説明する。
First, Figure 2 shows an equivalent circuit of the electrical circuit including the insulation resistance Rg, the injection transformer, and the current transformer regarding the human power equivalent noise voltage (
This will be explained using b).

注入用変圧器により電路に注入する電圧は一般的に0.
5V程度であるkめ、絶縁抵抗R,が100kQ時の漏
洩電流I1は5μA(0.5V/100kΩ)となり変
流器の2次巻線の巻数は一般的に2000ターン位であ
るため変流器2次電流I2は約2.5nA (5μA/
2000ターン)となる。
The voltage injected into the electrical circuit by the injection transformer is generally 0.
When the insulation resistance R is about 5V, the leakage current I1 is 5μA (0.5V/100kΩ), and the number of turns of the secondary winding of a current transformer is generally about 2000 turns, so current transformation The secondary current I2 of the device is approximately 2.5nA (5μA/
2000 turns).

よって変流器終端抵抗RLの両端の電圧はRt=100
Ωとして約250nV (=1 00Ω×2.5r+ 
A )となる。終端抵抗RLを大きくするとRL両端電
圧を高くすることができるが、温度に対する変流器の1
次電流/2次電流位相特性が悪化するため一般的にはR
,は100Ω以下で使用される。
Therefore, the voltage across the current transformer terminating resistor RL is Rt=100
Approximately 250nV as Ω (=100Ω×2.5r+
A). Increasing the termination resistor RL can increase the voltage across RL, but the current transformer's 1
Generally, R
, is used below 100Ω.

又、市販されている超低雑音演算増幅器の入力換算雑音
は良いものでも3〜5nVあり信号成分に対し、1/1
00〜1/50の雑音成分があることになる.高精度、
高安定性、高絶縁抵抗検出を行う場合、雑音成分は信号
成分に対し1/1000以下であることが必要となり、
従来方法では絶縁抵抗Rg>100kΩの高精度、高安
定な検出は不可能である.次にろ波器の通過帯域幅内に
含まれる雑音電圧について説明する。
In addition, the input equivalent noise of commercially available ultra-low noise operational amplifiers is 3 to 5 nV at best, which is 1/1 of the signal component.
This means that there is a noise component of 0.00 to 1/50. High precision,
When performing high stability and high insulation resistance detection, the noise component must be less than 1/1000 of the signal component.
With conventional methods, it is impossible to detect insulation resistance Rg>100kΩ with high precision and high stability. Next, the noise voltage included within the passband width of the filter will be explained.

一般に測定用低周波信号を通過させるため、ろ波器には
帯域通過ろ波器が用いられ、通過帯域は測定用低周波信
号周波数を中心として一定の周波数幅を設定する.この
ろ波器の通過帯域には前述入力換算雑音電圧に起因する
雑音成分が存在するため、ろ波器の出力の雑音成分を少
なくするためにはろ波器の通過帯域幅を狭くすれば良い
Generally, a bandpass filter is used to pass the measurement low-frequency signal, and the passband is set to a constant frequency width centered around the measurement low-frequency signal frequency. Since the passband of this filter contains a noise component due to the input converted noise voltage, the passband width of the filter may be narrowed in order to reduce the noise component in the output of the filter.

しかし、通過帯域幅を狭くすると、ろ波器の遮断周波数
が測定用低周波信号周波数と近くなるため測定用低周波
信号周波数の温度に対するる波器の入力電圧/出力電圧
位相特性が悪化する。
However, when the passband width is narrowed, the cutoff frequency of the filter becomes close to the measurement low frequency signal frequency, and the input voltage/output voltage phase characteristic of the filter with respect to temperature of the measurement low frequency signal frequency deteriorates.

このため通過帯域幅をむやみに狭くてきす、ろ波器の出
力に入力換算雑音電圧に起因する雑音成分が発生し高絶
紗抵抗検出を行う際に、測定用低周波信号と雑音成分を
分離することが困難となる欠点があった。
As a result, the passband width is unnecessarily narrowed, and a noise component due to the input equivalent noise voltage is generated in the output of the filter.When detecting high-voltage gauze resistance, it is necessary to separate the low-frequency signal for measurement and the noise component. There was a drawback that it was difficult to do so.

〔問題を解決するための手段〕[Means to solve the problem]

第1図(a)を用いて問題を解決するための手段を説明
する。
Means for solving the problem will be explained using FIG. 1(a).

変流器により検出した電路の漏洩電流成分をろ波器を介
してアナログ/デジタル変換部(以後A/D変換部)に
入力する. 又、A/D変換部は制御部により制御し、測定用低周波
信号をトリガー信号としてアナログ入力を量子化したの
ち波形記憶部に量子化した波形データを記憶する. この間係を第1図(b)に示す。
The leakage current component of the electrical circuit detected by the current transformer is input to the analog/digital converter (hereinafter referred to as the A/D converter) via the filter. Further, the A/D conversion section is controlled by the control section, quantizes the analog input using the measurement low frequency signal as a trigger signal, and then stores the quantized waveform data in the waveform storage section. This relationship is shown in FIG. 1(b).

制御部で測定用低周波信号の零電圧の点Aをトリガー点
として時間T1間隔で時間T2の間A/D変換制御信号
を発生し、A/D変換部に加える。A/D変換部はアナ
ログ入力信号をA/D変換制御信号が加わるたびにデジ
タル値に変換し波形記憶部に送出する。波形記憶部は、
制御部より発生するA/D変換制御信号毎にあらかじめ
設定した記憶番地設定信号により定められる番地内にA
/D変換部出力のデジタル値を収納する。すなわち時間
T2間に(T2/T++1)回アナログ/デジタル変換
を行い、この回数分準備された記憶個所に波形デジタル
・データを記憶する。又、回数は後の演算部で行う高速
フーリエ変換の関係上2’(nは自然数)回であること
が好ましいが特に規定する必要はない。さらに、トリガ
ー点を説明の関係上、零電圧の点Aとしたが変流器及び
ろ波器によるアナログ信号の位相遅れを補正するために
トリガー点を位相遅れ分移動させて零電圧点以外として
もかまわない。波形記憶部に記憶した波形デジタル・デ
ータは演算部により高速フーリエ変換を行う.高速フー
リエ変換は一連のデータが実数である時間領域のデータ
を周波数領域のデータに変換する一般的な手法である。
The control section generates an A/D conversion control signal for a time T2 at intervals of time T1 using the zero voltage point A of the measurement low frequency signal as a trigger point, and applies it to the A/D conversion section. The A/D converter converts the analog input signal into a digital value each time an A/D conversion control signal is applied, and sends the digital value to the waveform storage. The waveform storage section is
A in the address determined by the memory address setting signal set in advance for each A/D conversion control signal generated from the control unit.
/Stores the digital value of the D converter output. That is, analog/digital conversion is performed (T2/T++1) times during time T2, and waveform digital data is stored in the storage locations prepared for this number of times. Furthermore, the number of times is preferably 2' (n is a natural number) in view of the fast Fourier transform to be performed in the subsequent calculation unit, but there is no need to specify this in particular. Furthermore, for the sake of explanation, the trigger point was set to zero voltage point A, but in order to compensate for the phase delay of the analog signal due to the current transformer and filter, the trigger point was moved by the phase delay and set to a point other than the zero voltage point. I don't mind. The digital waveform data stored in the waveform storage section is subjected to fast Fourier transform by the arithmetic section. Fast Fourier transform is a general method for converting a series of real data in the time domain into data in the frequency domain.

すなわち波形デジタル・データを高速フーリエ変換する
ことにより特定周波数の信号成分を実数部と虚数部に分
けて演算結果を得ることができる. さらに、この特定周波数として低周波信号周波数を選別
し、演算結果中、実数部はトリガー信号として用いた測
定用低周波信号と同位相の成分となり、虚数部は同低周
波信号とπ/2位相が異なる成分となることより絶縁抵
抗R,にょる漏洩電流成分なのか、対地静電容量c9に
よる漏洩電流成分なのかを区別することができる。つま
りトリガー電圧点を零電圧とした場合、高速フーリエ変
換後の実数部は絶縁抵抗R9による漏洩電流成分となり
、虚数部は対地静電容量C.にょる漏洩電流成分となる
In other words, by performing fast Fourier transform on waveform digital data, it is possible to obtain calculation results by dividing the signal component of a specific frequency into a real part and an imaginary part. Furthermore, a low frequency signal frequency is selected as this specific frequency, and in the calculation result, the real part becomes a component with the same phase as the measurement low frequency signal used as a trigger signal, and the imaginary part has a π/2 phase with the same low frequency signal. Since these are different components, it is possible to distinguish whether the leakage current component is due to the insulation resistance R or the leakage current component due to the ground capacitance c9. In other words, when the trigger voltage point is zero voltage, the real part after fast Fourier transform becomes the leakage current component due to the insulation resistance R9, and the imaginary part becomes the ground capacitance C. This becomes a leakage current component.

但し変流器、ろ波器による位相遅れが無い場合に限る。However, this is limited to cases where there is no phase delay due to current transformers or filters.

同位相遅れがある場合、ろ波器の後に位相遅れを補正す
る回路を設けるか、又はトリガー電圧点を変更すれば良
い。一般に高速フーリエ変換を行った場合の周波数分解
能はA/D変換制御信号T2時間及びA/D変換回数N
(”1+T2/T)に依存し(2/ (T2XN))で
与えられる。
If there is an in-phase delay, a circuit for correcting the phase delay may be provided after the filter, or the trigger voltage point may be changed. Generally, the frequency resolution when performing fast Fourier transform is the A/D conversion control signal T2 time and the number of A/D conversions N.
It depends on ("1+T2/T) and is given by (2/(T2XN)).

高速フーリエ変換は特定の周波数成分を検出する技術で
あるが別の表現をすると、特定の周波数成分のみを通す
帯域通過ろ波器であり、通過帯域幅は周波数分解能すな
わちA/D変換制御信号T2時間及びA/D変換回数N
によって定まる。
Fast Fourier transform is a technique for detecting specific frequency components, but expressed in another way, it is a bandpass filter that passes only specific frequency components, and the passband width is determined by the frequency resolution, that is, the A/D conversion control signal T2. Time and number of A/D conversions N
Determined by

以上のように高速フーリエ変換を用いたる波技術はデジ
タル・フィルタであり温度、湿度等の環境変化に依存す
ることなく高精度、高安定に通過帯域幅の狭いろ波器を
容易に実現できる。さらに温度変化に対する位相特性が
無視でき、A/D変換部前段のアナログろ波器をより簡
素化し環境変化による安定性の高い装置とすることがで
きる。
As described above, the wave technology using fast Fourier transform is a digital filter, and it is possible to easily realize a filter with a narrow passband width with high precision and high stability without depending on environmental changes such as temperature and humidity. Furthermore, the phase characteristics with respect to temperature changes can be ignored, and the analog filter before the A/D converter can be further simplified, making it possible to provide a device with high stability against environmental changes.

〔実施例〕〔Example〕

第1図(a)で注入用変圧器を通じて接地線に印加した
測定用低周波信号により絶縁抵抗R,及び対地静電容量
C9を通る漏洩電流が発生する.この漏洩電流を変流器
で検出し、ろ波器を通じてA/D変換部に人力する. 又、制御部は低周波信号をトリガーとして前述のとおり
A/D変換部にA/D変換制御信号を送出する。波形記
憶部はA/D変換したデジタル・データを所定の番地に
記憶する。この番地は制御部により決定する。一連のA
/D変換が終了し、波形記憶部にデジタル・データの記
憶が終了しk時点で、制御部より演算部に向けて演算実
施信号を送出し、演算部は波形記憶部のデジタル・デー
タを高速フーリエ変換する。さらに高速フーリエ変換の
結果中、測定用低周波信号周波数と同じ周波数成分の中
より実数部のみを抽出し出力する。この出力は電路の絶
縁抵抗R9の値に反比例する.又、より高精度とするた
めにこの出力回数の平均値を演算する等の数値処理を行
うことは容易に実施できる。
In Fig. 1(a), a leakage current is generated through the insulation resistance R and the ground capacitance C9 due to the measurement low frequency signal applied to the ground wire through the injection transformer. This leakage current is detected by a current transformer and is manually input to the A/D converter through a filter. Further, the control section uses the low frequency signal as a trigger to send out an A/D conversion control signal to the A/D conversion section as described above. The waveform storage unit stores A/D converted digital data at a predetermined address. This address is determined by the control section. series of A's
When the /D conversion is completed and the storage of digital data in the waveform storage unit is completed, the control unit sends a calculation execution signal to the calculation unit, and the calculation unit converts the digital data in the waveform storage unit at high speed. Fourier transform. Further, from the results of the fast Fourier transform, only the real part is extracted from the frequency components that are the same as the measurement low frequency signal frequency and output. This output is inversely proportional to the value of the insulation resistance R9 of the electrical circuit. In addition, numerical processing such as calculating the average value of the number of outputs can be easily carried out in order to achieve higher accuracy.

〔発明の効果〕〔Effect of the invention〕

■ 従来の同y.uu流による手法に比べ、AID変換
後デジタル演算を行う本発明によりl!I!!個所が大
幅に削減され組立作業性の向上が計れる。
■ Conventional same y. Compared to the uu-style method, the present invention, which performs digital calculations after AID conversion, allows l! I! ! The number of parts is greatly reduced and assembly work efficiency can be improved.

■ 高速フーリエ変換の手法を用いることにより、ろ波
器で除去不可能であった測定用信号周波数近傍の雑音成
分を分離除去可能となる.■ 高速フーリエ変換とデジ
タル処理を用いることにより、環境変化による位相特性
変化を受けずに高絶縁抵抗の高安定、高精度測定が可能
となる。
■ By using the fast Fourier transform method, it is possible to separate and remove noise components near the measurement signal frequency that could not be removed by a filter. ■ By using fast Fourier transform and digital processing, it is possible to measure high insulation resistance with high stability and high accuracy without being affected by changes in phase characteristics due to environmental changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の概念及び実施例を示す囚、 第l図(b)は概念を説明するためのタイミングを示す
図、 第2図(a)は従来方法による絶縁抵抗測定装置の1例
を示したブロック図、 第2図(b)は、従来の測定方法の問題点を説明するた
めの等価回路図.
Figure 1 (a) is a diagram showing the concept and embodiments of the present invention, Figure 1 (b) is a diagram showing timing for explaining the concept, Figure 2 (a) is an insulation resistance measuring device using a conventional method. FIG. 2(b) is an equivalent circuit diagram for explaining the problems of the conventional measurement method.

Claims (1)

【特許請求の範囲】[Claims] 変圧器の接地線に注入用変圧器を介して電路に商用周波
数と異なる測定用低周波信号電圧を加えると共に、該測
定用低周波信号の漏洩電流成分を検出し、同時に検出し
た不要電流成分をろ波器により除去した後、該測定用低
周波信号より波形整形して得た同期信号をトリガーとし
て一定周期、一定時間間隔でろ波器の出力をデジタル値
に変換し波形データ記憶部に記憶し、この波形データを
用いて演算部で高速フーリエ変換を行うことにより、測
定信号周波数成分のうち絶縁抵抗成分を分離検出したこ
とを特徴とする絶縁抵抗測定方法。
A low-frequency signal voltage for measurement different from the commercial frequency is applied to the grounding wire of the transformer via an injection transformer to the power line, and a leakage current component of the low-frequency signal for measurement is detected, and at the same time, the detected unnecessary current component is After removal by a filter, the output of the filter is converted into a digital value at a fixed period and at fixed time intervals using a synchronization signal obtained by waveform shaping from the measurement low frequency signal as a trigger and stored in the waveform data storage unit. An insulation resistance measuring method characterized in that an insulation resistance component is separated and detected from a measurement signal frequency component by performing fast Fourier transform in a calculation unit using this waveform data.
JP395590A 1990-01-10 1990-01-10 Insulation resistance measurement method Expired - Fee Related JPH0743403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP395590A JPH0743403B2 (en) 1990-01-10 1990-01-10 Insulation resistance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP395590A JPH0743403B2 (en) 1990-01-10 1990-01-10 Insulation resistance measurement method

Publications (2)

Publication Number Publication Date
JPH03209177A true JPH03209177A (en) 1991-09-12
JPH0743403B2 JPH0743403B2 (en) 1995-05-15

Family

ID=11571528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP395590A Expired - Fee Related JPH0743403B2 (en) 1990-01-10 1990-01-10 Insulation resistance measurement method

Country Status (1)

Country Link
JP (1) JPH0743403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198188A (en) * 2008-02-19 2009-09-03 Kyoritsu Electrical Instruments Works Ltd Ground resistance meter
JP2010190645A (en) * 2009-02-17 2010-09-02 Fuji Electric Fa Components & Systems Co Ltd Method for detecting leakage current, leakage current detector, and system monitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838640B2 (en) * 2006-06-16 2011-12-14 光商工株式会社 Insulation state monitoring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198188A (en) * 2008-02-19 2009-09-03 Kyoritsu Electrical Instruments Works Ltd Ground resistance meter
JP2010190645A (en) * 2009-02-17 2010-09-02 Fuji Electric Fa Components & Systems Co Ltd Method for detecting leakage current, leakage current detector, and system monitor

Also Published As

Publication number Publication date
JPH0743403B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
TWI474014B (en) Leakage current calculating device and leakage current calculating method
US20160202308A1 (en) Method and system for identifying full parameters of element by fault recording and fault locating method
JP3234339B2 (en) Power measuring apparatus and method
Bak-Jenson et al. Parametric identification in potential transformer modelling
KR20210009771A (en) System and method for diagnosing partial discharge of electric power equipment, and a recording medium having computer readable program for executing the method
JPH03209177A (en) Measurement of insulation resistance
Hwang Improvement of phasor estimation accuracy by prony-based identification of two decaying dc components
CN107505500A (en) Electronic mutual inductor integration method in GIS
JP2579479B2 (en) Measurement method of dielectric loss
JP4369909B2 (en) Magnetic property measuring method and measuring instrument
KR100475739B1 (en) system for testing character of filter
JP3842140B2 (en) Transformer residual flux measuring device
CN111551785A (en) Frequency and harmonic detection method based on unscented Kalman filter
Nicolae et al. Estimating Inductances of Coils with Ferromagnetic Cores with a Data Acquisition System in a Noisy Environment
CN105388361B (en) Two-way interpolation synchronizes the FFT electric harmonic detection methods of sample sequence
CN116400158A (en) Method and system for eliminating interference of leakage current interphase capacitance of lightning arrester
JPH0688848A (en) Method for restoring applied voltage vector from leakage current of nonlinear element and resistance-component current measuring instrument
CN114814703A (en) Rogowski coil short-circuit current measurement waveform correction method based on FFT
JP5274920B2 (en) Resistance measuring device
Crotti et al. Compensation of Complex Frequency Errors of Voltage Instrument Transformers
RU2232456C1 (en) Method for detecting single-phase arcing-ground fault and phase failure in resonance-grounded-neutral distribution mains
JP2002202329A (en) High frequency noise removing method in diagnosis of power quality
JPH08285909A (en) Nonlinear inductance model forming method for arrester
JPH02176580A (en) Measurement of partial electric discharge
RU2540267C1 (en) Method for determining homogeneity of electrical quantity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees