JPH0320862B2 - - Google Patents

Info

Publication number
JPH0320862B2
JPH0320862B2 JP60265025A JP26502585A JPH0320862B2 JP H0320862 B2 JPH0320862 B2 JP H0320862B2 JP 60265025 A JP60265025 A JP 60265025A JP 26502585 A JP26502585 A JP 26502585A JP H0320862 B2 JPH0320862 B2 JP H0320862B2
Authority
JP
Japan
Prior art keywords
carbon
porous
plate
electrode plate
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60265025A
Other languages
Japanese (ja)
Other versions
JPS62126562A (en
Inventor
Yoshio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP60265025A priority Critical patent/JPS62126562A/en
Publication of JPS62126562A publication Critical patent/JPS62126562A/en
Publication of JPH0320862B2 publication Critical patent/JPH0320862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、多孔カーボン電極板とカーボンセパ
レーター板が一体接合された形体を有する燃料電
池用炭素質部材の製造法に関する。 〔従来の技術〕 燃料電池は、リン酸を保持した電解質層の両側
に白金触媒を担持した多孔質電極板を配置して単
位セルを構成し、各単位セルをセパレーターを介
して直列接続することにより所定のスタツク構造
に形成している。多孔質電極板およびセパレータ
ーは燃料と酸化剤のガス流通溝を付けるか否かに
よつてリブ付もしくは平板の形状タイプに分れる
が、これら部材には材質的に耐熱性、耐薬品性、
電気伝導性、熱伝導性、易加工性などの要求特性
を満すカーボン材が有用されている。 ところが、カーボン材は機械的強度が十分でな
いため、ハンドリングあるいは組立圧縮時に応々
にして破損する事態が発生する。近時、抵抗およ
びスタツク厚みの低下を図るために電極およびセ
パレーターがますます肉薄となつてきている関係
で、上記の破損現象は一層増加する傾向にある。
また、多孔質電極板とセパレーター板を積層する
従来の方式では、両面間に十分均等な密着接触を
得ることが困難であるため、電池内部抵抗の低減
化には限界がある。 このような理由から、多孔質電極とセパレータ
ーとを予め複合的に一体形成することにより上記
した欠点を解消する試みが盛んとなつてきてい
る。これら一体形成化のうち最も簡易で実用性の
高い手段は、特開昭60−20471、特開昭60−15759
などで提案されているようなカーボン系の多孔質
電極板およびセパレーター板あるいはこれら部材
の前駆体を接着剤を介して結合したのち焼成する
接合焼成法である。 〔発明が解決しようとする問題点〕 接合焼成法では炭素残留率の高い樹脂、ピツチ
などの有機液状接着剤を用いて電極とセパレータ
ーを接合するプロセスがとられるが、この段階で
接着剤が多孔質構造である電極骨格内に滲透して
しまつて電極の多孔組織を閉塞するとともに接着
性を著しく損ねる問題がある。また、接着剤が電
極あるいはセパレーターのガス流通溝に流入し
て、局部的に溝を閉塞する不都合な現象も屡々発
生する。 〔問題点を解決するための手段〕 本発明は、従来の接合焼成法における上記の問
題点を解決した燃料電池用炭素質部材の製造法を
提供するもので、その主要な構成は、多孔カーボ
ン電極板を50〜600℃の温度範囲で散失する物質
で含浸処理し、ついで炭化性接着剤を介してカー
ボンセパレーター板と接合したのち800℃以上で
焼成することを特徴とする。 多孔カーボン電極板は、炭素繊維と熱硬化性樹
脂の複合体を焼成炭化するような方法で得られる
平板あるいはリブ付板が用いられる。一方、カー
ボンセパレーター板としては、黒鉛基板にフエノ
ール系、フラン系などの熱硬化性樹脂液を含浸硬
化して焼成する方法、カーボン微粉末をフエノー
ル樹脂、フラン樹脂あるいはタールピツチなどと
混練して板状成形したのち焼成する方法、もしく
はフエノール系、フラン系などの熱硬化性樹脂成
形板を直接焼成してガラス状カーボン化する方法
などにより得られる不透過性の平板あるいはリブ
付板が用いられる。 これら多孔カーボン電極板とカーボンセパレー
ター板の接合は次のようにしておこなわれる。 多孔カーボン電極板を、50〜600℃の温度範囲
で散失する液状の物質で含浸処理する。含浸処理
は、浸漬、噴射あるいは塗布など適宜な手段によ
り少くとも含浸材が電極板組織の表面層部分を充
満するまでおこなわれる。この際、含浸処理と同
時に多孔カーボン電極板またはカーボンセパレー
ター板に設けられたガス流通溝に含浸材を充填固
化しておくことが望ましい。 含浸材とされる50〜600℃の温度範囲で散失す
る物質とは、前記温度範囲で熱分解、融解、気化
等の現象を起して電極組織内から消失する物質を
いうが、金属、無機塩類、熱硬化性樹脂のように
焼成工程において基材カーボンと反応したり、多
量の残留炭素を発生するものの使用は好ましくな
い。好適な物質は、ポリスチレン、ポリメタクリ
ル酸メチル、ポリアクリル酸メチル、ポリエチレ
ン、ポリプロピレン、パラフイン、ナフタリンも
しくはアントラセンで、これらの中から選択使用
される。 含浸処理または同時にガス流通溝に含浸材を充
填した多孔カーボン電極板は自然あるいは加熱乾
燥して含浸材を固定したのち、必要に応じ接合面
に付着、残留する含浸材を払拭する。 ついで炭化性接着剤を介してカーボンセパレー
ター板と接合する。炭化性接着剤には、フエノー
ル樹脂、フラン樹脂のような高炭化率で焼成後の
接着強度に優れた熱硬化性樹脂の初期縮合物、ま
たは当該樹脂にコークス、黒鉛、ガラス状カーボ
ン等の微粉を配合したものが用いられる。 接合後の部材は接着層を硬化し、引き続き常法
により不活性雰囲気下で800℃以上の温度域で焼
成して多孔カーボン電極板とカーボンセパレータ
ー板が一体形成された燃料電池用炭素部材を得
る。 〔作用〕 本発明においては、多孔カーボン電極板とカー
ボンセパレーター板を接合する前に電極板が50〜
600℃の温度範囲で散失する物質で含浸処理され
多孔構造組織は実質的に物質充填された状態とな
つているから、接合段階で炭化性接着剤が電極骨
格内に滲透する事態は効果的に阻止される。ま
た、含浸処理時に上記含浸材を多孔カーボン電極
板またはカーボンセパレーター板のガス流通溝に
充填固化しておけば、この部位に接着剤が流入す
る現象も防止される。 含浸物質は、その後の焼成過程で熱分解、融解
あるいは気化することにより多孔カーボン電極の
組織骨格内あるいは充填固化したガス流通溝内か
ら円滑に散失し、含浸・充填処理前の形態に戻
る。 このような50〜600℃の温度範囲で散失する物
質の介在消去作用に基づいて接着剤による多孔組
織およびガス流通溝への閉塞化は発生せず、これ
が接着性の改善に寄与する。 〔実施例〕 片面に巾1.5mm、深さ1.0mmのガス流通溝を有す
る気孔率53%、平均気孔径55μmの多孔カーボン
電極板(1辺150mmの正方形、厚さ2.4mm)にポリ
スチレンの30%トルエン溶液(含浸材)を3回に
亙つて均質に塗布して含浸処理し、24時間風乾し
てポリスチレンを樹脂化固定した。同時に、ガス
流通溝にパラフイン(軟化点60℃)を流し込み、
充填固化した。 含浸・充填処理された多孔カーボン電極板の接
合面(リブ部)を清浄したのち、黒鉛微粉(粒径
30μm以下)を配合したフエノール樹脂からなる
炭化性接着剤を薄く塗布したカーボンセパレータ
ー板(1辺150mmの正方形、厚さ1mm)と重ねて
圧搾した。このようにして接合した部材は、常温
下で12時間静置後、180℃に3時間保持して接着
剤を完全硬化した。 次いで接合部材を黒鉛るつぼに詰め、周囲をコ
ークスパツキングで被包した状態で電気炉にセツ
トし、1300℃の温度で焼成した。この方法により
10枚の一体複合タイプの燃料電池用炭素質部材を
製造した。 比較のために、上記の含浸・充填処理を施さな
い多孔カーボン電極を用い、その他は同一条件で
カーボンセパレーター板と接合焼成する方法によ
り10枚の複合タイプ部材を製造した。 本発明例と比較例で得られた部材の性状結果を
対比して下表に示した。
[Industrial Application Field] The present invention relates to a method for manufacturing a carbonaceous member for a fuel cell having a configuration in which a porous carbon electrode plate and a carbon separator plate are integrally joined. [Prior Art] In a fuel cell, a unit cell is constructed by arranging porous electrode plates carrying a platinum catalyst on both sides of an electrolyte layer holding phosphoric acid, and each unit cell is connected in series through a separator. It is formed into a predetermined stack structure. Porous electrode plates and separators can be divided into ribbed or flat plate shapes depending on whether they are provided with gas flow grooves for fuel and oxidizer, but these materials have heat resistance, chemical resistance,
Carbon materials that meet required properties such as electrical conductivity, thermal conductivity, and ease of processing are useful. However, since the carbon material does not have sufficient mechanical strength, it sometimes breaks during handling or assembly and compression. In recent years, as electrodes and separators have become thinner and thinner in order to reduce resistance and stack thickness, the above-mentioned failure phenomenon tends to increase further.
Further, in the conventional method of laminating a porous electrode plate and a separator plate, it is difficult to obtain sufficiently uniform close contact between both surfaces, and therefore there is a limit to the reduction in battery internal resistance. For these reasons, attempts have been made to eliminate the above-mentioned drawbacks by previously integrally forming a porous electrode and a separator in a composite manner. Among these integrally formed methods, the simplest and most practical means are JP-A-60-20471 and JP-A-60-15759.
This is a bonding and firing method in which a carbon-based porous electrode plate and a separator plate, or precursors of these members, as proposed in et al., are bonded via an adhesive and then fired. [Problems to be solved by the invention] In the bonding firing method, the electrode and separator are bonded using a resin with a high carbon retention rate or an organic liquid adhesive such as Pitch, but at this stage the adhesive becomes porous. There is a problem in that it permeates into the electrode skeleton, which is a solid structure, clogging the porous structure of the electrode and significantly impairing adhesiveness. Furthermore, an inconvenient phenomenon often occurs in which the adhesive flows into the gas flow grooves of the electrode or separator and locally blocks the grooves. [Means for Solving the Problems] The present invention provides a method for manufacturing carbonaceous members for fuel cells that solves the above-mentioned problems in the conventional bonding and firing method. It is characterized in that the electrode plate is impregnated with a substance that dissipates in a temperature range of 50 to 600°C, then bonded to a carbon separator plate via a carbonizable adhesive, and then fired at a temperature of 800°C or higher. As the porous carbon electrode plate, a flat plate or a ribbed plate obtained by firing and carbonizing a composite of carbon fibers and a thermosetting resin is used. On the other hand, carbon separator plates can be made by impregnating a graphite substrate with a thermosetting resin liquid such as phenol or furan and then curing it, or by kneading fine carbon powder with phenol resin, furan resin, or tar pitch. An impermeable flat plate or a ribbed plate obtained by a method of molding and then firing, or a method of directly firing a molded plate of a thermosetting resin such as a phenol type or furan type to form a glassy carbon is used. The porous carbon electrode plate and the carbon separator plate are joined as follows. A porous carbon electrode plate is impregnated with a liquid substance that dissipates in a temperature range of 50 to 600°C. The impregnation treatment is performed by appropriate means such as dipping, spraying, or coating until at least the surface layer of the electrode plate structure is filled with the impregnating material. At this time, it is desirable to fill and solidify the impregnating material into the gas flow grooves provided in the porous carbon electrode plate or the carbon separator plate at the same time as the impregnation process. Substances that are used as impregnating materials and disappear in the temperature range of 50 to 600℃ refer to substances that disappear from the electrode structure through phenomena such as thermal decomposition, melting, and vaporization within the above temperature range, but include metals, inorganic It is not preferable to use materials such as salts and thermosetting resins that react with the base carbon during the firing process or generate a large amount of residual carbon. Suitable materials are polystyrene, polymethyl methacrylate, polymethyl acrylate, polyethylene, polypropylene, paraffin, naphthalene or anthracene, selected from among these. After the porous carbon electrode plate is impregnated or simultaneously filled with the impregnating material in the gas flow grooves, the impregnating material is fixed by drying naturally or by heating, and then the impregnating material that adheres to and remains on the joint surface is wiped off as necessary. Then, it is bonded to a carbon separator plate via a carbonizable adhesive. Carbonizable adhesives include initial condensates of thermosetting resins such as phenol resins and furan resins, which have a high carbonization rate and have excellent bonding strength after firing, or the resins contain fine powders such as coke, graphite, and glassy carbon. A mixture of these is used. After joining, the adhesive layer of the bonded member is cured, and then fired in an inert atmosphere at a temperature of 800°C or higher using a conventional method to obtain a carbon member for fuel cells in which a porous carbon electrode plate and a carbon separator plate are integrally formed. . [Function] In the present invention, before joining the porous carbon electrode plate and the carbon separator plate, the electrode plate is
Since the porous structure is impregnated with a substance that dissipates in the temperature range of 600℃, the porous structure is essentially filled with the substance, so the situation where the carbonizable adhesive seeps into the electrode framework during the bonding process is effectively prevented. thwarted. Furthermore, if the impregnating material is filled and solidified into the gas flow grooves of the porous carbon electrode plate or carbon separator plate during the impregnation treatment, the phenomenon of the adhesive flowing into these areas can be prevented. The impregnated substance is thermally decomposed, melted, or vaporized during the subsequent firing process, and is smoothly dissipated from within the tissue framework of the porous carbon electrode or the filled and solidified gas distribution groove, returning to the form before the impregnation/filling treatment. Due to the intervening elimination effect of the substances that are dissipated in the temperature range of 50 to 600° C., the porous structure and gas flow grooves are not blocked by the adhesive, which contributes to improved adhesiveness. [Example] A porous carbon electrode plate (150 mm square on a side, 2.4 mm thick) with a porosity of 53% and an average pore diameter of 55 μm, which has a gas flow groove of 1.5 mm width and 1.0 mm depth on one side, was made of polystyrene. % toluene solution (impregnating material) three times for impregnation treatment, and was air-dried for 24 hours to fix the polystyrene as a resin. At the same time, paraffin (softening point 60℃) is poured into the gas distribution groove.
Filled and solidified. After cleaning the bonding surface (rib part) of the porous carbon electrode plate that has been impregnated and filled, fine graphite powder (particle size
A carbon separator plate (square, 150 mm on a side, 1 mm thick) coated with a thin layer of carbonizable adhesive made of a phenolic resin containing 30 μm or less) was stacked and pressed. The thus bonded members were allowed to stand at room temperature for 12 hours, and then held at 180° C. for 3 hours to completely cure the adhesive. Next, the bonding members were packed in a graphite crucible, surrounded by coke packing, set in an electric furnace, and fired at a temperature of 1300°C. By this method
We manufactured 10 integrated composite type carbonaceous members for fuel cells. For comparison, 10 composite type members were manufactured by using a porous carbon electrode that was not subjected to the above-mentioned impregnation/filling treatment, and bonding and firing with a carbon separator plate under the same conditions. The table below shows a comparison of the properties of the members obtained in the invention example and the comparative example.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の接合焼成法で問題とさ
れていた接着剤による多孔カーボン電極板の組織
閉塞、多孔カーボン電極板またはカーボンセパレ
ーター板におけるガス流通溝の閉塞といつた性状
劣化の発生が有効防止されるうえに、接着性能を
著るしく改善しえる効果がもたらされる。したが
つて、電極とセパレーターが一体化した高性能の
燃料電池用炭素質部材を安定して製造することが
可能となる。
According to the present invention, the occurrence of property deterioration such as tissue clogging of porous carbon electrode plates and gas flow groove clogging in porous carbon electrode plates or carbon separator plates due to adhesives, which have been problems with conventional bonding and firing methods, can be avoided. In addition to being effectively prevented, the adhesive performance can be significantly improved. Therefore, it is possible to stably produce a high-performance carbonaceous member for fuel cells in which an electrode and a separator are integrated.

Claims (1)

【特許請求の範囲】 1 多孔カーボン電極板を50〜600℃の温度範囲
で散失する物質で含浸処理し、ついで炭化性接着
剤を介してカーボンセパレーター板と接合したの
ち800℃以上で焼成することを特徴とする燃料電
池用炭素質部材の製造法。 2 含浸処理時、50〜600℃の温度範囲で散失す
る物質を多孔カーボン電極板またはカーボンセパ
レーター板に設けられたガス流通溝に充填する特
許請求の範囲第1項記載の燃料電池用炭素質部材
の製造法。 3 50〜600℃の温度範囲で散失する物質が、ポ
リスチレン、ポリメタクリル酸メチル、ポリアク
リル酸メチル、ポリエチレン、ポリプロピレン、
パラフイン、ナフタリンもしくはアントラセンか
ら選択される特許請求の範囲第1項記載の燃料電
池用炭素質部材の製造法。
[Claims] 1. A porous carbon electrode plate is impregnated with a substance that dissipates in a temperature range of 50 to 600°C, then bonded to a carbon separator plate via a carbonizable adhesive, and then fired at a temperature of 800°C or higher. A method for manufacturing a carbonaceous member for a fuel cell, characterized by: 2. The carbonaceous member for a fuel cell according to claim 1, wherein the gas flow grooves provided in the porous carbon electrode plate or the carbon separator plate are filled with a substance that is dispersed in a temperature range of 50 to 600°C during impregnation treatment. manufacturing method. 3 Substances that dissipate in the temperature range of 50 to 600°C include polystyrene, polymethyl methacrylate, polymethyl acrylate, polyethylene, polypropylene,
The method for producing a carbonaceous member for a fuel cell according to claim 1, wherein the carbonaceous member is selected from paraffin, naphthalene, or anthracene.
JP60265025A 1985-11-27 1985-11-27 Manufacture of carbon member for fuel cell Granted JPS62126562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60265025A JPS62126562A (en) 1985-11-27 1985-11-27 Manufacture of carbon member for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60265025A JPS62126562A (en) 1985-11-27 1985-11-27 Manufacture of carbon member for fuel cell

Publications (2)

Publication Number Publication Date
JPS62126562A JPS62126562A (en) 1987-06-08
JPH0320862B2 true JPH0320862B2 (en) 1991-03-20

Family

ID=17411532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60265025A Granted JPS62126562A (en) 1985-11-27 1985-11-27 Manufacture of carbon member for fuel cell

Country Status (1)

Country Link
JP (1) JPS62126562A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800328B2 (en) 2001-07-31 2004-10-05 Ballard Power Systems Inc. Process for impregnating porous parts

Also Published As

Publication number Publication date
JPS62126562A (en) 1987-06-08

Similar Documents

Publication Publication Date Title
US5993996A (en) Carbon supercapacitor electrode materials
JP5189239B2 (en) Fluid diffusion layer for fuel cells
JPH0230143B2 (en)
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JPH0449747B2 (en)
EP0212965B1 (en) Process for producing a thin carbonaceous plate
US4627944A (en) Method for producing a carbon sheet and a fuel cell separator
US4938942A (en) Carbon graphite component for an electrochemical cell and method for making the component
US4782586A (en) Process for the production of a porous monolithic graphite plate
JPH0320862B2 (en)
JPS61270268A (en) Composite carbon material and manufacture
JPH0158623B2 (en)
US4891279A (en) Fuel cell plate separator
JP2018537828A (en) Fuel cell electrolyte management device
JPH0131445B2 (en)
US4611396A (en) Fuel cell plate separator
JPS6228546B2 (en)
JPS6029810Y2 (en) Fuel cell gas separation plate
JPH0450709B2 (en)
JPH0363183B2 (en)
JPS6240822B2 (en)
EP0581367A1 (en) Substrates containing resin, fibers and anti-agglomeration agent
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JPS62154470A (en) Manufacture of carbon member for fuel cell
JPH03105863A (en) Carbonaceous composite member of fuel cell and its manufacture