JPH03208368A - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JPH03208368A JPH03208368A JP2002730A JP273090A JPH03208368A JP H03208368 A JPH03208368 A JP H03208368A JP 2002730 A JP2002730 A JP 2002730A JP 273090 A JP273090 A JP 273090A JP H03208368 A JPH03208368 A JP H03208368A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- circuit
- internal
- gate
- semiconductor integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 29
- 239000003990 capacitor Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 17
- 230000007257 malfunction Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Dram (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
半導体集積回路装置に関し、
外部電源の変動に対して内部電源の変動を抑え、内部回
路に安定な電源を供給して内部回路の誤動作、動作速度
の低下を防くことのできる半導体集積回路装置を提供す
ることを目的とし、外部電源と所定の信号処理を行う集
積化された内部回路との間に内部降圧回路を設け、該内
部降圧回路により外部電源を降圧して内部回路に供給す
るとともに、該内部降圧回路は、NMOSトランジスタ
を備えて構成し、該NMO5)ランジスタのゲートに所
定の電位を与えることで作動させ、外部電源を降圧して
内部回路に供給する半導体集積回路装置において、前記
NMO3トランジスタのゲー]・と高電位電源である外
部電源との間に抵抗素子を介挿するとともに、該ケート
と低電位電源との間に容量素子を介挿し、これらの各素
子を含めて内部降圧回路を構成するように構成する。[Detailed Description of the Invention] [Summary] Regarding a semiconductor integrated circuit device, the present invention suppresses fluctuations in an internal power supply in response to fluctuations in an external power supply, and supplies stable power to an internal circuit to prevent malfunction of the internal circuit and decrease in operating speed. In order to provide a semiconductor integrated circuit device that can protect the external power supply, an internal step-down circuit is provided between an external power supply and an integrated internal circuit that performs predetermined signal processing. The internal step-down circuit is configured with an NMOS transistor and is activated by applying a predetermined potential to the gate of the NMOS transistor to step down the external power supply and supply it to the internal circuit. In the semiconductor integrated circuit device to be supplied, a resistive element is inserted between the gate of the NMO3 transistor and an external power source which is a high potential power source, and a capacitive element is inserted between the gate and a low potential power source. , these elements are included to form an internal voltage down converter.
本発明は、半導体集積回路装置に係り、詳しくは、電源
電圧を内部降圧して用いる半導体集積回路装置に関する
。The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor integrated circuit device that uses a power supply voltage that is internally stepped down.
近年、半導体集積回路の高集積化のため、素子の微細化
に伴いホントキャリア効果が顕著になっている。特に、
電源電圧が5■のままNMOsトランジスタのチャネル
長がサブミクロンになると、トレイン近傍に高電界が発
生し、そこで加速され高い工フルギーを得たホットキャ
リアがNMOS]・ランジスタのしきい値電圧などを変
動させ経時変化を引き起こすという、いわゆるホントキ
ャリア問題は一定電圧スケーリングの大きな障害である
。In recent years, as semiconductor integrated circuits have become highly integrated, the true carrier effect has become more prominent as elements become smaller. especially,
When the channel length of the NMOS transistor becomes submicron while the power supply voltage remains at 5■, a high electric field is generated near the train, and the hot carriers that are accelerated there and obtain a high energy efficiency are The so-called true carrier problem, which causes fluctuations and changes over time, is a major obstacle to constant voltage scaling.
上述の問題の1つの解決法に、外部からの供給電圧は5
Vでもオンチップで電源電圧を降圧する内部降圧回路を
用意と、内部は5V以下(例えば3V)で動作する方式
がある。One solution to the above problem is that the external supply voltage is 5
There is a system that operates internally at 5V or less (for example, 3V) by preparing an internal step-down circuit that steps down the power supply voltage on-chip.
〔従来の技術)
内部降圧回路を有する従来の半導体集積回路装置として
は、例えば第6図に示すようなものが知られている。同
図において、外部電源Vcc(例えば、5V)は内部降
圧回路を構成するNMOSトランジスタ1乙こよって内
部電源VaNt (例えば、4V)に降圧されて内部
回路2に供給される。NMOSトランジスタ1のゲート
はドレインに接続され、外部電源VCCはNMOSトラ
ンジスタ1を通過することで、(Vcc −V thn
)のレヘルVINTに降圧される。なお、V thnは
NMOSトランジスタ1のしきい値電圧である。内部回
路2と巳ては、チップ内の各種論理回路等か相当巳、例
えば半導体集積回路装置として半導体ノモリに適用した
場合はメモリセルやセンスアンプ等が含まれる。[Prior Art] As a conventional semiconductor integrated circuit device having an internal voltage step-down circuit, the one shown in FIG. 6, for example, is known. In the figure, an external power supply Vcc (for example, 5V) is stepped down to an internal power supply VaNt (for example, 4V) by an NMOS transistor 1B constituting an internal voltage step-down circuit, and is supplied to an internal circuit 2. The gate of NMOS transistor 1 is connected to the drain, and external power supply VCC passes through NMOS transistor 1, so that (Vcc −V thn
) is stepped down to Lehel VINT. Note that V thn is the threshold voltage of the NMOS transistor 1. The internal circuit 2 includes various logic circuits within a chip, such as memory cells and sense amplifiers when applied to a semiconductor memory as a semiconductor integrated circuit device.
5か巳ながら、このような従来O半導体集積回路装置に
あっては、第7図に示すように、外部電源Vccが変動
(変動幅はdVcc)すると、NMOSトランジスタ1
のゲート電位もこれに伴って変動することから、内部電
源VINTが太き(変動(変動幅はdV+at)し、内
部回路に安定な電源の供給ができず、内部回路の誤動作
、動作速度の低下を招くという問題点があった。However, in such a conventional O semiconductor integrated circuit device, as shown in FIG.
Since the gate potential of VINT fluctuates accordingly, the internal power supply VINT increases (fluctuations (fluctuation width is dV+at)), making it impossible to supply stable power to the internal circuits, causing malfunctions of the internal circuits, and reductions in operating speed. There was a problem in that it invited
そこで本発明は、外部電源の変動に対して内部電源の変
動を抑え、内部回路に安定な電源を供給して内部回路の
誤動作、動作速度の低下を防くことのできる半導体集積
回路装置を提供することを目的としている。SUMMARY OF THE INVENTION Therefore, the present invention provides a semiconductor integrated circuit device that suppresses fluctuations in the internal power supply in response to fluctuations in the external power supply, supplies stable power to the internal circuit, and prevents malfunction of the internal circuit and reduction in operating speed. It is intended to.
3課題を解決するための手段〕
本発明に誹る半導体集積回路装置は上記目的達成の・た
め、その原理図を第1図に示すように、外部型fiX’
c、cと所定の信号処理を行う集積化さn、た内部回路
2との間に内部降圧回路10を設け、該内部降圧回路1
0C:より外部型1lvcCを降圧して内部回置2に供
給するとともに、該内部降圧回路]Oは、NMOSトラ
ンジスタ11を備えて構成し、該NMOS)ランジスタ
11のゲートに所定の電位を与えることで作動させ、外
部電源Vccを降圧して内部回路2に供給する半導体集
積回路装置において、前記NMO54ランジスタ11の
ゲートと高電位電源である外部電源VCCとの間に抵抗
素子12を介挿するとともに、該ゲートと低電位電源(
例えば、接地電位でVss)との間に容量素子13を介
挿し、これらの各素子12.13を含めて内部降圧回路
10を構成するようにしている。Means for Solving the 3 Problems] In order to achieve the above object, the semiconductor integrated circuit device according to the present invention has an external type fiX' as shown in FIG.
An internal step-down circuit 10 is provided between the integrated internal circuit 2, which performs predetermined signal processing, and the internal step-down circuit 1.
0C: In addition to lowering the voltage of the external type 1lvcC and supplying it to the internal circuit 2, the internal step-down circuit]O is configured with an NMOS transistor 11, and a predetermined potential is applied to the gate of the NMOS transistor 11. In this semiconductor integrated circuit device, a resistive element 12 is inserted between the gate of the NMO54 transistor 11 and the external power source VCC, which is a high potential power source, in a semiconductor integrated circuit device that operates at , the gate and the low potential power supply (
For example, a capacitive element 13 is inserted between the capacitive element 13 and the ground potential (Vss), and the internal step-down circuit 10 is configured including each of these elements 12 and 13.
本発明では、動作の波形図を第2図に示すように、何ら
かの理由で外部電源Vccが変動したとき(変動幅は従
来例と同じ<d Vcc) 、NMOSトランジスタ1
1のゲートには抵抗素子12および容量素子13が接続
されているため、ゲート電位VGSは抵抗素子12によ
って外部型avccの変動に追従できず、容量素子13
とゲートに蓄えられている電荷はで激に変化せず、緩や
かに変動するにすぎない。In the present invention, as shown in the operational waveform diagram in FIG.
Since the resistive element 12 and the capacitive element 13 are connected to the gate of the resistive element 12, the gate potential VGS cannot follow the fluctuation of the external type avcc due to the resistive element 12, and the capacitive element 13
The charge stored in the gate does not change dramatically, but only fluctuates slowly.
そのため、ゲート電位VGSはわずかに変動するのみで
あり、内部NaV I NTの変動dvINアが小さく
抑えられる。Therefore, the gate potential VGS changes only slightly, and the fluctuation dvINA of the internal NaV I NT can be kept small.
したがって、内部回路2には安定な電源が供給され、内
部回路2の誤動作、動作速度の低下が防止される。Therefore, stable power is supplied to the internal circuit 2, and malfunction of the internal circuit 2 and reduction in operating speed are prevented.
以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.
第3図は本発明に係る半導体集積回路装置(集積回路チ
ップに相当。以下、同じ)の第1実施例を示す図である
。本実施例の説明に当たり、第1図の回路と同一構成部
分には同一符号を付して重複説明を省略する。FIG. 3 is a diagram showing a first embodiment of a semiconductor integrated circuit device (corresponding to an integrated circuit chip; the same applies hereinafter) according to the present invention. In describing this embodiment, the same components as those in the circuit of FIG. 1 are designated by the same reference numerals, and redundant explanation will be omitted.
第3図において、本装置では抵抗素子としてPMO3I
−ランシスタ21が設けられ、容量素子と巳て所定容量
のコンデンサ22が設けられている。そ、して、p:x
ostランンスタ21のゲートは接地されている。PM
O5)ランジスタ2】、コンデンサ22およ乙1\MO
Sトランンスタ11は内部陪圧回路23を構成している
。内部回路2としては、例えば半導体集積回路装置とし
て半導体メモリに適用した場合はメモリセルやセンスア
ンプ等が含まれる。In Fig. 3, this device uses PMO3I as a resistance element.
- A run transistor 21 is provided, and a capacitor 22 of a predetermined capacity is provided in addition to the capacitive element. Then, p:x
The gate of the ost run star 21 is grounded. PM
O5) Transistor 2], capacitor 22 and Otsu1\MO
The S transistor 11 constitutes an internal voltage circuit 23. The internal circuit 2 includes, for example, a memory cell, a sense amplifier, etc. when applied to a semiconductor memory as a semiconductor integrated circuit device.
以上の構成において、本実施例ではPMOSトランジス
タ21がオン状態にあって抵抗素子として働くため、外
部電源Vccの変動に伴う動作原理は上述の本発明の作
用説明と同様であり、NMOSトランジスタ11のゲー
ト電位V G Sの変動を小さく抑えて内部電源VIN
Tの変動dV、Nアを抑制することができる。その結果
、内部回路2に安定な電源を供給することができ、内部
回路2の誤動作、動作速度の低下を防止することができ
る。In the above configuration, in this embodiment, the PMOS transistor 21 is in the on state and works as a resistance element, so the operating principle accompanying fluctuations in the external power supply Vcc is the same as the explanation of the operation of the present invention described above, and the NMOS transistor 11 Internal power supply VIN by suppressing fluctuations in gate potential VGS
T fluctuations dV and NA can be suppressed. As a result, stable power can be supplied to the internal circuit 2, and malfunctions and reductions in operating speed of the internal circuit 2 can be prevented.
なお、本実施例のように抵抗素子としてPM○Sトラン
ジスタ21を用いれば、インピーダンスが高いため、レ
イアウトパターンの面積が少なくて済むという利点があ
る。Note that if the PM○S transistor 21 is used as the resistance element as in this embodiment, the impedance is high, so there is an advantage that the area of the layout pattern can be reduced.
次に、第4図は本発明に係る半導体集積回路装置の第2
実施例を示す図であり、本実施例は容量素子とじて!’
J M OS )ニン7コスタ11のノr−−1−容量
C6を用いたもので、その他:ま第3図の回路と同様で
ある。本実施例では該ゲート容量C6を含めてPMOS
トランジスタ21およびNMOSトランジスタ11によ
り内部降圧回路24が構成される。Next, FIG. 4 shows a second diagram of the semiconductor integrated circuit device according to the present invention.
This is a diagram showing an example, and this example is a capacitive element! '
This circuit uses a capacitor C6 of Nin7Costa11, and is otherwise the same as the circuit shown in FIG. In this embodiment, the PMOS including the gate capacitance C6
Transistor 21 and NMOS transistor 11 constitute internal voltage down converter 24 .
したがって、新たにコンデンサを設ける必要がないとい
う利点があり、レイアウトパターンの面積が少なくて済
む。Therefore, there is an advantage that there is no need to newly provide a capacitor, and the area of the layout pattern can be reduced.
第5図は本発明に係る半導体集積回路装置の第3実施例
を示す図であり、本実施例は抵抗素子としてPMOSト
ランジスタの代わりに抵抗25を設け、容量素子として
は第4図の回路と同様にNMOSトランジスタ11のゲ
ート容量C0を用いたものである。本実施例でも上記同
様の効果を得ることができるのは勿論である。FIG. 5 is a diagram showing a third embodiment of the semiconductor integrated circuit device according to the present invention. In this embodiment, a resistor 25 is provided instead of the PMOS transistor as a resistor element, and the circuit of FIG. 4 is used as a capacitor element. Similarly, the gate capacitance C0 of the NMOS transistor 11 is used. It goes without saying that the same effects as described above can be obtained in this embodiment as well.
なお、上記各実施例は本発明を半導体メモリに適用した
例であるが、本発明はこれに限るものではなく、他のあ
ら空る半導体集積回路装置に通用することができる。Although each of the embodiments described above is an example in which the present invention is applied to a semiconductor memory, the present invention is not limited thereto, and can be applied to any other semiconductor integrated circuit device.
こ発明の効果:
本発明Sこよnば、外部電源の変動乙こ対して内部電源
の変動を抑えることができ、内部回路に安定な電源を供
給することができる。したがって、内部回路の誤動作、
動作速度の低下を防くことができる。Effects of the Invention: According to the present invention, fluctuations in the internal power supply can be suppressed compared to fluctuations in the external power supply, and stable power can be supplied to the internal circuit. Therefore, malfunction of internal circuits,
This can prevent a decrease in operating speed.
第1図は本発明の詳細な説明する回路図、第2図は本発
明の詳細な説明する波形図、第3図は本発明に係る半導
体集積回路装置の第1実施例を示す回路図、
第4図は本発明に係る半導体集積回路装置の第2実施例
を示す回路図、
第5図は本発明に係る半導体集積回路装置の第3実施例
を示す回路図、
第6.7図は従来の半導体集積回路装置を示す図であり
、
第6はその回路図、
第7関はその動作を説明する波形図である。
2・・・・・・内部回路、
10、23.24.26・・・・・・内部降圧回路、1
1・・・・・・・・・・・・NMOSトランジスタ、1
2・・・・・・抵抗素子、
13・・・・・・容量素子、
21・・・・・・PMOS)ランジスタ(抵抗素子)2
2・・・・・・コンデンサ(容量素子)、25・−・・
・・抵抗(抵抗素子)。
第1実施例の回路図
第 3 図
本発明の詳細な説明する回路図
第1図
本発明の詳細な説明する波形図
従来例の回路図FIG. 1 is a circuit diagram explaining the present invention in detail, FIG. 2 is a waveform diagram explaining the present invention in detail, and FIG. 3 is a circuit diagram showing a first embodiment of the semiconductor integrated circuit device according to the present invention. 4 is a circuit diagram showing a second embodiment of the semiconductor integrated circuit device according to the present invention, FIG. 5 is a circuit diagram showing a third embodiment of the semiconductor integrated circuit device according to the present invention, and FIG. 6.7 is a circuit diagram showing a third embodiment of the semiconductor integrated circuit device according to the present invention. It is a figure which shows the conventional semiconductor integrated circuit device, 6th is its circuit diagram, and 7th is a waveform diagram explaining its operation|movement. 2...Internal circuit, 10, 23.24.26...Internal step-down circuit, 1
1......NMOS transistor, 1
2... Resistance element, 13... Capacitive element, 21... PMOS) transistor (resistance element) 2
2... Capacitor (capacitive element), 25...
...Resistance (resistance element). Circuit diagram of the first embodiment Fig. 3 A circuit diagram explaining the present invention in detail Fig. 1 Waveform diagram explaining the present invention in detail Fig. 1 A circuit diagram of the conventional example
Claims (1)
路との間に内部降圧回路を設け、 該内部降圧回路により外部電源を降圧して内部回路に供
給するとともに、 該内部降圧回路は、NMOSトランジスタを備えて構成
し、該NMOSトランジスタのゲートに所定の電位を与
えることで作動させ、外部電源を降圧して内部回路に供
給する半導体集積回路装置において、 前記NMOSトランジスタのゲートと高電位電源である
外部電源との間に抵抗素子を介挿するとともに、 該ゲートと低電位電源との間に容量素子を介挿し、これ
らの各素子を含めて内部降圧回路を構成したことを特徴
とする半導体集積回路装置。[Claims] An internal step-down circuit is provided between an external power source and an integrated internal circuit that performs predetermined signal processing, and the internal step-down circuit steps down the external power source and supplies it to the internal circuit. In a semiconductor integrated circuit device, the internal step-down circuit is configured with an NMOS transistor and is activated by applying a predetermined potential to the gate of the NMOS transistor to step down the external power supply and supply it to the internal circuit. A resistive element is inserted between the gate and an external high-potential power source, and a capacitive element is inserted between the gate and a low-potential power source, and an internal step-down circuit is constructed by including each of these elements. A semiconductor integrated circuit device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002730A JPH03208368A (en) | 1990-01-10 | 1990-01-10 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002730A JPH03208368A (en) | 1990-01-10 | 1990-01-10 | Semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03208368A true JPH03208368A (en) | 1991-09-11 |
Family
ID=11537436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002730A Pending JPH03208368A (en) | 1990-01-10 | 1990-01-10 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03208368A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004533719A (en) * | 2001-05-04 | 2004-11-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Integrated circuit |
-
1990
- 1990-01-10 JP JP2002730A patent/JPH03208368A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004533719A (en) * | 2001-05-04 | 2004-11-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Integrated circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3085782B2 (en) | Semiconductor storage device | |
US6172899B1 (en) | Static-random-access-memory cell | |
JP3755911B2 (en) | Semiconductor circuit | |
US5144585A (en) | Supply voltage converter for high-density semiconductor memory device | |
JP2000058761A (en) | Semiconductor integrated circuit | |
JP2002083872A (en) | Semiconductor integrated circuit | |
JP2007066463A (en) | Semiconductor device | |
US20080123458A1 (en) | Virtual power rails for integrated circuits | |
US6246280B1 (en) | Negative voltage generating circuit with high control responsiveness which can be formed using transistor with low breakdown voltage and semiconductor memory device including the same | |
US6087891A (en) | Integrated power supply voltage generators having reduced susceptibility to parasitic latch-up during set-up mode operation | |
US9659607B2 (en) | Sense amplifier circuit and semiconductor memory device | |
JP3186034B2 (en) | Reference voltage generation circuit | |
US6621329B2 (en) | Semiconductor device | |
JPH0241928B2 (en) | ||
JP3688572B2 (en) | Semiconductor integrated circuit | |
JPH03208368A (en) | Semiconductor integrated circuit device | |
US4972097A (en) | Reference voltage generating circuit in semiconductor device | |
KR100323981B1 (en) | Internal voltage generating circuit of semiconductor memory device | |
KR0142956B1 (en) | Internal source voltage generator circuit | |
JPH0442493A (en) | Semiconductor memory | |
JPH01112815A (en) | Semiconductor integrated circuit | |
Tyagi et al. | Adaptive Forward Body Bias Voltage Generator | |
KR20030032178A (en) | Data out driver for controlling the voltage level of output data | |
JPH02172268A (en) | Internal voltage supplying method for integrated circuit | |
JPH0785664A (en) | Dynamic type mos memory |