JPH03208006A - Polarized light controller - Google Patents

Polarized light controller

Info

Publication number
JPH03208006A
JPH03208006A JP323090A JP323090A JPH03208006A JP H03208006 A JPH03208006 A JP H03208006A JP 323090 A JP323090 A JP 323090A JP 323090 A JP323090 A JP 323090A JP H03208006 A JPH03208006 A JP H03208006A
Authority
JP
Japan
Prior art keywords
polarized light
polarization
light
phase compensator
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP323090A
Other languages
Japanese (ja)
Inventor
Akio Ichikawa
市川 昭夫
Toshiyuki Takeda
武田 敏幸
Satoshi Matsuura
聡 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP323090A priority Critical patent/JPH03208006A/en
Priority to US07/637,096 priority patent/US5191387A/en
Publication of JPH03208006A publication Critical patent/JPH03208006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To take out the polarized light whose polarized light state is known by converting an incident light to linearly, elliptically and circularly polarized light by two phase compensators, and also, adjusting arbitrarily an angle of polarization by a polarized light rotating device. CONSTITUTION:An incident light 11 having an arbitrary polarized light is converted to a polarized light having a polarized light main axis azimuth on the X axis or on the Y axis by the control of a phase compensator 1. Subsequently, this controlled incident light 11 is converted to an arbitrary polarized light whose polarized light main axis azimuth is on the X axis or on the Y axis by a phase compensator 2. Accordingly, the incident light is converted to an arbitrary polarized light of a linearly polarized light, an elliptically polarized light and a circularly polarized light by the phase compensators 1,2. Thereafter, by rotating the polarized light by a polarized light rotating device 3, the polarized light whose polarized light main exis azimuth is varied continuously can be taken out. In such a way, an arbitrary polarized light whose polarized light state is known can be taken out.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、偏光状態が未知な入射光を偏光状態が既知
な任意の偏光に変換する偏光制御装置についてのもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a polarization control device that converts incident light whose polarization state is unknown to arbitrary polarization light whose polarization state is known.

[従来の技術コ 次に、従来技術による偏光装置の構戒を第2図により説
明する。
[Conventional Technology] Next, the structure of a polarization device according to the prior art will be explained with reference to FIG.

第2図のlと2は位相補償器、4はビームスプリッタ,
工lは入射光、12は出力光、13はモ二夕光、2lは
ビームスプリツタ、22はウオラストンプリズム、23
と24は光検出器,25は制御部、26は1/4波長板
、27はウオラストンプリズム、28と29は光検出器
、30は制御部である。
In Fig. 2, l and 2 are phase compensators, 4 is a beam splitter,
1 is the incident light, 12 is the output light, 13 is the monitor light, 2l is the beam splitter, 22 is the Wollaston prism, 23
and 24 are photodetectors, 25 is a control section, 26 is a quarter wavelength plate, 27 is a Wollaston prism, 28 and 29 are photodetectors, and 30 is a control section.

入射光上工は、位相補償器上・2を通過した後に、ビー
ムスプリッタ4で出力光12とモニタ光13に分離され
る。
After the incident light beam passes through the phase compensator 2, it is separated by the beam splitter 4 into output light 12 and monitor light 13.

泣相補償器工・2には、電気光学結晶に電圧を加えると
生ずる複屈折や、ガラスなどに応力を加えると生ずる複
屈折などを利用することができる。
For the phase compensator 2, birefringence that occurs when voltage is applied to an electro-optic crystal, birefringence that occurs when stress is applied to glass, etc. can be used.

モニタ光13は、モニタ光14・15に分離される。The monitor light 13 is separated into monitor lights 14 and 15.

モニタ光14は、ウォラストンプリズム22で直交した
偏光成分に分離され、光検出器23・24および制御部
25で直交偏光戒分のパワー差を検出して位相補償器1
を制御する。
The monitor light 14 is separated into orthogonal polarization components by the Wollaston prism 22, and the power difference between the orthogonal polarization components is detected by the photodetectors 23 and 24 and the control unit 25, and the phase compensator 1
control.

モニタ光15は、↓/4波長板26を通過し、ウォラス
トンプリズム27で2つの直交した偏光戒分に分離され
、光検出器28・29および制御部30で直交偏光或分
のパワー差を検出して位相補償器2を制御する。
The monitor light 15 passes through the ↓/4 wavelength plate 26, is separated into two orthogonal polarization components by the Wollaston prism 27, and is divided into two orthogonal polarization components by the photodetectors 28 and 29 and the control section 30, which converts the power difference between the orthogonal polarization components to a certain extent. The signal is detected and the phase compensator 2 is controlled.

2つの位相補償器1・2の主軸方向は、互いに45゜傾
けて配置される。
The principal axes of the two phase compensators 1 and 2 are arranged at an angle of 45 degrees to each other.

2つのウオラストンプリズム22・27の主軸方向も互
いに45゜傾けて配置され、ウオラストンプリズム22
の主軸方向は、1/4波長板26の主軸方向と一致して
配置される。
The principal axes of the two Wollaston prisms 22 and 27 are also arranged at an angle of 45 degrees to each other, and the Wollaston prism 22
The principal axis direction of is arranged to coincide with the principal axis direction of the quarter-wave plate 26.

光検出器23・24の出力は制御部25に入り、その出
力差がrOJになるようにする。
The outputs of the photodetectors 23 and 24 are input to the control section 25, and the difference between the outputs is made to be rOJ.

すなわち、モニタ光l4の直交偏光或分の差が「0」に
なるように位相補償器1を制御する。
That is, the phase compensator 1 is controlled so that a certain difference between the orthogonal polarizations of the monitor light l4 becomes "0".

これにより、入射光1lの偏光主軸の方向をウオラスト
ンプリズム27の主軸方向と一致させることができる。
Thereby, the direction of the principal axis of polarization of the incident light 1l can be made to match the direction of the principal axis of the Wollaston prism 27.

光検出器28・29の出力は制御部30に入り、その出
力差がrOJになるように位相補償器2を制御する。
The outputs of the photodetectors 28 and 29 enter a control section 30, which controls the phase compensator 2 so that the output difference becomes rOJ.

これにより、入射光11が直線偏光に制御される。Thereby, the incident light 11 is controlled to be linearly polarized light.

[発明が解決しようとする課題] 第2図の従来技術では、検出系の構或によって、それぞ
れのモニタ光の直交偏光戊分の出力差を「0」とするよ
うな制御に限られるので、出力光の偏光状態が直線偏光
に限定される。
[Problems to be Solved by the Invention] In the prior art shown in FIG. 2, control is limited to setting the output difference between the orthogonal polarization components of each monitor light to "0" due to the configuration of the detection system. The polarization state of the output light is limited to linear polarization.

また、検出系に他の構成を用いたとしても、2つの位相
補償器では、入射偏光の直交偏光成分に対する位相差の
制御に限られるので、偏光の状態を連続的に変えること
はできないという問題かある。
Another problem is that even if other configurations are used in the detection system, the two phase compensators are limited to controlling the phase difference for the orthogonal polarization components of the incident polarization, so the state of polarization cannot be changed continuously. There is.

この発明は、偏光状態を制御する系として、2個の位相
補償器と1個の偏光回転器を採用し、偏光状態を検出す
る系として、2つの位相補償器の主軸方向と重ならない
ように、その透過軸方向が配置された検光子と、検光子
で透過した光を受光する光検出器を採用して、偏光状態
を直線偏光、楕円偏光および円偏光の任意の偏光にする
ことができ、また、その偏光主軸方位角を任意に調整す
ることができ、かつ、それらの偏光状態を連続的に変化
させることができる偏光制御装置の提供を目的とする。
This invention employs two phase compensators and one polarization rotator as a system for controlling the polarization state, and a system for detecting the polarization state so as not to overlap with the principal axes of the two phase compensators. By employing an analyzer whose transmission axis direction is arranged and a photodetector that receives the light transmitted by the analyzer, the polarization state can be set to any polarization among linear polarization, elliptical polarization, and circular polarization. Another object of the present invention is to provide a polarization control device that can arbitrarily adjust the azimuth angle of the principal axis of polarization and can continuously change the polarization state.

[tlDを解決するための手段] この目的を達成するために、この発明では、入射光11
に対して位相差を与える第1の位相補償器上と、第1の
位相補償器1を通過した入射光11に対して第1の位相
補償D1と45″違う方向に位相差を与える第2の位相
補償器2と、第2の位相補償器2を通過した入射光1工
の偏光面を回転させる偏光回転器3と、偏光回転器3を
通過した入射光11を出力光12とモニタ光l3に分離
するビームスプリッタ4と、第↓の位相補償器1と第2
の位相補償器2の主軸方向に対して透過軸方向が重なら
ない位置に配置され、第1の位相補償器1、第2の位相
補償器2および偏光回転器3による偏光制御状態を光量
に変換する検光子5と、検光子5を通過したモニタ光1
3を検出する光検出器6と、光検出器6の出力を入力と
し、第1の位相補償器1、第2の位相補償器2および偏
光回転器3を制御する制御部7とを備える。
[Means for solving tLD] In order to achieve this objective, in this invention, the incident light 11
and a second phase compensator that provides a phase difference in a direction 45" different from the first phase compensation D1 for the incident light 11 that has passed through the first phase compensator 1. a phase compensator 2, a polarization rotator 3 that rotates the polarization plane of the incident light 1 that has passed through the second phase compensator 2, and a polarization rotator 3 that rotates the polarization plane of the incident light 11 that has passed through the second phase compensator 2; Beam splitter 4 that separates into 13, ↓ phase compensator 1 and 2
The polarization control state by the first phase compensator 1, the second phase compensator 2, and the polarization rotator 3 is converted into a light amount. analyzer 5 and monitor light 1 that has passed through the analyzer 5
3, and a control section 7 that receives the output of the photodetector 6 and controls the first phase compensator 1, the second phase compensator 2, and the polarization rotator 3.

次に、この発明による偏光制御装置の構戒を第1図によ
り説明する。
Next, the structure of the polarization control device according to the present invention will be explained with reference to FIG.

第1図の1と2は位相補償器、3は偏光回転器、4はビ
ームスプリツタ、5は検光子、6は光検出器、7は制御
部である。
In FIG. 1, 1 and 2 are phase compensators, 3 is a polarization rotator, 4 is a beam splitter, 5 is an analyzer, 6 is a photodetector, and 7 is a control section.

[作用] 次に、第1図の位相補償器1・2、検光子5の配置を第
3図により説明する。
[Function] Next, the arrangement of the phase compensators 1 and 2 and the analyzer 5 shown in FIG. 1 will be explained with reference to FIG. 3.

第3図は、位相補償器1の複屈折軸方向をX軸方向にと
り、位相補償器2の複屈折軸方向を位相補償器1に対し
て−45゜にとり、検光子5の透過軸方向をX軸方向に
対してα0にとった場合を示したものである。
In FIG. 3, the birefringence axis direction of the phase compensator 1 is set to the X-axis direction, the birefringence axis direction of the phase compensator 2 is set at -45° with respect to the phase compensator 1, and the transmission axis direction of the analyzer 5 is set to the X-axis direction. This shows the case where the angle is α0 with respect to the X-axis direction.

ただし、位相補償器2の複屈折軸方向は、位相補償器1
の複屈折軸方向に対して+45″でもよい。
However, the birefringence axis direction of the phase compensator 2 is
It may be +45'' with respect to the birefringence axis direction.

また、検光子5の透過軸方向α0が位相補償器1または
位相補償器2の複屈折軸方向と重なった場合には、複屈
折軸方向が重なっている位相補償器の位相補償量が変化
しても、検光子5を透過する光量が変化しないので、検
光子5の透過軸方向α゜と位相補償器工・2の複屈折軸
方向は、重ならないようにする必要がある。
Furthermore, when the transmission axis direction α0 of the analyzer 5 overlaps with the birefringence axis direction of the phase compensator 1 or phase compensator 2, the amount of phase compensation of the phase compensator whose birefringence axis direction overlaps changes. However, since the amount of light transmitted through the analyzer 5 does not change even if the analyzer 5 is used, the transmission axis direction α° of the analyzer 5 and the birefringence axis direction of the phase compensator 2 need to be made so that they do not overlap.

位相補償器1・2の後部には、磁界の大きさで偏光主軸
方位角を自由に回転できるファラデー回転子などの偏光
回転器3を配置することにより、任意の入射偏光を既知
の任意の偏光に連続的に変換することができる。
At the rear of the phase compensators 1 and 2, a polarization rotator 3 such as a Faraday rotator that can freely rotate the azimuth of the principal axis of polarization depending on the magnitude of the magnetic field is placed, so that any incident polarization can be converted into any known polarization. can be converted continuously.

次に、任意の入射偏光を既知の任意の偏光に連続的に変
換する過程を第4図と第5図により説明する。
Next, the process of continuously converting arbitrary incident polarized light into known arbitrary polarized light will be explained with reference to FIGS. 4 and 5.

第4図の下側に表示されたP−Q−Rは、それぞれ第5
図の上側に表示されたP−Q−Rで連絡される。
The P-Q-R displayed at the bottom of Fig. 4 is the fifth
You will be contacted via P-Q-R displayed at the top of the diagram.

任意の偏光をもつ入射光1lは、位相補償器1の制御で
、X軸上またはY軸上に偏光主軸方位角をもつ偏光に変
換される。
Under the control of the phase compensator 1, the incident light 11 having arbitrary polarization is converted into polarized light having the principal axis of polarization azimuth on the X-axis or the Y-axis.

このとき、入射光11の偏光主軸方位角がX軸上または
Y軸上と違う場合には、入射光1lと偏光の形は違うが
偏光主軸方位角はX軸上またはY軸上になるように位相
補償器上で制御される。
At this time, if the polarization principal axis azimuth of the incident light 11 is different from the X-axis or Y-axis, the polarization principal axis azimuth will be on the X-axis or Y-axis although the polarization shape is different from that of the incident light 1l. controlled on a phase compensator.

位相補償器lで偏光主軸方位角をX軸上またはY軸上に
制御された入射光11は、位相補償器2で偏光主軸方位
角がX軸上またはY軸上の任意の偏光に変換される。
The incident light 11 whose principal axis of polarization azimuth is controlled to be on the X-axis or the Y-axis by the phase compensator 1 is converted into arbitrary polarized light whose principal axis of polarization azimuth is on the X-axis or the Y-axis by the phase compensator 2. Ru.

したがって、位相補償器1・2でX軸上またはY軸上に
偏光主軸方位角をもつ特定の偏光に変換した後に、偏光
回転器3で偏光を回転させることにより、偏光主軸方位
角が連続的に変化する偏光を取り出すことができる。
Therefore, by converting the polarized light into a specific polarized light having the polarization principal axis azimuth on the X-axis or Y-axis using the phase compensators 1 and 2, and then rotating the polarized light with the polarization rotator 3, the polarization principal axis azimuth can be changed continuously. It is possible to extract polarized light that changes.

また,偏光回転器3の偏光回転角を特定の角度で固定し
て、位相補償器2で偏光の形を変化させることにより、
偏光の形が連続的に変化する偏光を取り出すこともでき
る。
In addition, by fixing the polarization rotation angle of the polarization rotator 3 at a specific angle and changing the shape of the polarization with the phase compensator 2,
It is also possible to extract polarized light whose polarization shape changes continuously.

なお、位相補償器2と偏光回転器3を連続的に制御する
ことにより、偏光の形と偏光主軸方位角が連続的に変化
する偏光に制御することもできる。
Note that by continuously controlling the phase compensator 2 and the polarization rotator 3, it is also possible to control the polarization so that the shape of the polarization and the azimuth of the polarization principal axis change continuously.

[実施例] 次に、検光子5の透過軸方向を25゜として、第1図の
位相補償器工・2と偏光回転器3の動作を第6図から第
10図により説明する。
[Example] Next, the operation of the phase compensator 2 and the polarization rotator 3 shown in FIG. 1 will be explained with reference to FIGS. 6 to 10, assuming that the transmission axis direction of the analyzer 5 is 25 degrees.

第6図は、入射光11が任意の楕円偏光の場合の例であ
る。
FIG. 6 shows an example in which the incident light 11 is arbitrary elliptically polarized light.

第7図は、位相補償器1で入射光1lの位相差を変えた
ときの偏光主軸方位角をX軸上またはY軸上に重なるよ
うに制御した偏光状態を示し、第8図は、位相補償器1
での制御過程における検光子5を透過した後のモニタ光
13の光量の変化を示す図である。
FIG. 7 shows the polarization state in which the azimuth of the polarization principal axis is controlled to overlap on the X-axis or the Y-axis when the phase difference of the incident light 1l is changed by the phase compensator 1, and FIG. Compensator 1
FIG. 3 is a diagram showing changes in the amount of monitor light 13 after passing through the analyzer 5 in the control process.

入射光11の偏光主軸方位角をX軸上またはY軸上に重
ねるには、はじめに位相補償器2で与える位相差をゼロ
、偏光回転器3で与える回転角をゼロとし、検光子5を
通過したモニタ光工3の光量を光検出器6で受光し、光
量が最大となるような位相差δMAXまたは最小となる
ような位相差δMINを与えるように、制御部7で位相
補償器1を制御する。
To superimpose the polarization principal axis azimuth of the incident light 11 on the X-axis or the Y-axis, first set the phase difference given by the phase compensator 2 to zero, the rotation angle given by the polarization rotator 3 to zero, and pass it through the analyzer 5. The optical detector 6 receives the amount of light from the monitor optical device 3, and the control unit 7 controls the phase compensator 1 so as to give a phase difference δMAX that maximizes the amount of light or a phase difference δMIN that minimizes the amount of light. do.

このとき、入射光11の偏光状態は、光検出器6の受光
量が最大の場合は第9図のような直線偏光となり、最小
の場合は第10図のような直線偏光となる。
At this time, the polarization state of the incident light 11 becomes linearly polarized light as shown in FIG. 9 when the amount of light received by the photodetector 6 is the maximum, and becomes linearly polarized light as shown in FIG. 10 when the amount of light received by the photodetector 6 is the minimum.

次に、光検出器6の受光量が最大の場合、いいかえると
、偏光状態が第9図のような直線偏光の場合には位相補
償器1で与える位相差を(δMAX一π/2)にする。
Next, when the amount of light received by the photodetector 6 is maximum, in other words, when the polarization state is linear polarization as shown in FIG. do.

また、最小の場合には、位相補償器1で与える位相差を
(δMIN+π/2)とすることにより、第7図のよう
に偏光主軸方位角がX軸上またはY軸上に重なった右回
りの楕円偏光が得られる。
In addition, in the minimum case, by setting the phase difference given by the phase compensator 1 to (δMIN+π/2), the polarization principal axis azimuth overlaps the X-axis or the Y-axis in a clockwise direction as shown in Figure 7. elliptically polarized light is obtained.

ただし、光検出器6の出力が最大のときに与える位相差
を(δMAX+π/2)、最小のときに与える位相差を
(δMIN−π/2)として、偏光主軸方位角がX軸上
またはY軸上に重なった左回りの楕円偏光としてもよい
However, assuming that the phase difference given when the output of the photodetector 6 is maximum is (δMAX + π/2) and the phase difference given when it is minimum is (δMIN-π/2), the polarization principal axis azimuth is on the X axis or Y It may also be counterclockwise elliptically polarized light that overlaps on the axis.

第7図のように制御された入射光11に、位相補償器2
でX軸に対して+45゜ または−45゜方向に位相差
を与え、光検出器6で検出される光量が最大となったと
き、入射光11の偏光状態はX軸方向直線偏光となる。
A phase compensator 2 is applied to the incident light 11 controlled as shown in FIG.
gives a phase difference in the direction of +45° or −45° with respect to the X-axis, and when the amount of light detected by the photodetector 6 becomes maximum, the polarization state of the incident light 11 becomes linearly polarized light in the X-axis direction.

なお、位相補償器2を光検出器6で検出される光量が最
小になるように制御して、入射光11をY軸方向直線偏
光にしてもよい。
Note that the incident light 11 may be linearly polarized in the Y-axis direction by controlling the phase compensator 2 so that the amount of light detected by the photodetector 6 is minimized.

さらに、X軸方向直線偏光に制御された状態から、−4
5゜方向に配置された位相補償器2の位相補償量を減少
させていくと、直線偏光から右回り楕円偏光の状態にな
って、右回り円偏光が得られる。
Furthermore, from the state controlled to linearly polarized light in the X-axis direction, -4
When the phase compensation amount of the phase compensator 2 arranged in the 5° direction is decreased, the state changes from linearly polarized light to right-handed elliptically polarized light, and right-handed circularly polarized light is obtained.

位相補償量を増加させていくと、直線偏光から左回り楕
円偏光の状態になって、左回り円偏光が連続的に得られ
る。
As the amount of phase compensation is increased, the state changes from linearly polarized light to left-handed elliptically polarized light, and left-handed circularly polarized light is continuously obtained.

また、位相補償器2で偏光主軸方位角をX軸上またはY
軸上に制御された偏光を、偏光回転器3で偏光主軸方位
角を回転させることにより、偏光主軸方位角だけが違う
偏光を連続的に得ることができる。
In addition, the phase compensator 2 adjusts the polarization principal axis azimuth on the X axis or on the Y axis.
By rotating the polarization principal axis azimuth of the polarized light controlled on the axis using the polarization rotator 3, it is possible to continuously obtain polarized light that differs only in the polarization principal axis azimuth.

なお、位相補償器1・2にファイバの光弾性効果を用い
、偏光回転器3にファイバのファラデー効果を利用した
素子を用いることができる。また、ビームスプリッタ4
にファイバカプラを用い、検光子5にファイバ偏光子を
用いても同じ動作をさせることができる。
Note that the phase compensators 1 and 2 can use the photoelastic effect of the fiber, and the polarization rotator 3 can use an element that uses the Faraday effect of the fiber. Also, beam splitter 4
The same operation can be achieved by using a fiber coupler for the analyzer 5 and a fiber polarizer for the analyzer 5.

[発明の効果] この発明によれば、任意の入射偏光に対して、位相補償
器で偏光主軸方位角が一定な直線偏光、楕円偏光および
円偏光に変換することができ、かつ、位相補償器の後部
に配置した偏光回転器で偏光主軸方位角を任意に調整で
きるので、偏光の状態が既知な任意の偏光を取り出すこ
とができ、かつ,連続的に変化する偏光を取り出すこと
ができる。
[Effects of the Invention] According to the present invention, arbitrary incident polarized light can be converted into linearly polarized light, elliptically polarized light, and circularly polarized light with a constant polarization principal axis azimuth angle by a phase compensator, and the phase compensator Since the azimuth of the principal axis of polarization can be adjusted arbitrarily using a polarization rotator placed at the rear of the device, it is possible to extract any polarized light whose polarization state is known, and it is also possible to extract continuously changing polarized light.

【図面の簡単な説明】[Brief explanation of drawings]

w1図はこの発明による偏光制御装置の構成図、第2図
は従来技術による偏光制御装置の構戒図、第3図は第1
図の位相補償器1・2および検光子5の配置説明図、第
4図・第5図は任意の入射光11を既知の任意の偏光に
連続的に変換する過程の説明図、第6図から第10図は
検光子5の透過軸方向を25゜にした場合の第1図の位
相補償器l・2および偏光回転器3の動作説明図である
。 1・・・・・・位相補償器、2・・・・・・位相補償器
、3・・・・・・偏光回転器、4・・・・・・ビームス
プリツタ、5・・・・・・検光子、6・・・・・・光検
出器、7・・・・・・制御部、11・・・・・・入射光
、12・・・・・・出力光、13・・・・・・モニタ光
、l4・15・・・・・・モニタ光、21・・・・・・
ビームスプリツタ、22・・・・・・ウォラストンプリ
ズム、23・24・・・・・・光検出器、25・・・・
・・制御部、26・・・・・・1/4波長板、27・・
・・・・ウォラストンプリズム、28 ・ 29・・・・・・光検出器、 30・・・・・・制御部。
Figure w1 is a configuration diagram of a polarization control device according to the present invention, Figure 2 is a configuration diagram of a polarization control device according to the prior art, and Figure 3 is a configuration diagram of a polarization control device according to the prior art.
Figures 4 and 5 are illustrations of the arrangement of the phase compensators 1 and 2 and analyzer 5, Figures 4 and 5 are illustrations of the process of continuously converting arbitrary incident light 11 into known arbitrary polarized light, and Figure 6 10 are explanatory views of the operation of the phase compensator 1.2 and the polarization rotator 3 in FIG. 1 when the transmission axis direction of the analyzer 5 is set at 25 degrees. 1... Phase compensator, 2... Phase compensator, 3... Polarization rotator, 4... Beam splitter, 5...・Analyzer, 6...Photodetector, 7...Control unit, 11...Incoming light, 12...Output light, 13...・・Monitor light, l4・15・・・・Monitor light, 21・・・・
Beam splitter, 22...Wollaston prism, 23, 24...Photodetector, 25...
...Control unit, 26...1/4 wavelength plate, 27...
...Wollaston prism, 28, 29...photodetector, 30...control unit.

Claims (1)

【特許請求の範囲】 入射光(11)に対して位相差を与える第1の位相補償
器(1)と、 第1の位相償償器(1)を通過した入射光(11)に対
して第1の位相補償器(1)と45゜違う方向に位相差
を与える第2の位相補償器(2)と、第2の位相補償器
(2)を通過した入射光(11)の偏光面を回転させる
偏光回転器(3)と、偏光回転器(3)を通過した入射
光(11)を出力光(12)とモニタ光(13)に分離
するビームスプリッタ(4)と、 第1の位相補償器(1)と第2の位相補償器(2)との
主軸方向に対して透過軸方向が重ならない角度で配置さ
れ、第1の位相補償器(1)、第2の位相補償器(2)
および偏光回転器(3)による偏光制御状態を光量に変
換する検光子(5)と、検光子(5)を通過したモニタ
光(13)を検出する光検出器(6)と、 光検出器(6)の出力を入力とし、第1の位相補償器(
1)、第2の位相補償器(2)および偏光回転器(3)
を制御する制御部(7)とを備えることを特徴とする偏
光制御装置。
[Claims] A first phase compensator (1) that provides a phase difference to the incident light (11), and a first phase compensator (1) that provides a phase difference to the incident light (11) that has passed through the first phase compensator (1). A second phase compensator (2) that provides a phase difference in a direction 45° different from that of the first phase compensator (1), and a polarization plane of the incident light (11) that has passed through the second phase compensator (2). a beam splitter (4) that separates the incident light (11) that has passed through the polarization rotator (3) into an output light (12) and a monitor light (13); The transmission axes of the phase compensator (1) and the second phase compensator (2) are arranged at an angle with respect to their principal axes such that their transmission axes do not overlap. (2)
and an analyzer (5) that converts the polarization control state by the polarization rotator (3) into light intensity, a photodetector (6) that detects the monitor light (13) that has passed through the analyzer (5), and a photodetector. The output of (6) is input, and the first phase compensator (
1), second phase compensator (2) and polarization rotator (3)
A polarization control device comprising: a control section (7) for controlling the polarization control device.
JP323090A 1990-01-10 1990-01-10 Polarized light controller Pending JPH03208006A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP323090A JPH03208006A (en) 1990-01-10 1990-01-10 Polarized light controller
US07/637,096 US5191387A (en) 1990-01-10 1991-01-03 Polarization control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP323090A JPH03208006A (en) 1990-01-10 1990-01-10 Polarized light controller

Publications (1)

Publication Number Publication Date
JPH03208006A true JPH03208006A (en) 1991-09-11

Family

ID=11551651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP323090A Pending JPH03208006A (en) 1990-01-10 1990-01-10 Polarized light controller

Country Status (1)

Country Link
JP (1) JPH03208006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177176A (en) * 2008-01-23 2009-08-06 Asml Netherlands Bv Polarization control device, and polarization control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177176A (en) * 2008-01-23 2009-08-06 Asml Netherlands Bv Polarization control device, and polarization control method
US8189173B2 (en) 2008-01-23 2012-05-29 Asml Netherlands B.V. Polarization control apparatus and method

Similar Documents

Publication Publication Date Title
US5191387A (en) Polarization control system
US4342517A (en) Method and arrangement for the measurement of rotations by the Sagnac effect
JPH01500859A (en) Optical signal control method and device
JPH03138614A (en) System and method for controlling polarization of light wave-guided by optical guide
WO2021184839A1 (en) Full-polarization faraday magnetic field sensor based on sagnac interference system, and modulation method
Ye Construction of an optical rotator using quarter-wave plates and an optical retarder
US7528360B2 (en) Method and device for stabilizing the state of polarization of optical radiation
US4597640A (en) Optical polarization restoration apparatus
WO2004083945A1 (en) Infinite follow-up polarization controller, polarization mode dispersion compensator comprising same, and infinite follow-up polarization control method
US4433915A (en) Dual-polarization interferometer with a single-mode waveguide
JPS60222818A (en) Optical isolator
US6697161B2 (en) Optical characterization of retarding devices
CN110178061B (en) Method and apparatus for non-reciprocal transmission of EMR beams
JPH03208006A (en) Polarized light controller
JPS58196416A (en) Optical fiber laser gyroscope
JP2584426B2 (en) Polarization controller
JP2736105B2 (en) Semiconductor laser device
CN110231024A (en) A kind of method and apparatus for optical fiber sagnac interferometer phase-modulation
JP2647488B2 (en) Polarization coupler
JP2860322B2 (en) Light control device
JPH10197840A (en) Method for controlling polarization and device therefor
JPH0990299A (en) Polarized wave stabilizing optical circuit
JPS61156024A (en) Optical fiber type polarization plane control device
JP2677365B2 (en) Polarization variable device
SU1006930A1 (en) Method and device for measuring crystal inherent wave polarization ellips axis ellipticity, bypass direction and azimuth