JPH03207916A - Cooling structure of gas turbine combustion device - Google Patents

Cooling structure of gas turbine combustion device

Info

Publication number
JPH03207916A
JPH03207916A JP54090A JP54090A JPH03207916A JP H03207916 A JPH03207916 A JP H03207916A JP 54090 A JP54090 A JP 54090A JP 54090 A JP54090 A JP 54090A JP H03207916 A JPH03207916 A JP H03207916A
Authority
JP
Japan
Prior art keywords
air
combustor
cooling
combustion gas
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP54090A
Other languages
Japanese (ja)
Inventor
Satoshi Tsukahara
聰 塚原
Noriyuki Hayashi
則行 林
Yoji Ishibashi
石橋 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54090A priority Critical patent/JPH03207916A/en
Publication of JPH03207916A publication Critical patent/JPH03207916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To maintain a film cooling performance without an increase in pressure loss by a method wherein a structural member is provided with an air path which connects the air side to the combustion gas side and also a bypass which directly connects the air side to the combustion gas side, and a lip having an eave-like shape is provided to close the upstream side of the combustion gas. CONSTITUTION:Cooling air 103 flows from a groove 3 on the air side 101 into an air path 2 inside a structural member 11, then into a groove 4 on the combustion gas side 102 while cooling a combustion device, is transformed into a film cooling air 105 by an eave-like lip 5 and flows out. Bypass cooling air 104 flowing from the air side into a bypass 6 is transformed into a film cooling air 107 by an eave-like lip 9 and flows out, so that it joints with the cooling air 105 and smoothly covers the surface on the combustion gas side. A shortfall in the flow rate of the cooling air 105 is supplied from the bypass 6 so that a specified cooling performance is achieved. Thereby, the cooling performance can be maintained without an increase in pressure loss.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器に係り、特に、燃焼器出口
ガス温度の高い高温ガスタービン燃焼器に好適な冷却構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas turbine combustor, and particularly to a cooling structure suitable for a high-temperature gas turbine combustor with a high combustor exit gas temperature.

〔従来の技術〕[Conventional technology]

従来、内筒及び尾筒で構成される燃焼器の冷却方法は、
高温の燃焼ガス燃焼器の構造材が、直接、さらされない
ように、燃焼ガス側に燃焼器に沿って冷却空気を膜状に
流すフィルム冷却が多く用いられていた。燃焼ガスと反
対面は、燃焼器内に供給される空気が流れており、この
空気の強制対流によっても燃焼器は冷却されていた。し
かし、近年、ガスタービンの熱効率を高めるため、高温
高圧化が進められ、より高い燃焼器冷却性能が必要とな
っているが、従来のフイルム冷却と燃焼器外表面を流れ
る空気の強制対流冷却の単なる組み合わせでは十分な冷
却性能を得られなくなってきた.それで、さらに冷却性
能を向上させるために、燃焼器の構造材の中に冷却空気
が流れる空気流路を設け,強制対流冷却を強化するとと
もに、その空気を燃焼ガス側に導き、燃焼器に沿って膜
状に流すことにより、フイルム冷却にも利用する冷却構
造が考案された。このような冷却構造については第25
回航空原動機に関する講演会講演集(1985)第34
頁から第37頁において述べられている。
Conventionally, the cooling method for a combustor consisting of an inner cylinder and a transition cylinder is as follows:
Film cooling, in which cooling air is flowed in a film along the combustor on the combustion gas side, has often been used to prevent the structural materials of the high-temperature combustion gas combustor from being directly exposed. Air supplied to the combustor flows on the opposite side from the combustion gas, and the combustor is also cooled by forced convection of this air. However, in recent years, in order to increase the thermal efficiency of gas turbines, higher temperatures and pressures have been promoted, and higher combustor cooling performance is required. It is no longer possible to obtain sufficient cooling performance with a simple combination. Therefore, in order to further improve cooling performance, we installed an air passage through which cooling air flows in the structural material of the combustor, strengthening forced convection cooling, and guiding the air to the combustion gas side, allowing it to flow along the combustor. A cooling structure was devised that could also be used for film cooling, by flowing the film in the form of a film. Regarding this type of cooling structure, please refer to the 25th section.
Collected lectures from the annual conference on aerodynamic engines (1985) No. 34
Pages 37 to 37.

その構造を第2図に示す。Its structure is shown in FIG.

燃焼器を形成する構造材1の内部には空気流路2が設け
られており、この流路2は空気101側、および、燃焼
ガス102側に設けられた溝3,4によって燃焼器の空
気101側と燃焼ガス102側とを結んでいる。また,
燃焼ガス102側には燃焼器に沿って滑らかに膜状のフ
イルム冷却空気105が流れるように廂状のリップ5が
延びている。冷却空気103は、空気101側の溝3か
ら構造材1の内部の空気流路3に流れ込み、燃焼器を冷
却しながら空気流路2内を燃焼ガス102側の溝4に向
って流れる.燃焼ガス102側の溝4では,方向を反転
するとともに,溝4一杯に広がり,廂状のリツプ5によ
って燃焼器に沿った一様な膜状の流れ105となって流
出し、燃焼器の燃焼ガス102側の表面を覆う。燃焼器
の冷却は燃焼器内に供給される空気101の強制対流と
燃焼器を形成する構造材1の内部に設けられた空気通路
2を流れる冷却空気103の強制対流、さらに、燃焼ガ
ス102側に燃焼器に沿って膜状にフイルム冷却空気1
05が流れるフイルム冷却によって行われる。フイルム
冷却は燃焼ガス102側の表面から熱を奪うだけでなく
、燃焼器表面が高温の燃焼ガス102に、直接、さらさ
れることから保護する役割を有している。
An air flow path 2 is provided inside the structural member 1 forming the combustor, and this flow path 2 is provided with grooves 3 and 4 provided on the air 101 side and the combustion gas 102 side to allow air in the combustor to flow through the air flow path 2. The 101 side and the combustion gas 102 side are connected. Also,
A rib-like lip 5 extends on the combustion gas 102 side so that a film-like film cooling air 105 flows smoothly along the combustor. The cooling air 103 flows into the air passage 3 inside the structural member 1 from the groove 3 on the air 101 side, and flows through the air passage 2 toward the groove 4 on the combustion gas 102 side while cooling the combustor. In the groove 4 on the side of the combustion gas 102, the direction is reversed and the gas expands to the full extent of the groove 4, and flows out as a uniform film-like flow 105 along the combustor due to the rib-like lip 5, and the combustion gas in the combustor is Cover the surface on the gas 102 side. The combustor is cooled by forced convection of the air 101 supplied into the combustor, forced convection of the cooling air 103 flowing through the air passage 2 provided inside the structural material 1 forming the combustor, and further by forced convection of the cooling air 103 on the combustion gas 102 side. A film of cooling air is distributed along the combustor.
This is done by film cooling with 05 flowing. Film cooling not only removes heat from the surface on the combustion gas 102 side, but also has the role of protecting the combustor surface from being directly exposed to the high-temperature combustion gas 102.

ガスタービン燃焼器をこのような冷却構造にすることに
より、フイルム冷却と燃焼器内に供給される空気の強制
対流によって行われていた燃焼器の冷却に、燃焼器を形
成する構造材の内部に設けられた空気流路を流れる冷却
空気の強制対流冷却が加わり,強制対流冷却される伝熱
面積が格段に増大し、高い冷却性能が得られる。
By adopting such a cooling structure for the gas turbine combustor, the cooling of the combustor, which was previously performed by film cooling and forced convection of air supplied into the combustor, is now performed inside the structural material that forms the combustor. Forced convection cooling of the cooling air flowing through the provided air flow path is added, and the heat transfer area subjected to forced convection cooling is significantly increased, resulting in high cooling performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、燃焼器を形成する構造材の内部に設け
られた空気流路を冷却空気が流れる時に発生する圧力損
失について考慮がされておらず、これを考慮すると、 (1)フイルム冷却の性能低下 (2)燃焼器における圧力損失の増大と、それに伴うガ
スタービンの効率低下 (3)燃焼器を形成する構造材の板厚の増大による燃焼
器重量および材料費の増大と強制対流冷却性能の低下 のいずれかを招く問題があった。これは強制対流冷却や
フイルム冷却の機構に起因しているので、以下に説明す
る。
The above conventional technology does not take into consideration the pressure loss that occurs when cooling air flows through the air flow path provided inside the structural material forming the combustor. Considering this, (1) film cooling Decrease in performance (2) Increase in pressure loss in the combustor and the resulting decrease in gas turbine efficiency (3) Increase in combustor weight and material costs due to increase in the thickness of the structural materials forming the combustor, and forced convection cooling performance There was a problem that led to either a decline in This is due to the mechanism of forced convection cooling and film cooling, and will be explained below.

燃焼器内に供給される空気による強制対流冷却は、熱伝
達率が冷却構造の影響を受けないため、構造材の板厚が
薄ければ薄いほど構造材の中を燃焼ガス側から空気側に
熱が伝わる際に生じる温度差が小さくなり、冷却性能が
良くなる。
Forced convection cooling using air supplied into the combustor has a heat transfer coefficient that is not affected by the cooling structure, so the thinner the structural material is, the more it is possible to move the inside of the structural material from the combustion gas side to the air side. The temperature difference that occurs when heat is transferred becomes smaller, improving cooling performance.

構造材の内部に設けられた空気流路を流れる冷却空気の
熱伝達率αは流れが乱流の場合、冷却空気の流速Uの0
.8 乗に比例し、代表長さQの0.2乗に反比例する
When the flow is turbulent, the heat transfer coefficient α of the cooling air flowing through the air flow path provided inside the structural material is 0 of the flow velocity U of the cooling air.
.. It is proportional to the 8th power and inversely proportional to the 0.2 power of the representative length Q.

uO・δ 強制対流冷却によって奪われる熱量に関係する伝熱面積
については、話を簡単にするために空気流路の断面形状
が同形の場合と正方形の場合を取り上げて説明する。た
だし,空気流路の長さは息とする。断面形状が円形の場
合、空気流路の間隔pと空気流路の径dの比p / d
を一定とすると、燃焼器の周長Lに対して伝熱面積Aは L             d A=−πdQ=πLQ p                pとなり、流路の
径dによらず、伝熱面積は一定となる。また、断面形状
が正方形の場合も空気流路の間隔pと空気流路の一辺の
長さaの比p / dを一定とすれば、燃焼器の周長L
に対して伝熱面積Aは L             a A = − 4  a  Q = 4 L Qp   
            p となり,流路の一辺の長さaによらず伝熱面積は一定と
なる。このため、空気流路を流れる冷却空気による強制
対流冷却では、燃焼器における圧力損失を大きくし、冷
却空気の流速を高めるか、乱流の範囲で流路の代表長さ
が小さくなるように流路の寸法(例えば、円形流路では
流路の径d、正方形流路では流路の一辺の長さa)を小
さくすれば、冷却性能が向上する。
uO·δ Regarding the heat transfer area related to the amount of heat removed by forced convection cooling, to simplify the discussion, we will explain the case where the cross-sectional shape of the air flow path is the same shape and the case where it is square. However, the length of the air flow path shall be equal to the length of the air flow path. When the cross-sectional shape is circular, the ratio of the air flow path interval p to the air flow path diameter d is p / d
Assuming that is constant, the heat transfer area A is L d A=-πdQ=πLQ p p with respect to the circumferential length L of the combustor, and the heat transfer area is constant regardless of the diameter d of the flow path. In addition, even when the cross-sectional shape is square, if the ratio p / d of the interval p of the air flow path and the length a of one side of the air flow path is constant, the circumference L of the combustor
The heat transfer area A is L a A = − 4 a Q = 4 L Qp
p, and the heat transfer area is constant regardless of the length a of one side of the flow path. For this reason, in forced convection cooling using cooling air flowing through the air flow path, the pressure loss in the combustor is increased and the flow velocity of the cooling air is increased, or the flow path is forced to flow so that the typical length of the flow path becomes small within the range of turbulent flow. Cooling performance can be improved by reducing the dimensions of the passage (for example, the diameter d of the passage for a circular passage, and the length a of one side of the passage for a square passage).

フイルム冷却で最も重要な役割は、燃焼器に沿って一様
な膜状のフイルム冷却空気の流れを作り、燃焼ガス側の
燃焼器表面を温度の低いフイルム冷却空気で覆うことに
より、高温の燃焼ガスに燃焼器表面が、直接、さらされ
ることから保護することである。その性能は燃焼ガスの
質量流速(=(密度)×(流速))とフイルム冷却空気
の質量流速の比によって大きく影響される。燃焼ガスの
流れは冷却構造の影響を受けないため、フィルム冷却の
性能はフイルム冷却空気の質量流速、言い換えれば、フ
イルム冷却の空気流量で決まる。フイルム冷却空気の流
量が多いほど、その性能は良いので、高いフイルム冷却
性能を得るためには、圧力損失を大きくし、構造材の内
部に設けられた空気流路を流れる冷却空気の流速を増す
か、空気流路の断面積を大きくすることになる。空気流
路の断面積を大きくする方法として、再び、断面形状が
円形の場合と正方形の場合を取り上げて説明する.この
際,空気流路を流れる冷却空気の強制対流冷却の伝熱面
積が変化すると、燃焼器全体としての冷却性能の比較が
しにくいので、p/d、あるいは、p/aを一定とする
.燃焼器の周長Lに対して空気流路断面積Bは円形断面
の場合、p              P 正方形断面の場合、 L         d B=一● a”=L−● a p           p となり、p/d.あるいは、p/aを一定に保ちながら
、流路の断面積を大きくするためには、円形流路では流
路の径d、正方形流路では流路の一辺の長さaを大きく
しなければならないゆ以上の説明からわかるように、強
制対流冷却の性能は、燃焼器を形成する構造材の板厚,
あるいは、その内部に設けられている空気流路の寸法を
小さくした方が良く、フイルム冷却の性能を良くするた
めには内部空気流路の寸法を大きくした方が良いという
相矛盾した結果となり、どちらかを犠牲にしなければな
らない。どちらの冷却性能をも満足する方法として、圧
力損失を大きくし、空気流路を流れる冷却空気の流速を
高める方法がある。しかし、一般に,ガスタービン燃焼
器で発生する圧力損失は、圧縮機の吐出圧力の3〜5%
であり、燃焼器で発生する圧力損失が大きくなると,ガ
スタービン全体の熱効率の低下を招くので、できるだけ
小さく抑える必要があり、この方法も問題を抱えている
The most important role of film cooling is to create a uniform flow of film-like film cooling air along the combustor, and by covering the combustor surface on the combustion gas side with low-temperature film cooling air, high-temperature combustion is prevented. This is to protect the combustor surface from direct exposure to gas. Its performance is greatly influenced by the ratio of the mass flow rate of the combustion gas (= (density) x (flow rate)) and the mass flow rate of the film cooling air. Since the flow of combustion gas is not affected by the cooling structure, the performance of film cooling is determined by the mass flow rate of film cooling air, or in other words, the film cooling air flow rate. The higher the flow rate of film cooling air, the better its performance. Therefore, in order to obtain high film cooling performance, it is necessary to increase the pressure loss and increase the flow rate of cooling air flowing through the air passages provided inside the structural material. Alternatively, the cross-sectional area of the air flow path will be increased. As a method to increase the cross-sectional area of the air flow path, we will explain the case where the cross-sectional shape is circular and square again. At this time, if the heat transfer area of the forced convection cooling of the cooling air flowing through the air flow path changes, it is difficult to compare the cooling performance of the combustor as a whole, so p/d or p/a is kept constant. The cross-sectional area B of the air flow path with respect to the circumferential length L of the combustor is p P in the case of a circular cross section, and p P in the case of a square cross section, L d B = 1● a'' = L−● a p p, and p/d. or , In order to increase the cross-sectional area of the flow path while keeping p/a constant, the diameter d of the flow path must be increased for a circular flow path, and the length a of one side of the flow path must be increased for a square flow path. As can be seen from the above explanation, the performance of forced convection cooling depends on the thickness of the structural materials forming the combustor,
Alternatively, it is better to reduce the size of the air flow path provided inside the film, and the contradictory results that it is better to increase the size of the internal air flow path in order to improve the film cooling performance, You have to sacrifice one or the other. As a method that satisfies both types of cooling performance, there is a method of increasing the pressure loss and increasing the flow velocity of the cooling air flowing through the air flow path. However, in general, the pressure loss generated in a gas turbine combustor is 3 to 5% of the compressor discharge pressure.
However, if the pressure loss generated in the combustor increases, the thermal efficiency of the entire gas turbine will decrease, so it must be kept as small as possible, and this method also has its problems.

本発明の目的は、燃焼器における圧力損失を増大させる
ことなく、燃焼器内に供給される空気による強制対流冷
却と、燃焼器を形成する構造材の内部に設けられた空気
流路を流れる冷却空気による強制対流冷却の性能を最大
限発揮することが可能であり、かつ、フイルム冷却の性
能も確保できるガスタービン燃焼器の冷却構造を提供す
ることにある。
The purpose of the present invention is to achieve forced convection cooling by air supplied into the combustor without increasing pressure loss in the combustor, and cooling that flows through air passages provided inside the structural material forming the combustor. An object of the present invention is to provide a cooling structure for a gas turbine combustor that can maximize the performance of forced convection cooling using air and also ensure the performance of film cooling.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、燃焼器の燃焼ガス側に、燃焼器に沿って一
様で滑らかな膜状のフイルム冷却空気を流すために専用
に設けられたリップと燃焼器構造材との隙間と、燃焼器
の空気側とを直接連通するバイパス通路を設けることに
より達成される。
The purpose of the above is to create a gap between the lip and the combustor structural material, which is specially provided on the combustion gas side of the combustor to flow a uniform, smooth film-like film cooling air along the combustor, and a gap between the combustor structural material. This is achieved by providing a bypass passage that directly communicates with the air side of the air.

〔作用〕[Effect]

構造材内部の空気流路からの空気を燃焼器内へ流すリッ
プは別に新たなリップを設け、このリップと構造材の成
す隙間と燃焼器の空気側とを、直接、連通ずるバイパス
流路を設けることにより、燃焼器における圧力損失を増
大させることなく、フイルム冷却の性能を確保するため
に必要なフイルム冷却空気量を、常に、調達できること
になる。
A new lip is installed separately from the lip that allows air to flow from the air flow path inside the structural material into the combustor, and a bypass flow path is created that directly communicates the gap between this lip and the structural material and the air side of the combustor. By providing this, it is possible to always procure the amount of film cooling air necessary to ensure film cooling performance without increasing pressure loss in the combustor.

このため、燃焼器を形成する構造材の内部に設けられた
空気流路の寸法,形状は、フイルム冷却の性能とは別に
、ただ,そこを流れる冷却空気による強制対流冷却の性
能が向上するように決めることが可能となる。即ち、燃
焼器内に供給される空気の強制対流と、構造材の内部に
設けられた空気流路を流れる冷却空気の強制対流による
冷却性能を向上させるために,構造材の板厚、あるいは
,空気流路の寸法を小さくし、その空気をフイルム冷却
用に内筒内面に沿って流す。フイルム冷却の性能を確保
するために不足する空気量は燃焼器の空気側から、直接
、バイパス流路を通じて別のリップから燃焼器内面に沿
って流すことにより、圧力損失を増大させることなく,
強制対流冷却の性能を高く維持したまま、フイルム冷却
性能も確保できることになる。また、構造材の板厚を薄
くできることから、燃焼器の重量および材料費も低減で
きる。
For this reason, the size and shape of the air flow path provided inside the structural material that forms the combustor is designed to improve the forced convection cooling performance of the cooling air flowing through it, apart from the film cooling performance. It becomes possible to decide. That is, in order to improve the cooling performance due to forced convection of air supplied into the combustor and forced convection of cooling air flowing through air channels provided inside the structural material, the plate thickness of the structural material or The dimensions of the air flow path are reduced, and the air is made to flow along the inner surface of the inner cylinder for film cooling. In order to ensure the performance of film cooling, the insufficient amount of air is passed directly from the air side of the combustor through a bypass flow path and from another lip along the inner surface of the combustor, without increasing pressure loss.
This means that film cooling performance can be ensured while maintaining high forced convection cooling performance. Furthermore, since the thickness of the structural material can be reduced, the weight and material cost of the combustor can also be reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する.燃焼
器を形成する構造材1の内部には空気流路2が設けられ
ており、この流路2は空気101側および燃焼ガス10
2側に設けられた溝3,4によって燃焼器の空気101
側と燃焼ガス102側とを結んでいる.また、燃焼ガス
102側には、燃焼器に沿って滑らかに膜状のフイルム
冷却空気105が流れるように廂状のリツプ5が延びて
いる。さらに、構造材1には燃焼ガス102側と空気1
01側とを直接連通するバイパス流路6が設けられてお
り,燃焼ガス102側には、燃焼器に沿って滑らかに膜
状のフイルム冷却空気107が流れるように、廂状のリ
ツプ9が延びている。冷却空気103は空気101側の
溝3から構造材1の内部に設けられた空気流路2に流れ
込み、燃焼器を冷却しながら空気流路2内を燃焼ガス1
02側の溝4に向って流れる。燃焼ガス102側の溝4
では方向を反転しながら、溝4の一杯に広がり、その後
、廂状のリップ5によって燃焼器に沿った一様な膜状の
フイルム冷却空気105となって流出する。
An embodiment of the present invention will be explained below with reference to FIG. An air flow path 2 is provided inside the structural member 1 forming the combustor, and this flow path 2 is connected to the air 101 side and the combustion gas 10 side.
The air 101 of the combustor is
It connects the side and the combustion gas 102 side. Further, on the combustion gas 102 side, a rib-like lip 5 extends so that a film-like film cooling air 105 flows smoothly along the combustor. Furthermore, the structural material 1 has a combustion gas 102 side and an air 1 side.
A bypass flow path 6 is provided that directly communicates with the combustion gas 102 side, and a rib-like lip 9 extends on the combustion gas 102 side so that a film-like film cooling air 107 flows smoothly along the combustor. ing. The cooling air 103 flows from the groove 3 on the air 101 side into the air passage 2 provided inside the structural member 1, and the combustion gas 1 flows through the air passage 2 while cooling the combustor.
It flows toward the groove 4 on the 02 side. Groove 4 on the combustion gas 102 side
Then, while reversing its direction, it spreads to the full extent of the groove 4, and then flows out as a uniform film-like film cooling air 105 along the combustor by the rib-like lip 5.

一方,燃焼器の空気101側からバイパス流路6を通っ
て流入したバイパス空気104は廂状のリツプ9によっ
て燃焼器に沿った一様な膜状のフイルム冷却空気107
となって流出し、フイルム冷却空気105と合せること
によって燃焼器の燃焼ガス102側の表面を滑らかに覆
う。構造材1の板厚、および、空気流路2の形状,寸法
は、燃焼器内に供給される空気101による強制対流冷
却と空気流路2を流れる冷却空気103による強制対流
冷却の性能が高くなるように,小さな寸法になっている
。また、フイルム冷却が所定の性能を満足できるように
,空気流路2を通ってきたフイルム冷却空気105の流
量では不足する分をバイパス流路6から流入し、リツプ
5の上流に設けたリツプ9からのフイルム冷却空気10
7として流すことにより、燃焼器の燃焼ガス102側に
燃焼器に沿って一様で滑らかな膜状のフイルム冷却空気
を形成でき、燃焼器の圧力損失を増大させることなく、
必要なフイルム冷却性能を確保できるようになっている
。この冷却構造では、薄い構造材で燃焼器を製作するこ
とが可能であり、燃焼器重量、および、その材料費を低
減できる。また、熱負荷に応じて冷却性能を調整する場
合、構造材1の板厚や空気流路2の間隔,形状,寸法だ
けでなく、バイパス流路6の断面積を変え、バイパス空
気104の流量を変化させることによっても制御が可能
である。当然のことながら、空気流路2の間隔とバイパ
ス流路6の間隔は異なっていてもよく、材料強度等の観
点も加味し、決定されるべきものである。
On the other hand, bypass air 104 flowing from the air 101 side of the combustor through the bypass flow path 6 is formed into a uniform film-like film cooling air 107 along the combustor by the rib-like lip 9.
The air flows out, and when combined with the film cooling air 105, smoothly covers the surface of the combustor on the combustion gas 102 side. The plate thickness of the structural material 1 and the shape and dimensions of the air passage 2 are such that the forced convection cooling by the air 101 supplied into the combustor and the forced convection cooling by the cooling air 103 flowing through the air passage 2 have high performance. The dimensions are small so that In addition, in order to ensure that the film cooling satisfies a predetermined performance, the insufficient flow rate of the film cooling air 105 that has passed through the air flow path 2 is supplied through the bypass flow path 6, and a lip 9 provided upstream of the lip 5 is used. Film cooling air from 10
7, a uniform and smooth film of cooling air can be formed along the combustor on the combustion gas 102 side of the combustor, without increasing the pressure loss of the combustor.
This ensures the necessary film cooling performance. With this cooling structure, it is possible to manufacture the combustor using a thin structural material, and the weight of the combustor and its material cost can be reduced. In addition, when adjusting the cooling performance according to the heat load, not only the plate thickness of the structural material 1 and the spacing, shape, and dimensions of the air flow path 2, but also the cross-sectional area of the bypass flow path 6 and the flow rate of the bypass air 104 are changed. Control is also possible by changing . Naturally, the spacing between the air channels 2 and the spacing between the bypass channels 6 may be different, and should be determined taking into consideration material strength and the like.

第3図は、構造材1の内部の空気流路2と空気101側
および燃焼ガス102側とを連通ずるために流入孔7お
よび流出孔8をあけた構造の実施例である.冷却空気1
03は二ヶの流入孔7を通って空気流路2に流入し、燃
焼器を冷却しながら空気流路2内を流れ,流出孔8から
構造材1とリツプ5の隙間に流出し、リツプ5によって
燃焼器に沿って一様な膜状のフイルム冷却空気105と
なって流出する.一方、バイパス空気孔6を通って流入
したバイパス空気104はリツプ9によって燃焼器に沿
った一様な膜状のフイルム冷却空気107となって流出
する。冷却の作用,効果に関しては第1図で説明したこ
とと同様であるが、空気流路2と空気101側あるいは
燃焼ガス102側とを連通ずる手段として流入孔7、あ
るいは、流出孔8を用いたことにより、この断面積を変
えることによって冷却空気103の流量を調整すること
が可能となり、冷却性能の制御がより容易に行える。な
お、流入孔7を一ケ、又は複数個とし、空気流路2内部
の空気流れを一方向とした場合も同様な作用,効果があ
る。
FIG. 3 shows an example of a structure in which an inflow hole 7 and an outflow hole 8 are opened to communicate the air passage 2 inside the structural member 1 with the air 101 side and the combustion gas 102 side. cooling air 1
03 flows into the air passage 2 through the two inflow holes 7, flows through the air passage 2 while cooling the combustor, flows out from the outflow hole 8 into the gap between the structural material 1 and the lip 5, and becomes the lip. 5, the cooling air flows out along the combustor as a uniform film cooling air 105. On the other hand, the bypass air 104 that has flowed in through the bypass air hole 6 flows out through the lip 9 as a uniform film cooling air 107 along the combustor. The cooling action and effect are the same as those explained in FIG. By changing this cross-sectional area, the flow rate of the cooling air 103 can be adjusted, and the cooling performance can be controlled more easily. Note that similar actions and effects can be obtained when the number of inflow holes 7 is one or more, and the air flow inside the air flow path 2 is made unidirectional.

第4図は、構造材1の内部の空気流路2を流れる冷却空
気103が構造材lに対して傾きを持つ流出孔8から燃
焼ガス102側に直接流出する場合の実施例であり、リ
ップ5が無い。流入孔7から空気流路2に流入した冷却
空気103は、燃焼器を冷却しながら空気流路2内を流
れ、流出孔8から燃焼ガス102側へ流出する.流出し
た空気は一様な膜を形威できないが、上流のリップ9か
らのフイルム冷却空気107といっしょになって、ほぼ
一様な膜状のフイルム冷却空気を形成する。
FIG. 4 shows an example in which the cooling air 103 flowing through the air flow path 2 inside the structural material 1 directly flows out to the combustion gas 102 side from the outlet hole 8 which is inclined with respect to the structural material 1. There is no 5. The cooling air 103 that has flowed into the air flow path 2 from the inflow hole 7 flows through the air flow path 2 while cooling the combustor, and flows out from the outflow hole 8 toward the combustion gas 102 side. The outflowing air cannot form a uniform film, but together with the film cooling air 107 from the upstream lip 9, it forms a substantially uniform film of film cooling air.

冷却の作用,効果に関しては第3図で説明した内容と同
じであるが、リップ5が無いことにより,製作が容易と
なる。また、板厚をほぼ一定にすることができ、強度的
に楽になる。
The cooling action and effect are the same as those explained in FIG. 3, but the absence of the lip 5 makes manufacturing easier. In addition, the plate thickness can be made almost constant, which improves the strength.

第5図は構造材1の内部に設けた空気流路2の空気10
1側および燃焼ガス102側と連通ずる流入孔7および
流出孔8をそれぞれ複数個設け、流出空気によって膜状
のフイルム冷却空気を形成するためのリップ5を有しな
い実施例である。冷却空気103は複数の流入孔7から
空気流路2に流入し、場所によって反対方向に流れなが
ら燃焼器を冷却し、複数の流出孔8から燃焼ガス102
側へ流出する.流出した空気は上流のリツブ9から流れ
るバイパス空気孔6からの一様な膜状のフイルム冷却空
気107といっしょになってほぼ一様な膜状のフイルム
冷却空気を形成する。冷却の作用効果に関しては第4図
で説明した内容と同じである. 第6図は、構造材1の内部に設けた空気流路2が縦横に
連結されており、空気流路2が空気101側および燃焼
ガス102側と流入孔7および流出孔8によって連通さ
れている実施例である。冷却の作用,効果に関しては第
4図の内容と同じである。なお、バイパス空気孔6を隣
接する空気流路2の中間に設けた場合も同様の作用,効
果を得られる。
FIG. 5 shows the air 10 in the air flow path 2 provided inside the structural material 1.
This is an embodiment in which a plurality of inflow holes 7 and a plurality of outflow holes 8 are provided which communicate with the combustion gas 102 side and the combustion gas 102 side, and there is no lip 5 for forming a film-like film cooling air with outflow air. Cooling air 103 flows into the air passage 2 through the plurality of inflow holes 7, cools the combustor while flowing in opposite directions depending on the location, and flows into the combustion gas 102 through the plurality of outflow holes 8.
It flows out to the side. The outflowing air is combined with the uniform film-like film cooling air 107 from the bypass air hole 6 flowing from the upstream rib 9 to form a substantially uniform film-like film cooling air. The effects of cooling are the same as explained in Figure 4. FIG. 6 shows that the air passages 2 provided inside the structural member 1 are connected vertically and horizontally, and the air passages 2 are communicated with the air 101 side and the combustion gas 102 side through the inlet hole 7 and the outlet hole 8. This is an example. The action and effect of cooling are the same as those shown in Fig. 4. Note that similar actions and effects can be obtained when the bypass air hole 6 is provided between adjacent air flow paths 2.

第7図は第3図の実施例において、内部に空気流路2を
有する構造材lを燃焼ガス流れ方向に段差が無い様に構
威した例である。
FIG. 7 shows an example of the embodiment shown in FIG. 3 in which the structural material 1 having the air flow path 2 inside is arranged so that there is no step in the direction of flow of combustion gas.

第8図は第4図の実施例において、内部に空気通路2を
有する構造材1を燃焼ガス流れ方向に段差が無い様に構
威した例である。
FIG. 8 shows an example of the embodiment shown in FIG. 4 in which the structural member 1 having an air passage 2 inside is arranged so that there is no step in the flow direction of the combustion gas.

第9図は第3図の実施例において、内部に空気流路2を
有する構造材工を燃焼ガス流れ方向に段差が無い様に構
成するとともに,流出孔8よりも燃焼ガス102の上流
側に相当する空気流路2を無くし、構造材1を形成する
前工程の空気流路2の加工を少なくした例である。
FIG. 9 shows the embodiment shown in FIG. 3, in which the structural material having the air flow path 2 inside is constructed so that there is no step in the flow direction of the combustion gas, and the structure is arranged on the upstream side of the combustion gas 102 from the outflow hole 8. This is an example in which the corresponding air flow path 2 is eliminated and the processing of the air flow path 2 in the previous process of forming the structural member 1 is reduced.

第10図は第9図の実施例において、リツブ5を無くし
、流出孔8からの空気流105を燃焼器壁面に沿わずこ
となく噴出する例である。空気流105は上流のリップ
9から流れるバイパス空気孔6からの一様な膜状のフイ
ルム冷却空気107といっしょになって,ほぼ一様なフ
イルム冷却空気流を形成する。
FIG. 10 shows an example in which the rib 5 is eliminated from the embodiment shown in FIG. 9, and the air flow 105 from the outlet hole 8 is ejected without running along the combustor wall surface. The air flow 105 together with the uniform film cooling air 107 from the bypass air holes 6 flowing from the upstream lip 9 forms a substantially uniform film cooling air flow.

第11図は構造材1を燃焼ガス流れ方向に段差が無い様
に構成し,その内部の空気流路2は燃焼ガス流れ方向の
中間に仕切りを設けず、隣接する空気流路2の中間にバ
イパス空気孔6を設けた例である。
In Fig. 11, the structural member 1 is constructed so that there is no step in the direction of flow of combustion gas, and the air passages 2 inside the structure are arranged in the middle of adjacent air passages 2 without providing a partition in the middle in the direction of flow of combustion gas. This is an example in which a bypass air hole 6 is provided.

第12図は構造材1を燃焼ガス流れ方向102に段差が
無い様に構威し、構造材1の内部に設けた空気流路2は
縦横に連結されており、空気流路2の中間にバイパス空
気孔6を設けた例である.〔発明の効果〕 本発明によれば、フイルム冷却の性能を確保するために
必要なフイルム冷却空気流量の不足分をバイパス流路を
通して、直接,構造材と専用に設けたリップの隙間に流
すことができるため、燃焼器内に供給される空気による
強制対流冷却と、燃焼器を形成する構造材の内部に設け
られた空気流路を流れる冷却空気による強制対流冷却の
性能を高く維持できるように構造材の板厚、および、空
気流路の寸法を小さくでき、また、フイルム冷却空気は
必要とされる流量が廂状に延ばされたリップによって燃
焼器の燃焼ガス側に燃焼器に沿って一様に膜状に燃焼器
表面を滑らかに覆う様に流れるので、燃焼器における圧
力損失を増大することなく,強制対流冷却の性能を高く
維持したまま,必要とされるフイルム冷却性能も確保で
きることになる。また、構造材の板厚を薄くできるので
,燃焼器重量および材料費を低減できる。さらに、構造
材の板厚や空気流路の間隔,形状,寸法だけでなく、バ
イパス流路の断面積を変えることによっても熱負荷に応
じた冷却性能の調整が可能である。
In FIG. 12, the structural member 1 is arranged so that there is no step in the combustion gas flow direction 102, and the air passages 2 provided inside the structural member 1 are connected vertically and horizontally. This is an example in which a bypass air hole 6 is provided. [Effects of the Invention] According to the present invention, the insufficient amount of film cooling air flow rate necessary to ensure film cooling performance can be caused to flow directly into the gap between the structural material and the specially provided lip through the bypass flow path. This makes it possible to maintain high performance of forced convection cooling by the air supplied into the combustor and forced convection cooling by the cooling air flowing through the air passages provided inside the structural material forming the combustor. The thickness of the structural material and the dimensions of the air passages can be reduced, and the required flow rate of the film cooling air can be increased by extending the required flow rate along the combustor to the combustion gas side of the combustor by means of a flared lip. Since the flow smoothly covers the combustor surface in a uniform film, it is possible to maintain the required film cooling performance without increasing pressure loss in the combustor and maintaining high forced convection cooling performance. become. Furthermore, since the plate thickness of the structural material can be made thinner, the weight of the combustor and the cost of materials can be reduced. Furthermore, the cooling performance can be adjusted according to the heat load by changing not only the plate thickness of the structural material and the spacing, shape, and dimensions of the air flow passages, but also the cross-sectional area of the bypass flow passages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すガスタービン燃焼器の
冷却構造の斜視図,第2図は従来のガスタービン燃焼器
の冷却構造の斜視図、第3図,第4図は本発明の変形例
を示すガスタービン燃焼器の冷却構造の斜視図、第5図
および第6図は本発明の変形例を示すガスタービン燃焼
器の冷却構造の断面図および平面図、第7図,第8図,
第9図および第10図は本発明の変形例を示すガスター
ビン燃焼器の冷却構造の斜視図、第11図および第12
図は本発明の変形例を示すガスタービン燃焼器の冷却構
造の断面図および平面図である。 1・・・構造材、2・・・空気流路、5・・・リップ、
6・・・バイパス流路、8・・・流出孔,9・・・リッ
プ、101・・・空気5102・・・燃焼ガス、103
・・・冷却空気、104・・・バイパス空気、105・
・・フイルム冷却空気、107・・・フイルム冷却空気
。 第 1 図 WJ2図 /02 第 5 図 (CL) 第6図 /θ2 第7図 第8図 第9口 /υ/ 第10図 第11図 第12図
FIG. 1 is a perspective view of a cooling structure for a gas turbine combustor showing an embodiment of the present invention, FIG. 2 is a perspective view of a conventional gas turbine combustor cooling structure, and FIGS. 3 and 4 are in accordance with the present invention. FIGS. 5 and 6 are a perspective view of a cooling structure for a gas turbine combustor showing a modification of the present invention, and FIGS. Figure 8,
9 and 10 are perspective views of a cooling structure for a gas turbine combustor showing a modification of the present invention, and FIGS. 11 and 12 are
The figures are a sectional view and a plan view of a cooling structure for a gas turbine combustor showing a modification of the present invention. 1... Structural material, 2... Air flow path, 5... Lip,
6... Bypass flow path, 8... Outlet hole, 9... Lip, 101... Air 5102... Combustion gas, 103
...Cooling air, 104...Bypass air, 105.
...Film cooling air, 107...Film cooling air. Fig. 1 WJ2 Fig./02 Fig. 5 (CL) Fig. 6/θ2 Fig. 7 Fig. 8 Fig. 9 Mouth/υ/ Fig. 10 Fig. 11 Fig. 12

Claims (1)

【特許請求の範囲】 1、ガスタービン燃焼器において、燃焼器を形成する構
造材の内部に、前記燃焼器の空気側と燃焼ガス側とを連
通する空気流路を設け、さらに、前記燃焼器の空気側と
燃焼ガス側とを、直接、連通するバイパス流路を前記構
造材に設け、前記バイパス流路が前記構造材とリップと
の隙間を介して前記燃焼器の燃焼ガス側と通じるように
、前記構造材から燃焼ガスの上流側を閉とする前記リッ
プを廂状に設けたことを特徴とするガスタービン燃焼器
冷却構造。 2、請求項1において、 前記燃焼器を形成する構造材の内部に前記燃焼器の空気
側と燃焼ガス側とを連通するために設けた空気通路が前
記構造材と前記リップの隙間を介して前記燃焼器の燃焼
ガス側と通じるように前記構造材から燃焼ガスの上流側
を閉とするように設けたガスタービン燃焼器冷却構造。
[Claims] 1. In a gas turbine combustor, an air flow path communicating between the air side and the combustion gas side of the combustor is provided inside a structural member forming the combustor, and further, the combustor A bypass passage that directly communicates the air side and the combustion gas side of the combustor is provided in the structural member, and the bypass passage communicates with the combustion gas side of the combustor through a gap between the structural member and the lip. A gas turbine combustor cooling structure characterized in that the lip is provided in a rib shape to close an upstream side of combustion gas from the structural member. 2. In claim 1, an air passage provided inside the structural material forming the combustor for communicating the air side and the combustion gas side of the combustor is provided through a gap between the structural material and the lip. A gas turbine combustor cooling structure provided so as to be closed on the upstream side of the combustion gas from the structural member so as to communicate with the combustion gas side of the combustor.
JP54090A 1990-01-08 1990-01-08 Cooling structure of gas turbine combustion device Pending JPH03207916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54090A JPH03207916A (en) 1990-01-08 1990-01-08 Cooling structure of gas turbine combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54090A JPH03207916A (en) 1990-01-08 1990-01-08 Cooling structure of gas turbine combustion device

Publications (1)

Publication Number Publication Date
JPH03207916A true JPH03207916A (en) 1991-09-11

Family

ID=11476578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54090A Pending JPH03207916A (en) 1990-01-08 1990-01-08 Cooling structure of gas turbine combustion device

Country Status (1)

Country Link
JP (1) JPH03207916A (en)

Similar Documents

Publication Publication Date Title
US5427212A (en) Brake disc rotor
KR960008776B1 (en) Coolable thin metal sheet
US4903477A (en) Gas turbine combustor transition duct forced convection cooling
US8028744B2 (en) Heat sink system and assembly
US3572031A (en) Variable area cooling passages for gas turbine burners
CN105143609B (en) For the cooling combined plate of combustion gas turbine
JPS5918525B2 (en) turbine casing
JPS6014885B2 (en) air cooled turbine blade
JPS6237201B2 (en)
US10962306B2 (en) Shaped leading edge of cast plate fin heat exchanger
JP2001164903A (en) Airfoil, wall capable of being cooled, and method of cooling the wall
US20170211896A1 (en) Heat exchanger with center manifold
JP2003343347A (en) Water jacket for cylinder head
JPH10148103A (en) Method for cooling stator
JP2617761B2 (en) Cooling structure for trailing edge of nozzle flap
JPH11257003A (en) Impingement cooling device
JPS5950858B2 (en) Cooling fluid flow adjustment device
JPS582340B2 (en) Takoosekisouzai
JPH03207916A (en) Cooling structure of gas turbine combustion device
US20190170453A1 (en) Heat exchanger low pressure loss manifold
JPS62153504A (en) Shrouding segment
JPH03221720A (en) Structure for cooling gas turbine combustion device
JPH03267618A (en) Cooling structure for gas turbine combustor
JPH04362256A (en) Cooling device for internal combustion engine
JPH04371718A (en) Cooling structure for gas turbine burner