JPH03207840A - Manufacture of aluminum alloy sheet for forming - Google Patents

Manufacture of aluminum alloy sheet for forming

Info

Publication number
JPH03207840A
JPH03207840A JP111290A JP111290A JPH03207840A JP H03207840 A JPH03207840 A JP H03207840A JP 111290 A JP111290 A JP 111290A JP 111290 A JP111290 A JP 111290A JP H03207840 A JPH03207840 A JP H03207840A
Authority
JP
Japan
Prior art keywords
rolling
temperature
less
final
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP111290A
Other languages
Japanese (ja)
Other versions
JPH06104882B2 (en
Inventor
Shinji Teruda
照田 伸二
Masafumi Mizouchi
政文 溝内
Takeshi Kajiyama
毅 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP2001112A priority Critical patent/JPH06104882B2/en
Publication of JPH03207840A publication Critical patent/JPH03207840A/en
Publication of JPH06104882B2 publication Critical patent/JPH06104882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the Al alloy sheet for forming excellent in heat resistance by subjecting an ingot of an Al alloy contg. elements for improving strength, formability or the like to soaking treatment and thereafter executing hot rolling, cold rolling and final cold rolling including process annealing under specified conditions. CONSTITUTION:An ingot of an Al alloy contg., by weight, 0.5 to 5.0% Mg, 0.1 to 1.0% Cu, 0.2 to 1.0% Fe and 0.1 to 1.0% Si and furthermore contg. one or >=2 kinds among 0.6 to 1.8% Mn, <0.3% Cr, <0.3% Zr and <0.3% V is held to >=550 deg.C for >=3hr and is subjected to soaking treatment. Its hot rolling is started at >=450 deg.C and its final finish hot rolling is started at >=400 deg.C and 16 to 65mm sheet thickness as well as the hot rolling is executed in such a manner that the maximum required time between each roll pass is regulated to <=30 sec and the time from the first roll pass to the finish roll pass is regulated to <=100 sec. Furthermore, in the finish rolling, the finishing temp is regulated to >310 deg.C and the finishing sheet thickness to <6mm. Successively, the sheet is cooled to <=100 deg.C, is cold-rolled is subjected to process annealing of heating to 380 to 600 deg.C at >=1 deg.C/sec temp. rising rate and thereafter cooling to <=200 deg.C at <=1 deg.C/sec cooling rate and is subjected to final cold rolling at >=40% draft.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は耐熱強度に優れた或形加工用のアルミニウム
合金板の製造方法に関し、特に缶胴材、缶蓋材などのよ
うに焼付塗装が施される用途に適した成形加工用アルミ
ニウム合金板の製造方法に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for manufacturing an aluminum alloy plate with excellent heat resistance and strength for processing into certain shapes. The present invention relates to a method for producing an aluminum alloy plate for forming processing, which is suitable for various uses.

従来の技術 戒形加工用アルミニウム合金板、特に缶胴材や缶蓋材に
用いられるアルミニウム合金板については、より強度の
高い薄板を利用することによる経済的効果を期待するべ
く、近年は薄肉化と高強度化が進められている。この種
の用途にはJIS 3004合金硬質板やIts 50
82合金硬質板、JIS 5182合金硬質板などが主
として用いられているが、特に3[104合金硬質板は
、強度を高めるために高圧延率の冷間圧延を施した場合
でも比較的良好な成形性を示すことから、缶胴材に用い
られることが多い。
Conventional technology Aluminum alloy sheets for mold processing, especially aluminum alloy sheets used for can body and can lid materials, have been thinned in recent years in hopes of achieving economical benefits by using thinner sheets with higher strength. Progress is being made to increase the strength of the steel. For this type of application, JIS 3004 alloy hard plate or Its 50
82 alloy hard plate, JIS 5182 alloy hard plate, etc. are mainly used, but 3[104 alloy hard plate in particular has relatively good forming properties even when cold rolled at a high rolling rate to increase strength. It is often used for can body materials because of its properties.

この3004合金硬質板は、均質化熱処理後、常法に従
って熱間圧延を施し、次いで冷間圧延を施してからある
いは冷間圧延を施さずに中間焼鈍を行ない、その後最終
冷間圧延を施して製品板とすることが多い。
After homogenization heat treatment, this 3004 alloy hard plate is subjected to hot rolling according to a conventional method, then subjected to intermediate annealing after cold rolling or without cold rolling, and then subjected to final cold rolling. Often used as a product board.

発明が解決しようとする課題 一般に缶駒材は、製缶のための成形加工後に200℃×
20分程度の塗装焼付け処理を行なうのが通常であり、
缶の耐圧性能は缶胴材の塗装焼付け処理後の耐力と相関
することが知られている。しかるに従来の通常の工程を
経て得られた3004合金硬質板では、耐熱強度が必ず
しも充分ではなく、塗装焼付け処理後の耐力をより一層
向上させることが望まれている。また最近では前述のよ
うな製造工程のうち中間焼鈍として従来の一般的なバッ
チ式焼鈍に代えて、連続焼鈍を適用することが行なわれ
るようになっているが、この場合の連続焼鈍の温度とし
ては高強度材を得るためには500℃程度の高温が必要
とされており、このような高温の連続焼鈍ではエネルギ
コストが高くならざるを得す、そこで省エネルギによる
低コスト化のため、従来よりも低温の連続焼鈍温度で高
強度材が得られる方法の開発が望まれている。
Problems to be Solved by the Invention In general, can frame materials are heated to 200°C after forming for can manufacturing.
It is normal to perform a paint baking process for about 20 minutes.
It is known that the pressure resistance performance of a can is correlated with the proof strength of the can body material after being painted and baked. However, 3004 alloy hard plates obtained through conventional conventional processes do not necessarily have sufficient heat resistance strength, and it is desired to further improve the yield strength after paint baking treatment. In addition, recently, continuous annealing has been used as an intermediate annealing in the manufacturing process as described above, instead of the conventional general batch annealing, but the continuous annealing temperature in this case is In order to obtain high-strength materials, high temperatures of around 500°C are required, and continuous annealing at such high temperatures inevitably increases energy costs. It is desired to develop a method that can obtain high-strength materials at lower continuous annealing temperatures.

この発明は以上の事情を背景としてなされたもので、従
来の3004合金硬質板よりも耐熱強度が高く、塗装焼
付け処理後に高い耐力が得られる威形加工用アルミニウ
ム合金板を、低コストで製造する方法を提供することを
目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and aims to produce, at a low cost, an aluminum alloy plate for shape processing that has higher heat resistance strength than conventional 3004 alloy hard plates and can obtain high yield strength after paint baking treatment. The purpose is to provide a method.

課題を解決するための手段 本発明者等は前述の問題を解決するべく鋭意実験・検討
を進めた結果、熱間圧延条件、特に仕上げ圧延条件を厳
密に規定することによって、コスト上昇を招くことなく
従来よりも耐熱強度を向上させ、塗装焼付け処理後に高
強度を持たせ得るアルミニウム合金板が得られることを
見出し、この発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have carried out extensive experiments and studies to solve the above-mentioned problems, and have found that strict regulation of hot rolling conditions, especially finish rolling conditions, will lead to an increase in costs. The present inventors have discovered that an aluminum alloy plate can be obtained which has improved heat resistance and strength compared to conventional ones, and which can have high strength after painting and baking treatment, and has come to form this invention.

具体的には、この発明の成形加工用アルミニウム合金板
の製造方法は、Mg0.5〜5, 0wt%、Cu  
O.1− 1.Ovl%、F e  O.2〜1.Ov
l%、StO.1= 1.0wt%を含有し、さらにM
n0.6〜1.8wt%、CrO,3vt%以下、Zr
O.3vj%以下、■O. 3vl%以下のうちの1種
または2種以上を含有し、残部がAIおよび不可避的不
純物よりなるアルミニウム合金を素材とし、その鋳塊に
550℃以上の温度で3時間以上の均熱処理を施した後
、450℃以上の温度で熱間圧延を開始し、かつその熱
間圧延工程における最終の仕上げ圧延において、仕上圧
延が開始される時の被圧延材の温度を400℃以上、板
厚を15〜65+mとし、しかもその仕上げ圧延での各
ロールバス間での最大所要時間を30秒以内とするとと
もに最初のロールバスから最終のロールバスまでの所要
時間を 100秒以内とし、かつ仕上げ圧延の上り温度
を310℃以上、上り板厚を6閣以下とし、次いで10
0’C以下に冷却した後、ただちにもしくは冷間圧延を
施してから、1℃/式以上の昇温速度で380〜600
℃の範囲内の温度に加熱して直ちにもしくはIO分以内
の保持を行なってから 1℃/see以上の冷却速度で
20G℃以下に冷却する中間焼鈍を行ない、さらに40
%以上の圧延率で最終冷間圧延を施すことを特徴とする
ものである。
Specifically, the method for producing an aluminum alloy plate for forming according to the present invention includes Mg0.5 to 5.0 wt%, Cu
O. 1-1. Ovl%, F e O. 2-1. Ov
l%, StO. 1=contains 1.0 wt% and further contains M
n0.6-1.8wt%, CrO, 3vt% or less, Zr
O. 3vj% or less, ■O. The material is an aluminum alloy containing one or more of the following: 3vl% or less, with the remainder consisting of AI and unavoidable impurities, and the ingot is subjected to soaking treatment at a temperature of 550°C or more for 3 hours or more. After that, hot rolling is started at a temperature of 450°C or higher, and in the final finish rolling in the hot rolling process, the temperature of the material to be rolled is set to 400°C or higher and the plate thickness is 15°C. ~65+m, and the maximum time required between each roll bath in finish rolling is within 30 seconds, the time required from the first roll bath to the final roll bath is within 100 seconds, and the maximum time required between each roll bath in finish rolling is within 100 seconds, and the maximum time required between each roll bath in finish rolling is within 100 seconds. The temperature was set at 310℃ or higher, the thickness of the plate was set at 6 mm or less, and then 10
After cooling to 0'C or less, immediately or after cold rolling, the temperature is increased from 380 to 600 at a heating rate of 1C/type or more.
After heating to a temperature within the range of °C and holding it immediately or within IO minutes, intermediate annealing is performed by cooling to 20G °C or less at a cooling rate of 1 °C/see or more, and further 40
It is characterized by performing final cold rolling at a rolling reduction of % or more.

作   用 先ずこの発明の或形加工用アルミニウム合金板製造方法
における合金元素の戊分限定理由を説明する。
Function First, the reason for limiting the number of alloying elements in the method of manufacturing an aluminum alloy plate for certain shapes according to the present invention will be explained.

Mg: MgはCu,Stとの共存にょりG. P.ゾーン→β
′Mg2Si→βMg2Si1あるいはG. P.ゾー
ン→S ’  A I 2 C u M g + S 
A l 2 C u M gのような析出過程をたどり
、中間相の析出段階で強度向上に寄与する。缶胴材の場
合、0. 3W程度に薄肉化するためには、塗装焼付け
処理後の耐カで27〜29kg/一程度以上が望まれる
が、過剰にMgが含有されれば戊形性を損なうおそれが
あり、したがってMg量は強度と戒形性の調和から定め
られる。Mg量が0. 5vt%未満では他の合金或分
とあわせて調整しても40%以上の最終冷間圧延率で塗
装焼付け処理後に27kg/−以上の耐力を得ることが
できず、一方5.01%を越えれば加工硬化しやすくな
って圧延性、成形性が悪くなるから、Mg量は 0,5
〜5, 0wt%の範囲内とした。
Mg: Mg coexists with Cu and St. P. Zone → β
'Mg2Si→βMg2Si1 or G. P. Zone → S' A I 2 C u M g + S
It follows a precipitation process similar to that of Al 2 Cu M g, and contributes to strength improvement at the intermediate phase precipitation stage. In the case of can body material, 0. In order to reduce the wall thickness to about 3W, it is desired that the force resistance after the paint baking treatment is about 27 to 29 kg/1 or more, but if excessive Mg is contained, there is a risk of impairing the shapeability. is determined from the harmony of strength and formality. Mg amount is 0. If it is less than 5vt%, it will not be possible to obtain a yield strength of 27kg/- or more after paint baking treatment at a final cold rolling rate of 40% or more even if adjusted with other alloys to some extent, while if it exceeds 5.01% If the Mg content is 0.5, the Mg content becomes easier to work harden, resulting in poor rollability and formability.
It was set within the range of ~5.0 wt%.

Cu; この発明の方法によるアルミニウム合金板の強度向上、
特に塗装焼付け処理後の耐力の向上には、塗装焼付け処
理時の時効硬化を積極利用しており、Cuはこの時効硬
化による強度向上に寄与する。
Cu; Strength improvement of aluminum alloy plate by the method of this invention,
In particular, age hardening during the paint baking process is actively used to improve the yield strength after the paint baking process, and Cu contributes to the strength improvement due to this age hardening.

この効果はA I − C u − M g系析出物の
析出過程で生じるから、Cuは充分な固溶量を維持させ
ておくことが望まれる。この発明の方法では、後述する
ように熱間圧延工程で各合金元素の固溶状態を充分に維
持するような条件を採用しており、しかも中間焼鈍とし
ては、熱間圧延終了までのCuの固溶量を維持するため
に昇温速度を 1℃/8ec以上に速めるとともにさら
に微細析出物を固溶させるために380℃以上の温度を
適用しており、これらの条件を組合せることによってC
uの添加による前述の効果が発揮される。Cu量が0.
IWl%未満では前述の効果が得られず、一方1.0w
l%を越えれば、時効硬化性能は向上するものの、成形
中に加工硬化が生じやすくなって成形性を損なうから、
Cuは 0.1〜 l. Cwt%の範囲内とした。
Since this effect occurs during the precipitation process of AI-Cu-Mg-based precipitates, it is desirable to maintain a sufficient amount of Cu in solid solution. In the method of the present invention, as will be described later, conditions are adopted to sufficiently maintain the solid solution state of each alloying element in the hot rolling process, and in addition, as an intermediate annealing, Cu is heated until the end of hot rolling. In order to maintain the amount of solid solution, the heating rate is increased to 1℃/8ec or higher, and a temperature of 380℃ or higher is applied to further dissolve fine precipitates.By combining these conditions, C.
The above-mentioned effects due to the addition of u are exhibited. Cu amount is 0.
At less than IWl%, the above effect cannot be obtained; on the other hand, at 1.0w
If it exceeds 1%, age hardening performance will improve, but work hardening will easily occur during molding, impairing moldability.
Cu is 0.1 to l. It was set within the range of Cwt%.

Fe: Feは、MnおよびSiと結合してAI−Fe−Mn−
Si系の晶出物を生威させ、しごき加工性の向上に効果
があるが、0、2vj%未満ではその効果が少な< 、
1. Owt%を超える場合にはMn添加と相俟って初
晶巨大化合物を発生させ、成形性を著しく損ってしまう
。したがってFe量は0.2〜 1.Owj%の範囲内
とした。
Fe: Fe combines with Mn and Si to form AI-Fe-Mn-
It is effective in promoting Si-based crystallized substances and improving ironing workability, but the effect is small if it is less than 0.2vj%.
1. If it exceeds Owt%, a primary crystal giant compound will be generated together with the addition of Mn, and the moldability will be significantly impaired. Therefore, the amount of Fe is 0.2 to 1. It was set within the range of Owj%.

Si: この発明の方法では、Stの固溶量を維持させるような
製造条件を採用しているから、Mg2Si系の晶出過程
でも時効硬化による強度向上が期待できるが、Siの役
割としては、強度向上よりもむしろ成形加工時の方向性
の制御にある。Feは再結晶粒を細かくするためには積
極的に添加して良い元素であるが、Feがアルミニウム
マトリックス中に固溶している場合、45°耳が発生し
やすくなるから、アルミニウムマトリックス中には固溶
させないことが望ましい。StはFeの析出を促進し、
結果的にマトリックス中のFe固溶量を減少させる効果
があり、したがってStの添加量はFeの添加量に応じ
て定まる。
Si: Since the method of this invention adopts manufacturing conditions that maintain the solid solution amount of St, it is expected that strength will be improved by age hardening even in the Mg2Si crystallization process, but the role of Si is Rather than improving strength, it lies in controlling directionality during molding. Fe is an element that can be actively added to make the recrystallized grains finer, but if Fe is dissolved in the aluminum matrix, 45° ears are likely to occur. It is desirable not to form a solid solution. St promotes the precipitation of Fe,
As a result, it has the effect of reducing the amount of Fe solid solution in the matrix, and therefore the amount of St added is determined depending on the amount of Fe added.

SiがQ,lvl%未満ではFe析出効果が少なく、一
方Stがl.0wt%を越えればFeを析出させる効果
が飽和してしまう。したがってSt量は0、l〜 l,
 Qvt%の範囲内とした。
When Si is less than Q, lvl%, the Fe precipitation effect is small, while when St is less than lvl%. If it exceeds 0 wt%, the effect of precipitating Fe will be saturated. Therefore, the amount of St is 0, l ~ l,
It was set within the range of Qvt%.

Mn: Mnの添加は強度と成形性の向上に有効である。Mn: Addition of Mn is effective in improving strength and formability.

また特に固溶状態にあるMnは熱による軟化を遅らせる
効果があり、したがって塗装焼付け処理による強度の低
下を少なくする効果がある。ここで、最終板におけるM
n固溶量が多いほど耐熱強度が優れ、塗装焼付け処理に
よる強度低下を少なくすることかでき、その効果を充分
に得るためには最終板においてMnが0. 23vt%
以上固溶していることが望ましい。またこの発明による
アルミニウム合金板の主たる用途である缶胴材の場合は
、苛酷なしごき成形が施されるのが通常であるから、戒
形性向上のためにMnの添加が重要である。通常アルミ
ニウム合金板のしごき戒形においては、エマルジョンタ
イプの潤滑剤が使用されるが、Mn系晶出物が少ない場
合には、同程度の強度を有していてもエマルジョンタイ
プの潤滑剤だけでは潤滑能が不足し、ゴーリングと称さ
れる擦り疵や焼付き等の外観不良が生じるおそれがある
。Mn系晶出物はしごき成形時において固体潤滑的な効
果をもたらして、しごき成形後の外観不良の発生を防止
するに有効であるが、その効果は晶出物の大きさ、量、
種類に影響されることが知られている。
In particular, Mn in a solid solution state has the effect of delaying softening due to heat, and therefore has the effect of reducing the decrease in strength due to paint baking treatment. Here, M in the final plate
The larger the amount of n solid solution, the better the heat resistance strength, and the decrease in strength due to paint baking treatment can be reduced. In order to fully obtain this effect, the final board should have Mn of 0. 23vt%
It is preferable that the solid solution is more than 100%. Furthermore, in the case of can body materials, which are the main application of the aluminum alloy sheet according to the present invention, the addition of Mn is important for improving shapeability, since severe ironing is usually performed. Normally, emulsion type lubricants are used for ironing aluminum alloy plates, but if there are few Mn-based crystallized substances, emulsion type lubricants alone will not work even if they have the same strength. There is a risk that the lubricating ability will be insufficient, resulting in poor appearance such as scratches and seizures called galling. Mn-based crystallized substances provide a solid lubricant effect during ironing and are effective in preventing appearance defects after ironing, but this effect depends on the size and amount of the crystallized substances,
It is known that it is influenced by the species.

連続鋳造法を用いた冷却速度の高い鋳造を行なう場合は
、Mnを1.8vt%を越えて添加しても特に支障なく
鋳造でき、晶出物サイズもその後の熱処理で調整可能で
あるが、現在主流を占めているDC鋳造では、M n 
 l, 3wt%を越えて添加した場合、M n A 
/ 6の初晶巨大金属間化合物が発生し、著しく成形性
を損なうおそれがある。そこでMnの添加量上限は1.
 8vt%とした。またMnの添加は、この発明の合金
を缶蓋材として使用する場合の缶蓋のひきちぎり性や開
缶性向上にも効果がある。
When casting with a high cooling rate using a continuous casting method, it is possible to cast without any particular problem even if Mn is added in excess of 1.8 vt%, and the size of crystallized particles can be adjusted by subsequent heat treatment. In DC casting, which is currently the mainstream, M n
If added in excess of 3 wt%, M n A
/6 primary crystal giant intermetallic compounds are generated, which may significantly impair formability. Therefore, the upper limit of the amount of Mn added is 1.
It was set to 8vt%. The addition of Mn is also effective in improving the tearing and opening properties of the can lid when the alloy of the present invention is used as a can lid material.

Mn量が0 3vt%未満では前述のような固溶Mnに
よる耐熱強度の向上効果やMn系晶出物による前述の固
体潤滑的効果、あるいは開缶性の向上効果が得られない
ため、Mn量の下限は0, 6vt%とした。
If the Mn amount is less than 0.3 vt%, the above-mentioned effect of improving heat resistance strength due to solid solution Mn, the above-mentioned solid lubricating effect due to Mn-based crystallized substances, or the effect of improving can openability cannot be obtained. The lower limit was set to 0.6vt%.

Cr,Zr,V: これらはいずれも強度向上に寄与する元素であり、これ
らのCr,Zr,Vと前述のMnとのうち1種または2
種以上が含有される。これらの元素のうち特にCr,Z
rは前述のMnと同様に熱による軟化を遅らせる作用が
あり、したがって塗装焼付け処理による強度の低下を少
なくするに有効である。但しCrが0。3wt%、Zr
が0, 3wt%、■が0. 3vl%を越えれば巨大
な化合物が発生し、好ましくないから、それぞれCrは
0. 3wt%以下、Zrは0. 3vt%以下、■は
0.3wl%以下に限定した。
Cr, Zr, V: These are all elements that contribute to improving strength, and one or two of these Cr, Zr, V and the above-mentioned Mn
Contains more than one species. Among these elements, especially Cr, Z
Similar to the above-mentioned Mn, r has the effect of delaying softening due to heat, and is therefore effective in reducing the decrease in strength due to paint baking treatment. However, Cr is 0.3wt%, Zr
is 0.3wt%, ■ is 0. If it exceeds 3vl%, a huge compound will be generated, which is not preferable, so Cr should be 0. 3wt% or less, Zr is 0. 3vt% or less, ■ is limited to 0.3wl% or less.

以上の各威分の残部は、基本的にはA/および不可避的
不純物とすれば良い。なお通常のアルミニウム合金にお
いては鋳塊結晶粒微細化のために、Ti1あるいはTi
およびBを微量添加することがあり、この発明の場合に
おいても微量のTi1あるいはTiおよびBを含有して
いても良い。但し、Tiを添加する場合、0.Oiwt
%未満ではTi添加の効果が得られず、一方0.15w
l%を越えれば初晶TiAJ3が晶出して成形性を害す
るから、Tiは0,Ol〜G.15vl%の範囲内とす
ることが好ましい。またTiとともにBを添加する場合
、BがlppI1未満ではB添加の効果が得られず、一
方Bが500ppmを越えればT i B 2の粗大粒
子が混入して成形性を害するから、Bは1〜500pp
mの範囲内とすることが好ましい。そのほか、鋳造時の
溶湯酸化防止のためにBeを0.02wt%以下の範囲
で添加しても良い。
The remainder of each of the above components may basically be A/ and unavoidable impurities. In addition, in ordinary aluminum alloys, Ti1 or Ti is used to refine the ingot crystal grains.
A trace amount of Ti1 or Ti and B may be added in the case of the present invention. However, when adding Ti, 0. Oiwt
%, the effect of Ti addition cannot be obtained;
If it exceeds 1%, primary TiAJ3 crystals will crystallize and impair the formability. It is preferably within the range of 15vl%. Furthermore, when B is added together with Ti, if B is less than lppI1, the effect of B addition cannot be obtained, whereas if B exceeds 500ppm, coarse particles of T i B 2 will be mixed in, impairing the formability. ~500pp
It is preferable to set it within the range of m. In addition, Be may be added in an amount of 0.02 wt% or less to prevent oxidation of the molten metal during casting.

次にこの発明の成形加工用アルミニウム合金板製造方法
における製造プロセス条件について説明する。
Next, manufacturing process conditions in the method for manufacturing an aluminum alloy plate for forming according to the present invention will be explained.

この発明のプロセスでは、熱間圧延工程において合金元
素、特にMn,Fe,Cr等の遷移元素の析出をできる
だけ防止して、熱間圧延終了時までに合金元素の固溶状
態をできるだけ維持させることが重要な特徴であり、こ
のように熱間圧延終了時まで固溶状態を維持しておき、
しかもその後の中間焼鈍での溶体化効果によりそれまで
に析出した元素の固溶化を図ることによって、最終板の
状態での合金元素の固溶量を著しく多<シ、これにより
最終板に対する塗装焼付け処理時の時効硬化を充分に図
って、塗装焼付け処理による強度低下を防止しているの
である。
In the process of this invention, the precipitation of alloying elements, especially transition elements such as Mn, Fe, and Cr, is prevented as much as possible during the hot rolling process, and the solid solution state of the alloying elements is maintained as much as possible by the end of hot rolling. is an important feature, and in this way the solid solution state is maintained until the end of hot rolling.
In addition, the solution effect in the subsequent intermediate annealing allows the elements precipitated up to that point to become solid solutions, which significantly increases the amount of solid solution of alloying elements in the final plate state, which allows the final plate to be painted and baked. By ensuring sufficient age hardening during treatment, a decrease in strength due to paint baking treatment is prevented.

さらにこの発明のプロセスを具体的に説明する。Furthermore, the process of this invention will be specifically explained.

先ず前述のような成分組威を有するアルミニウム合金鋳
塊を常法に従ってDC鋳造法等により鋳造する。次いで
その鋳塊に対して均熱処理(均質化処理)を施す。この
均熱処理は、Mn,Cr等の遷移元素の固溶状態を維持
するため、550℃以上の保持温度とする必要があり、
また 3時間未満の保持では充分な均質化が図れない。
First, an aluminum alloy ingot having the composition as described above is cast by a conventional method such as a DC casting method. Next, the ingot is subjected to soaking treatment (homogenization treatment). This soaking treatment requires a holding temperature of 550°C or higher in order to maintain the solid solution state of transition elements such as Mn and Cr.
Further, if the mixture is held for less than 3 hours, sufficient homogenization cannot be achieved.

したがって均熱処理の条件は550℃以上で3時間以上
の保持とした。
Therefore, the soaking conditions were set at 550° C. or higher and held for 3 hours or more.

均熱処理後は熱間圧延を行なう。この場合熱間圧延開始
温度は450℃以上とすれば良いが、均熱処理後に直ち
に450℃以上の温度から熱間圧延を行なっても、ある
いは均熱処理後に改めて熱間圧延のための予備加熱を行
なってから450℃以上で熱間圧延を開始しても良い。
After soaking, hot rolling is performed. In this case, the hot rolling start temperature may be set to 450°C or higher, but hot rolling may be performed immediately after soaking at a temperature of 450°C or higher, or preheating for hot rolling may be performed again after soaking. After that, hot rolling may be started at 450°C or higher.

熱間圧延は、先ず粗圧延を行なってから仕上げ圧延を行
なうか、あるいは粗圧延を行なってから中間圧延(中間
仕上げ圧延)を行ない、その後仕上げ圧延を行なうのが
通常であり、いずれにしてもこの発明では最終の仕上げ
圧延の条件を厳密に規定して、仕上げ圧延終了時まで合
金元素の固溶状態を可及的に維持するようにしているの
が特徴である。すなわち、最終の仕上げ圧延が開始され
る時の温度を400℃以上、板厚をl5〜650111
とし、かっ仕上げ圧延の圧延時間に関して、各ロールバ
ス間での最大所要時間を30秒以下とするとともに最初
のロールバスから最終ロールバスまでの所要時間を 1
00秒以内とし、しかも仕上げ圧延の上り温度を310
℃以上、上り板厚を6一以下とする。
In hot rolling, it is normal to first perform rough rolling and then finish rolling, or to perform rough rolling and then intermediate rolling (intermediate finish rolling), and then finish rolling. The present invention is characterized in that the conditions for the final finish rolling are strictly defined so that the solid solution state of the alloying elements is maintained as much as possible until the end of the finish rolling. That is, the temperature when the final finish rolling is started is 400°C or higher, and the plate thickness is 15 to 650111.
Regarding the rolling time for finish rolling, the maximum time required between each roll bath shall be 30 seconds or less, and the time required from the first roll bath to the final roll bath shall be 1.
00 seconds or less, and the rising temperature of finish rolling is 310 seconds.
℃ or more, and the top plate thickness is 61 or less.

これらの限定理由は次の通りである。The reasons for these limitations are as follows.

仕上げ圧延開始時の温度が400℃以上であれば歪の回
復を優先させることができる。歪が回復すれば短時間で
の合金元素の析出が少なくなって合金元素の固溶状態の
維持が容易となる。これに対し仕上げ圧延開始温度が4
00℃未満では歪の回復が充分ではないため合金元素の
析出が多くなってしまう。なお仕上げ圧延開始時の板厚
が15mg未満では、仕上げ圧延に入る前に被圧延材が
冷えてしまい、所望の温度(400℃以上)が得にくく
なり、一方65+nmを越えればスタンド数がよほど多
くないと仕上げ圧延で最終板厚を6mm以下にすること
が難しくなる。
If the temperature at the start of finish rolling is 400° C. or higher, priority can be given to strain recovery. Once the strain is recovered, precipitation of alloying elements in a short period of time will be reduced, making it easier to maintain the solid solution state of alloying elements. On the other hand, the finish rolling start temperature is 4
If the temperature is lower than 00°C, the recovery of strain is not sufficient, resulting in increased precipitation of alloying elements. If the plate thickness at the start of finish rolling is less than 15 mg, the material to be rolled will cool down before starting finish rolling, making it difficult to obtain the desired temperature (400°C or more), while if it exceeds 65+nm, the number of stands will be large. Otherwise, it will be difficult to reduce the final plate thickness to 6 mm or less in finish rolling.

仕上げ圧延における圧延時間に関しては、各ロールバス
間の所要時間および最初のロールバスから最終のロール
バスまでの所要時間(総時間)が長くなればなるほど、
固溶元素の析出が多くなる。
Regarding the rolling time in finish rolling, the longer the time required between each roll bath and the time required from the first roll bath to the final roll bath (total time),
Precipitation of solid solution elements increases.

各ロールバス間の所要時間が30秒を越せば各ロールバ
ス間での析出が進み、また総時間が100秒を越せば圧
延途中でのトータルとしての析出量が多くなる。したが
って各ロールバス間の所要時間は30秒以下、総時間は
100秒以下とする必要がある。
If the time required between each roll bath exceeds 30 seconds, precipitation between each roll bath will proceed, and if the total time exceeds 100 seconds, the total amount of precipitation during rolling will increase. Therefore, the time required between each roll bath must be 30 seconds or less, and the total time must be 100 seconds or less.

なおここで各ロールバス間の所要時間とは、被圧延材の
任意の部分があるロールを通過する時点から同じ部分が
次のロールを通過する時点までの時間を意味する。また
総時間も、同じく被圧延材の任意の部分が最初のロール
を通過する時点から同じ部分が最終のロールを通過する
時点までの時間を意味する。
Note that the time required between each roll bath here means the time from the time when an arbitrary part of the material to be rolled passes through a certain roll to the time when the same part passes through the next roll. Moreover, the total time also means the time from the time when an arbitrary part of the material to be rolled passes through the first roll to the time when the same part passes through the last roll.

一方仕上げ圧延の上り温度は高い方が回復を優先させて
合金元素の析出を少なくすることができる。このように
熱間圧延の仕上げ圧延上り温度を高くして熱間圧延上が
りの歪の回復を優先させ、合金元素の析出を極力おさえ
ることによって、その後の中間焼鈍による溶体化効果を
高め、塗装焼付け処理後の強度を従来よりも高めるには
、仕上げ圧延の上り温度を310℃以上とすることが有
効である。なお仕上げ圧延の上り温度を余りに高くし過
ぎればロールコーティング等の問題が生じるから、通常
は360℃程度以下とすることが好ましい。また仕上げ
圧延の上り板厚が6mを越える場合には、その後の冷間
圧延工程でのバス回数が増えて作業効率が低下するから
、上り板厚は6W以下とした。
On the other hand, the higher the rising temperature in finish rolling, the more priority can be given to recovery and the precipitation of alloying elements can be reduced. In this way, by raising the finish rolling temperature of hot rolling to prioritize the recovery of strain after hot rolling and suppressing the precipitation of alloying elements as much as possible, the solution effect of the subsequent intermediate annealing is enhanced, and the paint baking process is improved. In order to increase the strength after treatment more than before, it is effective to set the finish rolling temperature to 310° C. or higher. Note that if the rising temperature of finish rolling is made too high, problems such as roll coating will occur, so it is usually preferable to keep it at about 360° C. or lower. Furthermore, if the finishing plate thickness in finish rolling exceeds 6 m, the number of passes in the subsequent cold rolling process increases and work efficiency decreases, so the finishing plate thickness was set to be 6 W or less.

上述のようにして上り・温度310℃以上にて仕上げ圧
延を終えた後には、水冷等により強制冷却を行なって、
1℃/sec以上の冷却速度で1[1G℃以下に急速冷
却することが望ましい。このように仕上げ圧延後に直ち
に急速冷却することによって、合金元素、ことにCu,
Mg,St等の析出を少なくして、その後の中間焼鈍時
における溶体化の効果を増すことができ、ひいては塗装
焼付け処理後の強度を一層向上させることができる。
After finish rolling at a temperature of 310°C or higher as described above, forced cooling is performed by water cooling etc.
It is desirable to rapidly cool to 1[1 G°C or less at a cooling rate of 1°C/sec or more. By rapid cooling immediately after finish rolling, alloying elements, especially Cu,
By reducing the precipitation of Mg, St, etc., the effect of solution treatment during subsequent intermediate annealing can be increased, and as a result, the strength after the paint baking treatment can be further improved.

その後は、冷間圧延を行なってから中間焼鈍を行なうか
または冷間圧延を行なわずに直ちに中間焼鈍を行なう。
Thereafter, intermediate annealing is performed after cold rolling, or intermediate annealing is performed immediately without cold rolling.

この中間焼鈍は、昇温速度を l℃/see以上として
380〜600℃の範囲内の温度に加熱し、直ちにもし
くは10分以内の保持を行なってから 1℃/sec以
上の冷却速度で200℃以下に冷却する。このような中
間焼鈍の条件を定めた理由は次の通りである。
This intermediate annealing is performed by heating to a temperature within the range of 380 to 600°C at a temperature increase rate of 1°C/see or higher, and then heating to 200°C at a cooling rate of 1°C/sec or higher immediately or after holding for 10 minutes or more. Cool below. The reason why such intermediate annealing conditions were determined is as follows.

すなわち、中間焼鈍時の昇温速度が速いほど合金元素の
析出が少なくなり、熱延上り状態での固溶状態を維持す
ることが可能となる。この効果は昇温速度が1℃/se
c以下では少ないから、昇温速度は1’C/see以上
とした。また中間焼鈍の温度については、Mn等の遷移
元素の固溶状態を維持するためには再結晶終了温度直上
付近の温度が最適であり、この発明で対象とする系の合
金では再結晶終了温度が380℃程度であるから、上述
の観点からは380〜400℃が好ましい。但し、これ
以上の高温であってもIO分以内の短時間保持であれば
Mn等の遷移元素の析出は少なく、ある程度は固溶状態
を維持することができる。一方、中間焼鈍温度が380
℃以上の温度であれば、熱間圧延直後や中間焼鈍の昇温
中に発生したCu−Mg−St等の微細な析出物が再固
溶し、その結果最終板の塗装焼付け処理後にG. P.
ゾーンを形威して強度低下を防止できる。この効果は4
50℃以上であれば一層顕著となって、均熱一加熱一熱
延時にかけて生じた粗大な金属元素の析出物の固溶も行
なわれ、より溶体化効果が進んで強度向上に寄与する。
That is, the faster the temperature increase rate during intermediate annealing, the less precipitation of alloying elements occurs, making it possible to maintain the solid solution state in the hot-rolled state. This effect has a heating rate of 1°C/sec.
The temperature increase rate was set to be 1'C/see or higher since the temperature is small below 1'C/see. Regarding the temperature of intermediate annealing, in order to maintain the solid solution state of transition elements such as Mn, the optimum temperature is just above the recrystallization end temperature, and for the alloys targeted by this invention, the recrystallization end temperature is is about 380°C, so 380 to 400°C is preferable from the above point of view. However, even if the temperature is higher than this, if the temperature is kept for a short time within IO minutes, precipitation of transition elements such as Mn is small and a solid solution state can be maintained to some extent. On the other hand, the intermediate annealing temperature is 380
If the temperature is higher than 0.degree. C., fine precipitates such as Cu-Mg-St generated immediately after hot rolling or during temperature rise during intermediate annealing will be re-dissolved, resulting in G.I. P.
It is possible to prevent the strength from decreasing by controlling the zone. This effect is 4
If the temperature is 50° C. or higher, it becomes even more noticeable, and solid solution of coarse precipitates of metal elements generated during soaking, heating, and hot rolling is also performed, and the solution effect progresses further, contributing to improvement in strength.

但し、この発明の製造方法では、既に述べたように熱延
上りの状態まで可及的に合金元素の固溶状態が維持され
るようなプロセスを適用しているから、必ずしも450
℃以上の高温でなくとも、380℃以上であれば塗装焼
付け処理後の高強度を得ることができる。したがって中
間焼鈍の温度は380℃以上と規定した。また中間焼鈍
後の200℃以下の温度までの冷却速度が1 ℃/ s
ec未満では、折角固溶した合金元素が再析出してしま
うおそれがあり、したがって中間焼鈍後の冷却は2H℃
以下の温度まで f℃/see以上と規定した。なお上
述のような1 ’C / sec以上の昇温速度、冷却
速度は、連続焼鈍炉を用いることによって達成できる。
However, in the manufacturing method of the present invention, as mentioned above, a process is applied in which the solid solution state of the alloying elements is maintained as much as possible until the state of hot rolling.
Even if the temperature is not higher than 380°C, high strength can be obtained after the paint baking treatment if the temperature is 380°C or higher. Therefore, the temperature of intermediate annealing was specified to be 380°C or higher. In addition, the cooling rate to a temperature of 200℃ or less after intermediate annealing is 1℃/s.
If the temperature is less than ec, there is a risk that the alloying elements that have been taken into solid solution will re-precipitate.
Temperatures below f°C/see were specified. Note that the heating rate and cooling rate of 1'C/sec or more as described above can be achieved by using a continuous annealing furnace.

中間焼鈍後は、圧延率40%以上で最終冷間を行なって
、所定の板厚とする。この最終冷間圧延の圧延率が40
%未満では従来材と同程度以上の強度が得られないから
、40%以上の圧延率とした。
After intermediate annealing, final cold rolling is performed at a rolling rate of 40% or more to obtain a predetermined thickness. The rolling ratio of this final cold rolling is 40
If the rolling rate is less than 40%, it will not be possible to obtain a strength comparable to or higher than that of conventional materials, so the rolling rate was set to 40% or more.

最終冷間圧延後は、そのまま最終板として成形加工の用
途に供しても良いが、特に威形性が重視される場合は1
00〜200℃の範囲内の温度で0.5〜5.0時間程
度の仕上げ焼鈍(最終焼鈍)を行なっても良い。このよ
うな仕上げ焼鈍を行なえば、時効が進むために最終冷間
圧延のままの場合よりも塗装焼付け処理後の強度の低下
は一層少なくなる。
After the final cold rolling, it may be used as a final sheet for forming processing, but if shapeliness is particularly important,
Finish annealing (final annealing) may be performed at a temperature in the range of 00 to 200°C for about 0.5 to 5.0 hours. If such final annealing is performed, the aging progresses, so that the decrease in strength after the paint baking treatment will be smaller than in the case of final cold rolling.

なおこの発明の方法において、熱間圧延工程における仕
上げ圧延に使用される圧延機としては、前述のような仕
上げ圧延条件が満たされるならば任意のものを使用でき
、シングルリバース圧延機あるいは連続圧延機(3タン
デム圧延機、5タンデム圧延機等)のいずれも使用でき
る。
In the method of the present invention, any rolling mill can be used for finishing rolling in the hot rolling process as long as the finishing rolling conditions described above are satisfied, and a single reverse rolling mill or a continuous rolling mill can be used. (3 tandem rolling mill, 5 tandem rolling mill, etc.) can be used.

実  施  例 第1表に示すこの発明の成分紹成範囲内のアルミニウム
合金について、常法にしたがってDC鋳造した。得られ
た鋳塊の両面を面削して厚さ 500閣とした後、60
0℃× 6時間の均熱処理を行ない、その後480℃で
熱間圧延を開始した。この熱間圧延は、本発明例ではシ
ングルリバース圧延機と5スタンド圧延機とを用い、粗
圧延と中間圧延をシングルリバースで行い、次に仕上げ
圧延を5スタンドで行なった。また比較例はすべてシン
グルリバースで熱間圧延を行った。ここで、仕上げ圧延
は、入り側板厚4hmとし、第2表中に示すような種々
の条件で板厚3. Oaaまで圧延した。このようにし
て得られた熱延板を板厚1mmまで冷間圧延した後、第
l表中に示すような条件で連続焼鈍炉もしくは箱焼鈍炉
を用いて中間焼鈍を行なった。その後最終冷間圧延を行
なって板厚0. 3m+*の圧延板を得、さらに第l表
中に示すような条件で仕上げ焼鈍を行なった。
EXAMPLE Aluminum alloys having the composition range of the present invention shown in Table 1 were cast by DC casting according to a conventional method. After face cutting both sides of the obtained ingot to a thickness of 500 mm,
Soaking treatment was carried out at 0°C for 6 hours, and then hot rolling was started at 480°C. In the example of the present invention, this hot rolling was performed using a single reverse rolling mill and a 5-stand rolling mill, with rough rolling and intermediate rolling performed using the single reverse, and then finishing rolling performed using the 5-stand rolling mill. In addition, all comparative examples were hot rolled by single reverse. Here, in the finish rolling, the plate thickness at the entry side was 4 hm, and the plate thickness was 3 mm under various conditions as shown in Table 2. It was rolled to Oaa. After the hot-rolled sheets thus obtained were cold-rolled to a thickness of 1 mm, intermediate annealing was performed using a continuous annealing furnace or a box annealing furnace under the conditions shown in Table 1. After that, final cold rolling is performed to achieve a plate thickness of 0. A rolled plate of 3 m+* was obtained and further subjected to finish annealing under the conditions shown in Table 1.

以上のようにして得られた最終板について、Mn固溶量
を調べるとともに、塗装焼付け処理前の降伏強さおよび
伸びを調べた。また最終板に対して200℃×20分の
塗装焼付け処理を行ない、その塗装焼付け処理後の降伏
強さおよび伸びを調べた。併せて、塗装焼付け処理前の
成形性(再絞り性およびしごき性)も調べた。その結果
を第3表に示す。
Regarding the final plate obtained as described above, the amount of solid solution of Mn was examined, and the yield strength and elongation before the paint baking treatment were also examined. Further, the final board was subjected to a paint baking treatment at 200°C for 20 minutes, and the yield strength and elongation after the paint baking treatment were examined. In addition, the formability (redrawability and ironability) before the paint baking treatment was also investigated. The results are shown in Table 3.

第1表:供試合金の成分組成(単位 vl%) 第3表から明らかなように、この発明の方法(条件符号
1〜3)により得られた圧延板は、塗装焼付け処理後の
降伏強さが高く、塗装焼付け処理による強度低下が少な
いことが明らかであり、また戊形性も従来法の場合とな
んら遜色ないことが明らかである。
Table 1: Component composition of sample alloy (unit: vl%) As is clear from Table 3, the rolled plates obtained by the method of the present invention (condition codes 1 to 3) have a yield strength of It is clear that the strength is high and that there is little decrease in strength due to the paint baking treatment, and it is also clear that the formability is no different from that of the conventional method.

発明の効果 この発明の方法によれば、熱間圧延条件、特にその仕上
げ圧延条件を厳密に規定することによって、熱間圧延上
りの状態まで合金元素の固溶状態をできるだけ維持し、
さらにその後の中間焼鈍で溶体化を図ることによって、
成形加工性を低下させることなく、塗装焼付け処理後の
強度が耐力で0.5kg/一以上従来材よりも高い成形
加工用アルミニウム合金板を得ることが可能となり、し
たがって缶材等の如く薄肉でしかも高強度が要求される
成形加工用材料の製造に最適である。またこの発明の方
法によれば、中間焼鈍として連続焼鈍を適用した際に、
400℃程度の比較的低い温度でも充分な強度が得られ
、したがってこの場合には連続焼鈍における省エネルギ
ー化を図ることができる。
Effects of the Invention According to the method of the present invention, by strictly specifying the hot rolling conditions, especially the finish rolling conditions, the solid solution state of the alloying elements is maintained as much as possible until the hot rolled state,
Furthermore, by achieving solution treatment in the subsequent intermediate annealing,
It is now possible to obtain an aluminum alloy plate for forming that has a yield strength of 0.5 kg/1 or more in terms of yield strength after paint baking treatment, which is higher than that of conventional materials, without reducing formability. Furthermore, it is ideal for producing materials for molding that require high strength. Further, according to the method of this invention, when continuous annealing is applied as intermediate annealing,
Sufficient strength can be obtained even at a relatively low temperature of about 400° C. Therefore, in this case, it is possible to save energy in continuous annealing.

Claims (1)

【特許請求の範囲】[Claims] Mg0.5〜5.0wt%、Cu0.1〜1.0wt%
、Fe0.2〜1.0wt%、Si0.1〜1.0wt
%を含有し、さらにMn0.6〜1.8wt%、Cr0
.3wt%以下、Zr0.3wt%以下、V0.3wt
%以下のうちの1種または2種以上を含有し、残部がA
lおよび不可避的不純物よりなるアルミニウム合金を素
材とし、その鋳塊に550℃以上の温度で3時間以上の
均熱処理を施した後、450℃以上の温度で熱間圧延を
開始し、かつその熱間圧延工程における最終の仕上げ圧
延において、仕上圧延が開始される時の被圧延材の温度
を400℃以上、板厚を15〜65mmとし、しかもそ
の仕上げ圧延での各ロールバス間での最大所要時間を3
0秒以内とするとともに最初のロールバスから最終のロ
ールバスまでの所要時間を100秒以内とし、かつ仕上
げ圧延の上り温度を310℃以上、上り板厚を6mm以
下とし、次いで100℃以下に冷却した後、ただちにも
しくは冷間圧延を施してから、1℃/sec以上の昇温
速度で380〜600℃の範囲内の温度に加熱して直ち
にもしくは10分以内の保持を行なってから1℃/se
c以上の冷却速度で200℃以下に冷却する中間焼鈍を
行ない、さらに40%以上の圧延率で最終冷間圧延を施
すことを特徴とする成形加工用アルミニウム合金圧延板
の製造方法。
Mg0.5-5.0wt%, Cu0.1-1.0wt%
, Fe0.2-1.0wt%, Si0.1-1.0wt
%, and further contains Mn0.6-1.8wt%, Cr0
.. 3wt% or less, Zr0.3wt% or less, V0.3wt
% or less, and the remainder is A.
The ingot is made of an aluminum alloy consisting of l and inevitable impurities, and after soaking the ingot at a temperature of 550°C or higher for 3 hours or more, hot rolling is started at a temperature of 450°C or higher, and the In the final finish rolling in the inter-rolling process, the temperature of the rolled material at the start of finish rolling should be 400°C or higher, the plate thickness should be 15 to 65 mm, and the maximum required distance between each roll bath in the finish rolling should be 3 hours
0 seconds or less, the time required from the first roll bath to the final roll bath is within 100 seconds, and the rising temperature of finish rolling is 310°C or higher, the rising plate thickness is 6mm or less, and then cooling to 100°C or lower. After that, immediately or after cold rolling, heat to a temperature within the range of 380 to 600 °C at a temperature increase rate of 1 °C / sec or more and hold it for 10 minutes or less, then 1 °C / se
A method for manufacturing an aluminum alloy rolled sheet for forming work, comprising performing intermediate annealing by cooling to 200° C. or less at a cooling rate of c or more, and further performing final cold rolling at a rolling rate of 40% or more.
JP2001112A 1990-01-09 1990-01-09 Manufacturing method of aluminum alloy sheet for forming Expired - Fee Related JPH06104882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112A JPH06104882B2 (en) 1990-01-09 1990-01-09 Manufacturing method of aluminum alloy sheet for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112A JPH06104882B2 (en) 1990-01-09 1990-01-09 Manufacturing method of aluminum alloy sheet for forming

Publications (2)

Publication Number Publication Date
JPH03207840A true JPH03207840A (en) 1991-09-11
JPH06104882B2 JPH06104882B2 (en) 1994-12-21

Family

ID=11492385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112A Expired - Fee Related JPH06104882B2 (en) 1990-01-09 1990-01-09 Manufacturing method of aluminum alloy sheet for forming

Country Status (1)

Country Link
JP (1) JPH06104882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598404A (en) * 1991-10-02 1993-04-20 Furukawa Alum Co Ltd Manufacture of mg-containing aluminum alloy metal plate for forming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126952A (en) * 1982-01-23 1983-07-28 Kobe Steel Ltd Baking hardening type hard aluminum alloy plate for can body and its manufacture
JPS58224145A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate forming small edge by deep drawing and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126952A (en) * 1982-01-23 1983-07-28 Kobe Steel Ltd Baking hardening type hard aluminum alloy plate for can body and its manufacture
JPS58224145A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate forming small edge by deep drawing and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598404A (en) * 1991-10-02 1993-04-20 Furukawa Alum Co Ltd Manufacture of mg-containing aluminum alloy metal plate for forming

Also Published As

Publication number Publication date
JPH06104882B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
JP2008542526A (en) Aluminum alloy plate and manufacturing method thereof
EP0259700A1 (en) Production process for aluminium alloy rolled sheet
JP2997156B2 (en) Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability
US5634991A (en) Alloy and method for making continuously cast aluminum alloy can stock
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
JPS6140299B2 (en)
JPH05195171A (en) Production of aluminum hard plate excellent in formability and low in earing rate
KR100428640B1 (en) Method for Making Aluminum Alloy Can Stock
JPS626740B2 (en)
JPH07310153A (en) Production of aluminum alloy sheet excellent in strength ductility and stability
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
JPH04221036A (en) Aluminum two piece can body and its manufacture
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JPS61133322A (en) Production of thin steel sheet having excellent formability
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JPH03207840A (en) Manufacture of aluminum alloy sheet for forming
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH1161365A (en) Production of aluminum alloy sheet for deep drawing
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH04276047A (en) Production of hard aluminum alloy sheet for forming

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees