JPH03207722A - Composite reinforcing material - Google Patents

Composite reinforcing material

Info

Publication number
JPH03207722A
JPH03207722A JP160790A JP160790A JPH03207722A JP H03207722 A JPH03207722 A JP H03207722A JP 160790 A JP160790 A JP 160790A JP 160790 A JP160790 A JP 160790A JP H03207722 A JPH03207722 A JP H03207722A
Authority
JP
Japan
Prior art keywords
fibers
zinc oxide
material according
reinforcing material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP160790A
Other languages
Japanese (ja)
Inventor
Minoru Yoshinaka
芳中 實
Eizo Asakura
朝倉 栄三
Hidenosuke Nakamura
中村 秀之助
Kohei Shioda
浩平 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP160790A priority Critical patent/JPH03207722A/en
Publication of JPH03207722A publication Critical patent/JPH03207722A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composite reinforcing material composed of zinc oxide whisker, having high strength in all directions and free from anisotropy. CONSTITUTION:The objective reinforcing material is produced by keeping, mixing or dispersing (A) zinc oxide whiskers composed of a core part and four needle crystal parts extending from the core part in plural different directions and having a length of >=3mum from the base to the tip in (B) a holding material (preferably glass, concrete, mortar, inorganic or organic fiber, granule, powder, flake, inorganic binder, organic binder, wax or semi-solid gelatinous substance).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合強化材に関する。さらに詳しくは航宇宙体
の機体構造用材料、エアーパスおよびヘリコプタ−翼な
どの機体構造材料、潜水艦などの軍需用のみならず各種
の建設材料、化学装置および核燃料用耐蝕材料、海岸開
発と関連した深海用構造材料、陸送車輌、自動車および
舟艇、配電用基板および遮断用開閉器などの電気機器部
品にいたるまで、民需用として新しい用途に適用される
複合強化材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to composite reinforcements. More specifically, materials for aircraft body structures such as air passes and helicopter wings, various construction materials as well as for military purposes such as submarines, corrosion-resistant materials for chemical equipment and nuclear fuel, and deep sea materials related to coastal development. This field relates to composite reinforcing materials that are applied to new civilian uses, including structural materials for land transport vehicles, automobiles and boats, electrical equipment parts such as power distribution boards and disconnection switches.

(従来の技41) 従来、多彩な金属繊維強化型複合材料が開発されている
が、耐熱無機質繊維(Advanced refrac
−tory fiber)の中でも単結晶(Singl
e crystal)を使用するものが少なくない、単
結晶(ウィスカー)は一般に転移の数が極端に少なく強
度がその結晶の理想値に近い特長を持っているため補強
用基材として最適であり、複合材の強度や弾性率の向上
が図られてきた。その代表的なウィスカーとしては、β
−8iC,α−8iC,α−8i、N4.グラファイト
(C)、チタン酸カリウム(K2O・6TiO,)、 
A12.Q3.Cu、Fe、W等があった。
(Conventional technique 41) A variety of metal fiber reinforced composite materials have been developed, but heat-resistant inorganic fibers (Advanced refrac
- Among the tory fibers, single crystal
In general, single crystals (whiskers) have extremely few dislocations and have a strength close to the ideal value of the crystal, making them ideal as reinforcing base materials. Efforts have been made to improve the strength and elastic modulus of the material. A typical whisker is β
-8iC, α-8iC, α-8i, N4. Graphite (C), potassium titanate (K2O・6TiO,),
A12. Q3. There were Cu, Fe, W, etc.

このようなウィスカー複合強化材は、強度と弾性率の向
上が図られると同時に、高温強度の大幅な改善や耐摩耗
性の向上が達成でき、連続繊維を使ったものとは異なり
、圧延、押出し、*造なとの二次加工ができる利点があ
った。
Such whisker composite reinforcements have improved strength and modulus, as well as significantly improved high-temperature strength and wear resistance, and unlike those using continuous fibers, they can be rolled or extruded. , *It had the advantage of being able to perform secondary processing.

(発明が解決しようとする課題) しかしながら、上記従来の複合強化材では使用するウィ
スカーが単純な同径状繊維であるため押し出し等の圧力
を受けた時にウィスカーが圧力方向の一方向に配向し、
強度に異方性が生じた(第4図、第5図)、すなわち配
向方向には、高強度が実現できたが、それと角度がわず
かにずれるだけで補強効果が失われるのが一般的であっ
た。
(Problems to be Solved by the Invention) However, since the whiskers used in the above-mentioned conventional composite reinforcing materials are simple fibers with the same diameter, when pressure is applied such as extrusion, the whiskers are oriented in one direction in the pressure direction.
Anisotropy occurred in the strength (Figures 4 and 5), that is, high strength was achieved in the orientation direction, but the reinforcing effect is generally lost if the angle deviates even slightly. there were.

また、強度を得るためには15〜30Vo1%以上のウ
ィスカーが配合されるのが一般的であったが、このウィ
スカーの配合は複合強化材の切削加工や研削加工の点か
らは堅くて加工し難い材料となりマイナス要因であった
。さらに従来のウィスカーは製造的に複雑で収率が悪く
、コストが高いという問題があった。
In addition, in order to obtain strength, whiskers of 15 to 30 Vo1% or more were generally blended, but this whisker blend is too hard to process from the point of view of cutting and grinding of composite reinforcing materials. This was a negative factor as it was a difficult material to use. Further, conventional whiskers have problems in that they are complicated to manufacture, have low yields, and are expensive.

本発明は安価で高機能な複合強化材を提供することを目
的とするものである。
An object of the present invention is to provide a composite reinforcement material that is inexpensive and highly functional.

(課題を解決するための手段) 本発明は上記目的を達成するために、次の手段を用いる
ことにより問題点が解決された。
(Means for Solving the Problems) In order to achieve the above object, the present invention solves the problems by using the following means.

すなわち1本発明は酸化亜鉛ウィスカーを補強材基材と
して用いたものである。
That is, one aspect of the present invention uses zinc oxide whiskers as a reinforcing material base material.

そして酸化亜鉛ウィスカーは、基部から先端までの長さ
が、3/J11以上である。また酸化亜鉛ウィスカーは
、核部とこの核部から異なる複数軸方向に伸びた針状結
晶部を具備したものである。さらに酸化亜鉛ウィスカー
は、複数軸方向に伸びた針状結晶部の軸数が4である。
The length of the zinc oxide whisker from the base to the tip is 3/J11 or more. Further, the zinc oxide whisker has a core and needle-like crystal parts extending from the core in a plurality of different axial directions. Further, in the zinc oxide whisker, the number of axes of the needle-like crystal part extending in multiple axial directions is four.

他の手段として、本発明は酸化亜鉛ウィスカーを保持材
により保持、または保持材中に混入、分散したものであ
る。
As another means, in the present invention, zinc oxide whiskers are held by a holding material, or mixed or dispersed in a holding material.

その保持材として、樹脂、ゴム、塗料、ガラス。Its holding materials include resin, rubber, paint, and glass.

コンクリート、モルタル、無機または有機の繊維。Concrete, mortar, inorganic or organic fibers.

粒、粉あるいはフレーク、無機バインダーまたは有機バ
インダー、ワックス類またはゲル状半固体物質、あるい
は発泡体が用いられる。
Granules, powders or flakes, inorganic or organic binders, waxes or gel-like semisolid substances, or foams are used.

他の手段として、本発明は、各種のガラス繊維。As another means, the present invention can be applied to various types of glass fibers.

溶融石英、高珪酸質ファイバー等の無定形繊維。Amorphous fibers such as fused silica and high silicic acid fibers.

炭化硅素、窒化硅素、チタン酸カリウム等のウィスカー
、石綿、シリカファイバー、セラミックファイバー、炭
素/黒鉛繊維、窒化ボロン繊維、ボロンフィラメント、
ジルコニア繊維、アルカリチタネート繊維等の補強用耐
熱無機繊維、金属等の粒子や繊維のいずれか1種または
組合せたものに。
Whiskers such as silicon carbide, silicon nitride, potassium titanate, asbestos, silica fiber, ceramic fiber, carbon/graphite fiber, boron nitride fiber, boron filament,
One or a combination of reinforcing heat-resistant inorganic fibers such as zirconia fibers and alkali titanate fibers, metal particles, and fibers.

酸化亜鉛ウィスカーを混合/分散/積層のいずれかまた
は組合せて用いたものである。
Zinc oxide whiskers are used by mixing/dispersing/stacking or a combination thereof.

本発明で用いる酸化亜鉛ウィスカーは、原料段階では核
部とのこの核部から異なる複数軸(主に4軸)方向に伸
びた針状結晶で、主として第1図に示すテトラボッド状
ウィスカーであるが、各種処理や配合の段階でテトラボ
ッド状が折損して3軸、2軸、1軸の針状結晶にくずれ
るウィスカーが発生する場合がある。
At the raw material stage, the zinc oxide whiskers used in the present invention are acicular crystals extending from the core in multiple axes (mainly four axes) directions, and are mainly tetrabod-like whiskers shown in FIG. In some cases, the tetrabod shape is broken during various processing or compounding steps, resulting in whiskers that break down into triaxial, biaxial, or uniaxial needle-like crystals.

(作 用) 本発明の複合強化材に用いる酸化亜鉛ウィスカーには次
の作用がある。
(Function) The zinc oxide whiskers used in the composite reinforcing material of the present invention have the following effects.

第1は3次元構造のテトラボッド状酸化亜鉛ウィスカー
は3次元方向の等方的に配向するため、はぼ全方的に強
度を得て、他の補強用基材の一軸異方性が緩和もしくは
解消する(第2図参照)。
First, the tetrabod-shaped zinc oxide whiskers with a three-dimensional structure are oriented isotropically in three dimensions, so they gain strength in almost all directions, and the uniaxial anisotropy of other reinforcing base materials is relaxed or (See Figure 2).

第2は各種処理や配合の段階でテトラボッド状ウィスカ
ーが折損して1軸になった針状結晶部は根元の径〉先端
の径へと減径するため根元と先端とでは回転応力が異な
り、全方的空間に配向し。
Second, the tetrabod-like whiskers are broken during various processing and compounding stages, and the uniaxial needle-like crystal part decreases in diameter so that the diameter of the root is greater than the diameter of the tip, so the rotational stress is different between the root and the tip. Oriented in omnidirectional space.

他の補強用基材の一軸異方性を緩和もしくは解消する(
第3図参照)。
Reducing or eliminating the uniaxial anisotropy of other reinforcing base materials (
(See Figure 3).

第3は1軸になった針状結晶部は根元の径〉先端の径へ
と減径するため先端方向へは抜は難く、他の補強用基材
が一軸同径により軸方向に抜は易いのと対照的に補強作
用を得る(第3図参照)。
Thirdly, the diameter of the uniaxial needle-like crystal part decreases from the diameter of the root to the diameter of the tip, so it is difficult to remove it in the tip direction, and it is difficult to remove it in the axial direction because the other reinforcing base material is uniaxial and has the same diameter. In contrast to being easy, a reinforcing effect is obtained (see Figure 3).

このように本発明の複合強化材は第1〜第3の作用が奏
合されて、従来の複合強化材に見られた異方性を緩和も
しくは解消する作用がある。
In this way, the composite reinforcing material of the present invention combines the first to third effects, and has the effect of alleviating or eliminating the anisotropy observed in conventional composite reinforcing materials.

(実施例) 以下、実施例を用いて説明するが、本発明は以下の実施
例に限定されるものではない。
(Example) The present invention will be described below using examples, but the present invention is not limited to the following examples.

本実施例に用いる酸化亜鉛ウィスカーは、表面に酸化皮
膜を有する金属亜鉛粉末を酸素を含む雰囲気下で加熱処
理して生成させることができる。
The zinc oxide whiskers used in this example can be produced by heat-treating metal zinc powder having an oxide film on the surface in an oxygen-containing atmosphere.

得られる酸化亜鉛ウィスカーはみかけの嵩比重0.02
〜0.1を有し、収率が70wt%以上と高収率であり
、極めて量産的である。第1図はその電子顕微鏡写真の
一例を示す。この写真により本実施例に用いる酸化亜鉛
ウィスカーの形状的9寸法的特徴としてテトラボッド構
造であることが明らかである。
The resulting zinc oxide whiskers have an apparent bulk specific gravity of 0.02
~0.1, the yield is as high as 70 wt% or more, and it is extremely suitable for mass production. FIG. 1 shows an example of an electron micrograph. From this photograph, it is clear that the zinc oxide whiskers used in this example have a tetrabod structure in terms of shape and dimensions.

この場合酸化亜鉛ウィスカー中に、針状結晶部が3軸、
2軸または1軸のものが混入する場合があるが、これは
4軸のものの一部が折損したものと考えられる。
In this case, in the zinc oxide whisker, the needle-like crystal part has three axes,
There are cases where 2-shaft or 1-shaft parts are mixed in, but this is thought to be due to a part of the 4-shaft part being broken.

これらのウィスカーのX線解析図をとると、すべて酸化
亜鉛のピークを示し、一方、電子線回折の結果も転移、
格子欠陥の少ない完全な単結晶性を示した。さらに、不
純物の含有量も少なく、原子吸光分析の結果、ZnOが
99.913%であった。
X-ray analysis diagrams of these whiskers all show zinc oxide peaks, while electron diffraction results also show transitions,
It exhibited perfect single crystallinity with few lattice defects. Furthermore, the content of impurities was low, and as a result of atomic absorption spectrometry, ZnO was 99.913%.

一方、単純な針状の酸化亜鉛ウィスカーも生成すること
ができ、例えば金属亜鉛粉末を木炭等と同時に焼成して
、るつぼの壁面等に生成させることができるが、量産的
ではない。
On the other hand, simple needle-shaped zinc oxide whiskers can also be produced, for example, by firing metal zinc powder at the same time as charcoal, etc., to produce them on the wall of a crucible, etc., but this is not suitable for mass production.

次に酸化亜鉛ウィスカー形状に関しては、小さ過ぎると
複合強化材としての強度が確保できなくなり、また加工
容易性も低下する。一方大き過ぎると分散の面で問題が
発生し、強度や加工容易性が低下する。
Next, regarding the zinc oxide whisker shape, if it is too small, it will not be possible to ensure the strength as a composite reinforcing material, and the ease of processing will also decrease. On the other hand, if it is too large, problems will occur in terms of dispersion, and strength and ease of processing will decrease.

次に保持材として、樹脂、ゴム、塗料、ガラス。Next, we use resin, rubber, paint, and glass as retaining materials.

コンクリート、モルタル、無機または有機の繊維。Concrete, mortar, inorganic or organic fibers.

粒、粉あるいはフレーク、無機バインダーまたは有機バ
インダー、ワックス類またはゲル状半固体物質等を選択
的に用い、これに配合する酸化亜鉛ウィスカーは一般に
5〜50Vo1%で使用される。
Granules, powder or flakes, inorganic or organic binders, waxes or gel-like semi-solid substances are selectively used, and the zinc oxide whiskers added thereto are generally used at 5 to 50 Vol 1%.

さらに酸化亜鉛ウィスカーとともに配合される他の補強
用基材として、各種のガラス繊維、溶融石英、高珪酸質
ファイバー等の無定形繊維、炭化硅素、窒化硅素、チタ
ン酸カリウム等のウィスカー、石綿、シリカファイバー
、セラミックファイバー、炭素/黒鉛繊維、窒化ボロン
繊維、ボロンフィラメント、ジルコニア繊維、アルカリ
チタネート繊維等の補強用耐熱無機繊維、金属等の粒子
や繊維のいずれか1種または組合せたものを選択的に用
いる。
Furthermore, other reinforcing base materials that are mixed with zinc oxide whiskers include various glass fibers, fused quartz, amorphous fibers such as high-silicate fibers, whiskers such as silicon carbide, silicon nitride, and potassium titanate, asbestos, and silica. Selectively use one or a combination of reinforcing heat-resistant inorganic fibers such as fibers, ceramic fibers, carbon/graphite fibers, boron nitride fibers, boron filaments, zirconia fibers, alkali titanate fibers, metal particles, etc. use

これらの実施例に示した複合強化材の特長は。What are the features of the composite reinforcement materials shown in these examples?

異方性を緩和もしくは解消し、等方的に高強度および高
弾性率を得ることである。
The goal is to alleviate or eliminate anisotropy and obtain high strength and high elastic modulus isotropically.

(発明の効果) 以上のように、本発明によれば、複合強化材の異方性を
緩和もしくは解消し、等方的高強度および高弾性率を具
備した複合強化材を得る産業1優れた効果を奏するもの
である。
(Effects of the Invention) As described above, according to the present invention, the anisotropy of a composite reinforcement material is alleviated or eliminated, and a composite reinforcement material having isotropic high strength and high elastic modulus is obtained. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた酸化亜鉛ウィスカーの
結晶の構造を示す電子顕微鏡写真、第2図は本実施例の
複合強化材の作用説明図、第3図は酸化亜鉛ウィスカー
から折損により生じた1、軸針状結晶部の配向拡大説明
図、第4図は従来の複合強化材における同径ウィスカー
の同一配向に伴う異方性説明図、第5図は従来の同径ウ
ィスカーの配向拡大説明図である。 第 図
Figure 1 is an electron micrograph showing the crystal structure of the zinc oxide whisker used in the example of the present invention, Figure 2 is an explanatory diagram of the action of the composite reinforcing material of this example, and Figure 3 is the broken part of the zinc oxide whisker. Figure 4 is an explanatory diagram of the anisotropy caused by the same orientation of whiskers of the same diameter in a conventional composite reinforced material. It is an orientation enlarged explanatory view. Diagram

Claims (26)

【特許請求の範囲】[Claims] (1)酸化亜鉛ウィスカーを用いたことを特徴とする複
合強化材。
(1) A composite reinforcement material characterized by using zinc oxide whiskers.
(2)酸化亜鉛ウィスカーの基部から先端までの長さが
3μm以上である請求項(1)記載の複合強化材。
(2) The composite reinforcing material according to claim (1), wherein the length from the base to the tip of the zinc oxide whisker is 3 μm or more.
(3)酸化亜鉛ウィスカーが核部とこの核部から異なる
複数軸方向に伸びた針状結晶部を具備した酸化亜鉛ウィ
スカーである請求項(1)または(2)記載の複合強化
材。
(3) The composite reinforcing material according to claim (1) or (2), wherein the zinc oxide whisker is a zinc oxide whisker having a core portion and needle-like crystal portions extending from the core portion in a plurality of different axial directions.
(4)複数軸方向の軸数が4なる酸化亜鉛ウィスカーで
ある請求項(3)記載の複合強化材。
(4) The composite reinforcing material according to claim (3), which is a zinc oxide whisker having four axes in a plurality of axial directions.
(5)酸化亜鉛ウィスカーを保持材により保持、または
保持材中に混入、分散した複合強化材。
(5) A composite reinforcing material in which zinc oxide whiskers are held by a holding material or mixed and dispersed in a holding material.
(6)酸化亜鉛ウィスカーの基部から先端までの長さが
3μm以上である請求項(5)記載の複合強化材。
(6) The composite reinforcing material according to claim (5), wherein the length from the base to the tip of the zinc oxide whisker is 3 μm or more.
(7)酸化亜鉛ウィスカーが核部とこの核部から異なる
複数軸方向に伸びた針状結晶部を具備した酸化亜鉛ウィ
スカーである請求項(5)記載の複合強化材。
(7) The composite reinforcing material according to claim (5), wherein the zinc oxide whisker is a zinc oxide whisker having a core portion and needle-like crystal portions extending from the core portion in a plurality of different axial directions.
(8)複数軸方向の軸数が4なる酸化亜鉛ウィスカーで
ある請求項(5)記載の複合強化材。
(8) The composite reinforcing material according to claim (5), which is a zinc oxide whisker having four axes in a plurality of axial directions.
(9)保持材として樹脂を用いた請求項(5)、(6)
、(7)または(8)記載の複合強化材。
(9) Claims (5) and (6) in which resin is used as the holding material.
, (7) or (8).
(10)保持材としてゴムを用いた請求項(5)、(6
)、(7)または(8)記載の複合強化材。
(10) Claims (5) and (6) in which rubber is used as the holding material.
), (7) or (8).
(11)保持材として塗料を用いた請求項(5)、(6
)、(7)または(8)記載の複合強化材。
(11) Claims (5) and (6) in which paint is used as the holding material.
), (7) or (8).
(12)保持材としてガラスを用いた請求項(5)、(
6)、(7)または(8)記載の複合強化材。
(12) Claims (5) and (12) wherein glass is used as the holding material.
6), (7) or the composite reinforcement material described in (8).
(13)保持材としてコンクリートを用いた請求項(5
)、(6)、(7)または(8)記載の複合強化材。
(13) Claim (5) in which concrete is used as the retaining material
), (6), (7) or (8).
(14)保持材としてモルタルを用いた請求項(5)、
(6)、(7)または(8)記載の複合強化材。
(14) Claim (5) in which mortar is used as the holding material;
Composite reinforcement material according to (6), (7) or (8).
(15)保持材として無機または有機の繊維、粒、粉ま
たはフレークを用いた請求項(5)、(6)、(7)ま
たは(8)記載の複合強化材。
(15) The composite reinforcing material according to claim (5), (6), (7) or (8), wherein inorganic or organic fibers, grains, powder or flakes are used as the holding material.
(16)保持材として無機バインダーまたは有機バイン
ダーを用いた請求項(5)、(6)、(7)または(8
)記載の複合強化材。
(16) Claim (5), (6), (7) or (8) in which an inorganic binder or an organic binder is used as the holding material.
) Composite reinforcement material.
(17)保持材としてワックスを用いた請求項(5)、
(6)、(7)または(8)記載の複合強化材。
(17) Claim (5) in which wax is used as the holding material;
Composite reinforcement material according to (6), (7) or (8).
(18)保持材としてゲル状半固体物質を用いた請求項
(5)、(6)、(7)または(8)記載の複合強化材
(18) The composite reinforcing material according to claim (5), (6), (7) or (8), wherein a gel-like semisolid substance is used as the holding material.
(19)各種のガラス繊維、溶融石英、高珪酸質ファイ
バー等の無定形繊維、炭化硅素、窒化硅素、チタン酸カ
リウム等のウィスカー、石綿、シリカファイバー、セラ
ミックファイバー、炭素/黒鉛繊維、窒化ボロン繊維、
ボロンフィラメント、ジルコニア繊維、アルカリチタネ
ート繊維等の補強用耐熱無機繊維、金属等の粒子や繊維
のいずれか1種または組合せたものに、酸化亜鉛ウィス
カーを混合/分散/積層のいずれかまたは組合せて用い
た複合強化材。
(19) Various glass fibers, fused quartz, amorphous fibers such as high silicic acid fibers, whiskers such as silicon carbide, silicon nitride, potassium titanate, etc., asbestos, silica fibers, ceramic fibers, carbon/graphite fibers, boron nitride fibers ,
Zinc oxide whiskers are mixed/dispersed/laminated or used in combination with any one or a combination of reinforcing heat-resistant inorganic fibers such as boron filaments, zirconia fibers, and alkali titanate fibers, metal particles, and fibers. Composite reinforcement material.
(20)酸化亜鉛ウィスカーの基部から先端までの長さ
が3μm以上である請求項(19)記載の複合強化材。
(20) The composite reinforcing material according to claim (19), wherein the length from the base to the tip of the zinc oxide whisker is 3 μm or more.
(21)酸化亜鉛ウィスカーは、核部とこの核部から異
なる複数軸方向に伸びた針状結晶部を具備してなるもの
である請求項(19)または(20)記載の複合強化材
(21) The composite reinforcing material according to claim (19) or (20), wherein the zinc oxide whisker comprises a core portion and needle-like crystal portions extending from the core portion in a plurality of different axial directions.
(22)複数軸方向に伸びたの針状結晶部の軸数が4で
ある請求項(21)記載の複合強化材。
(22) The composite reinforcing material according to claim (21), wherein the number of axes of the acicular crystal portion extending in multiple axial directions is four.
(23)各種のガラス繊維、溶融石英、高珪酸質ファイ
バー等の無定形繊維、炭化硅素、窒化硅素、チタン酸カ
リウム等のウィスカー、石綿、シリカファイバー、セラ
ミックファイバー、炭素/黒鉛繊維、窒化ボロン繊維、
ボロンフィラメント、ジルコニア繊維、アルカリチタネ
ート繊維等の補強用耐熱無機繊維、金属等の粒子や繊維
のいずれか1種または組合せたものと酸化亜鉛ウィスカ
ーとを保持材により保持または保持材中に混合/分散/
積層のいずれかまたは組合せた形態とした複合強化材。
(23) Various glass fibers, fused quartz, amorphous fibers such as high-silicate fibers, whiskers such as silicon carbide, silicon nitride, potassium titanate, etc., asbestos, silica fibers, ceramic fibers, carbon/graphite fibers, boron nitride fibers ,
One or a combination of reinforcing heat-resistant inorganic fibers such as boron filaments, zirconia fibers, and alkali titanate fibers, metal particles, and fibers and zinc oxide whiskers are held in a holding material or mixed/dispersed in the holding material. /
Composite reinforcement in either laminated or combined form.
(24)酸化亜鉛ウィスカーの基部から先端までの長さ
が3μm以上である請求項(23)記載の複合強化材。
(24) The composite reinforcing material according to claim (23), wherein the length from the base to the tip of the zinc oxide whisker is 3 μm or more.
(25)酸化亜鉛ウィスカーが核部とこの核部から異な
る複数軸方向に伸びた針状結晶部を具備してなるもので
ある請求項(23)または(24)記載の複合強化材。
(25) The composite reinforcing material according to claim (23) or (24), wherein the zinc oxide whisker comprises a core portion and needle-like crystal portions extending from the core portion in a plurality of different axial directions.
(26)複数軸方向に伸びたの針状結晶部の軸数が4で
ある請求項(25)記載の複合強化材。
(26) The composite reinforcing material according to claim (25), wherein the number of axes of the needle-like crystal portion extending in a plurality of axial directions is four.
JP160790A 1990-01-10 1990-01-10 Composite reinforcing material Pending JPH03207722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP160790A JPH03207722A (en) 1990-01-10 1990-01-10 Composite reinforcing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP160790A JPH03207722A (en) 1990-01-10 1990-01-10 Composite reinforcing material

Publications (1)

Publication Number Publication Date
JPH03207722A true JPH03207722A (en) 1991-09-11

Family

ID=11506188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP160790A Pending JPH03207722A (en) 1990-01-10 1990-01-10 Composite reinforcing material

Country Status (1)

Country Link
JP (1) JPH03207722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272602A (en) * 2004-03-24 2005-10-06 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire using the rubber composition
JP2006002119A (en) * 2004-06-21 2006-01-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire using the same
JP2007009084A (en) * 2005-06-30 2007-01-18 Asahi Kasei Chemicals Corp Resin composition excellent in heat dissipation and heat-dissipating resin sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217072A (en) * 1988-02-25 1989-08-30 Matsushita Electric Ind Co Ltd Whisker reinforced plastic
JPH01225663A (en) * 1988-03-04 1989-09-08 Matsushita Electric Ind Co Ltd Conductive resin composition
JPH01226774A (en) * 1988-03-04 1989-09-11 Matsushita Electric Ind Co Ltd Composite ceramic composition
JPH01252600A (en) * 1987-12-29 1989-10-09 Matsushita Electric Ind Co Ltd Production of zinc oxide whisker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252600A (en) * 1987-12-29 1989-10-09 Matsushita Electric Ind Co Ltd Production of zinc oxide whisker
JPH01217072A (en) * 1988-02-25 1989-08-30 Matsushita Electric Ind Co Ltd Whisker reinforced plastic
JPH01225663A (en) * 1988-03-04 1989-09-08 Matsushita Electric Ind Co Ltd Conductive resin composition
JPH01226774A (en) * 1988-03-04 1989-09-11 Matsushita Electric Ind Co Ltd Composite ceramic composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272602A (en) * 2004-03-24 2005-10-06 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire using the rubber composition
JP2006002119A (en) * 2004-06-21 2006-01-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire using the same
JP4594658B2 (en) * 2004-06-21 2010-12-08 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire using the same
JP2007009084A (en) * 2005-06-30 2007-01-18 Asahi Kasei Chemicals Corp Resin composition excellent in heat dissipation and heat-dissipating resin sheet

Similar Documents

Publication Publication Date Title
JP5937653B2 (en) Carbon material and manufacturing method thereof
US10850496B2 (en) Chemical-free production of graphene-reinforced inorganic matrix composites
JPS5832066A (en) Tenacious zirconia sintered body
JPH06128039A (en) Self-reinforcing silicon nitride ceramic body and its production
JPH01201191A (en) Nuclear fuel
JPH03207722A (en) Composite reinforcing material
Wang et al. Divorced eutectic and interface characteristics in a solidified YAG-spinel composite with spinel-rich composition
Yang et al. Characterization and separation resistance of an in-situ 2D nanocarbon/calcium aluminate composite synthesized via a combustion method
Sasaki et al. Microstructure of B4C/TiB2 composite fabricated by reaction sintering of B4C and TiC
Tamura et al. 115 K superconductivity in the Pb Sr Ca Cu O system and formation of a new homologous series consisting of Pb-based layered cuprates
JP2507921B2 (en) Spherical carbon-boride ceramic composite and method for producing the same
He et al. Synthesis and characterization of Mn2O3 nanorods as anode materials for lithium ion batteries
JP2600761B2 (en) Zinc oxide whisker
CN115744908B (en) Preparation method of ultrathin silicon carbide nanosheets
CN112899524B (en) Superfine net structure pentatitanium trisilicide and titanium carbide reinforced titanium-based composite material and preparation method thereof
JP4257645B2 (en) Magnetic metal fine particles, method for producing magnetic metal fine particles, method for producing fine bodies, method for producing a mixture of magnetic metal fine particles and fine bodies,
JP2652046B2 (en) Fiber reinforced composite sintered body
JP3125246B2 (en) Silicon carbide ceramics and method for producing the same
Wang et al. Effect of ZrO 2 dopant on the sintering behavior and performance of mcmb-derived carbon laminations
Lu et al. Interfacial microstructure of TiB/Ti in a Ti-TiB-TiC in situ composite
JPH0261014A (en) Zinc oxide whisker-reinforced metal
Pan et al. Densification of low‐density boron carbide by Li doping and its microstructural characterization
Kenawy Synthesis Aluminum Borate Ceramic
Sha et al. Fabrication of co-toughened C-SiC based composite by carbon fibers and SiC nanofibers
JPH11116341A (en) Highly heat-conductive silicon nitride sintered product and its production