JPH03207092A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH03207092A
JPH03207092A JP2002263A JP226390A JPH03207092A JP H03207092 A JPH03207092 A JP H03207092A JP 2002263 A JP2002263 A JP 2002263A JP 226390 A JP226390 A JP 226390A JP H03207092 A JPH03207092 A JP H03207092A
Authority
JP
Japan
Prior art keywords
memory cell
load
bit line
resistance
test mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263A
Other languages
Japanese (ja)
Inventor
Yuji Kihara
雄治 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002263A priority Critical patent/JPH03207092A/en
Publication of JPH03207092A publication Critical patent/JPH03207092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

PURPOSE:To reject the trouble of a memory cell in a short time by forming a bit line load so as to obtain large dimension only at the time of a test mode. CONSTITUTION:When a test mode signal is operated at H, the characteristic of the memory cell is changed since the load of the bit line is L1+M1 and L2+M2. Even in such a state, the normal memory cell is normally operated unless some disturbance is applied, and however, latch can not be executed to the defective memory cell. Therefore, the trouble is rejected even in a normal function test. Thus, since the ON resistance of the bit line load is decreased only at the time of the test mode, the trouble of the memory cell can be rejected in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はスタティック型ランダムアクセスメモリ (
SRAM)のテスト時間短縮に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a static random access memory (
This relates to shortening the test time for SRAM.

〔従来の技術〕[Conventional technology]

第3図において、b1.b2は一対のビット線Ll,L
2はbl,b2についている負荷トランジスタAI,A
2,I 1,I2はメモリセルのトランジスタ,Rl,
R2はメモリセルの負荷抵抗を表わす。これらのトラン
ジスタは全てNチャネルトランジスタである。Wはメモ
リセル選択;it,■CCは電源電圧,GNDは接地電
位を表わす。
In FIG. 3, b1. b2 is a pair of bit lines Ll, L
2 is the load transistor AI, A attached to bl, b2
2, I 1, I2 are memory cell transistors, Rl,
R2 represents the load resistance of the memory cell. These transistors are all N-channel transistors. W indicates memory cell selection; it, CC indicates power supply voltage, and GND indicates ground potential.

al,a2はノード名である。al and a2 are node names.

SRAMのメモリセルは、通常フリップフロップとなっ
ており、インバータ2つからなる、Wが“L”レベルで
、メモリセルが非選択の場合、この2つのインバータは
R1と■1からなるインバータと、R2とI2からなる
インバータを意味し、抵抗負荷型である。この場合、ラ
ッチの強さはR1,R2の抵抗値とIl,12Qオン抵
抗の比で決まり、Rl,R2の抵抗を十分大きくしてお
けば何ら問題はない。
The memory cell of SRAM is usually a flip-flop, and consists of two inverters. When W is at "L" level and the memory cell is not selected, these two inverters are an inverter consisting of R1 and ■1, It means an inverter consisting of R2 and I2, and is a resistive load type. In this case, the strength of the latch is determined by the ratio of the resistance values of R1 and R2 to the on-resistances of Il and 12Q, and there will be no problem if the resistances of Rl and R2 are made sufficiently large.

Wが“H″レベルでメモリセルが選択された場合はイン
バータはLl,AI,IIで構成されるモノト、L2,
A2,I 2で構成されるものの2つからなることにな
る。この際、Rl,R2は、通常大きな抵抗値であるの
で無視できる。このうちL1,AI,I 1で構成され
るインパータにっいて考えろ。Wは“H″ (Vee)
レペ,レであるので第4図のようなエンハンスメントト
ランジスタ負荷のインバータと考えられ、特性は第5図
のようになる。0≦VIN≦V7,,(Nチャネルトラ
ンジスタのしきい値電圧)では、I1はOFF状態で、
Ll,AIを通じテa 11;tVee−V7Hトナル
。V刊≦V IN≦Veeでは、I1はVINの値に応
じたオン抵抗をもつ、L1とA1はそれぞれオン抵抗を
もち、その和とI1のオン抵抗でVceとGNDの間で
抵抗分割された電位がa1に与えられる。この特性をグ
ラフにしたものが第5図の実線である。
When W is at “H” level and a memory cell is selected, the inverter is a monolith consisting of Ll, AI, and II, L2,
It consists of two parts, A2 and I2. At this time, Rl and R2 can be ignored since they usually have large resistance values. Among these, think about the inperter made up of L1, AI, and I1. W is “H” (Vee)
Since it is a Repe, Re, it can be considered as an inverter with an enhancement transistor load as shown in FIG. 4, and its characteristics are as shown in FIG. When 0≦VIN≦V7, (threshold voltage of N-channel transistor), I1 is in the OFF state,
Thea 11; tVee-V7H tonal through Ll, AI. When V≦V IN≦Vee, I1 has an on-resistance according to the value of VIN, L1 and A1 each have an on-resistance, and the resistance is divided between Vce and GND by the sum of these and the on-resistance of I1. A potential is applied to a1. The solid line in FIG. 5 is a graph of this characteristic.

L2,A2,I2によるインバータによる特性も同様で
、入力と出力の端子が逆であるので、点線のように重ね
合わせることができる。実線と点線の交点が安定点で、
斜線の面積が大きいほどフリップフロップは反転しにく
くなる。つまり、V INが“H″レベルの時のI1の
ON抵抗がLl,A1のON抵抗に比べて大きくなれば
なるほど、この面積は大きくなる。しかし、A1のON
抵抗を小さくするとノードal,a2の信号がビット線
bl,b2に伝わりにくくなり動作速度が遅くなる。L
1のON抵抗を小さくすると書き込み特性が悪化する。
The characteristics of the inverters L2, A2, and I2 are similar, and since the input and output terminals are reversed, they can be overlapped as shown by the dotted line. The intersection of the solid line and the dotted line is the stable point,
The larger the area of the diagonal line, the more difficult it is for the flip-flop to flip. In other words, the larger the ON resistance of I1 when V IN is at the "H" level compared to the ON resistances of Ll and A1, the larger this area becomes. However, A1 ON
If the resistance is made small, the signals of the nodes al and a2 will be difficult to be transmitted to the bit lines bl and b2, and the operation speed will be slowed down. L
If the ON resistance of 1 is made smaller, the write characteristics deteriorate.

これらから総合的にトランジスタのディメンジνンを与
える必要がある。
It is necessary to give the dimension ν of the transistor comprehensively from these.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のSRAMは以上のように構成されており、うまく
デイメンジ璽ン等を与えて設計すれば特に問題はない。
Conventional SRAMs are constructed as described above, and there are no particular problems if they are designed with appropriate dimensionality rules.

しかしながら、例えばIMビットのSRAMであれば、
同一チップ内に100万個のメモリセルが存在する。さ
らに同一チップが数百万から数千万も生産されるとなる
と、メモリセル個々の特性は大きくばらつくことになる
。全く動作しない場合は簡単なファンクシ.ンテストで
不良となるが、通常は普通の動作をし、特別な場合だけ
不良となるようなメモリセルも存在する。
However, for example, if it is an IM bit SRAM,
There are 1 million memory cells in the same chip. Furthermore, when millions to tens of millions of the same chip are produced, the characteristics of individual memory cells will vary greatly. If it doesn't work at all, try a simple function. There are also memory cells that fail in the internal test, but normally operate normally and only become defective in special cases.

例えば、トランジスタA2の仕上り寸法がばらついて、
負荷のON抵抗が小さくなった場合、メモリセルの特性
は第6図のようになり、通常のメモリセルに比べて反転
しやすくなる。a1が“H”レベル,i2が゛L”レベ
ルである場合、b1が“L”でb2が“H”である別の
メモリセルを読み出し、その次に当メモリセルを読み出
し、次(こまたb1が″L”レベル,b2が“H”レベ
ノレである別のメモリセルを読み出すという動作が短レ
)サイクルタイムで連続して行なわれる場合、メモリセ
ルがビット線レベルの影響を受け、al,a2のレベル
が徐々に変化し、ついには反転してしまうことがある。
For example, the finished dimensions of transistor A2 vary,
When the ON resistance of the load becomes small, the characteristics of the memory cell become as shown in FIG. 6, and it becomes easier to invert than a normal memory cell. When a1 is at “H” level and i2 is at “L” level, read another memory cell where b1 is “L” and b2 is “H”, then read this memory cell, and then read the next (again) When the operation of reading another memory cell in which b1 is at "L" level and b2 is at "H" level is performed continuously in a short cycle time, the memory cell is affected by the bit line level, and al, The level of a2 may gradually change and eventually be reversed.

この発明は上記のような問題点を解消するためになされ
たもので、特に厳しい状態にしなくても、特性が分布か
ら離れたメモリセルをリジエクトできることを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to be able to reject memory cells whose characteristics deviate from the distribution without making the conditions particularly severe.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るSRAMは、外部から何らかの信号でテ
ストモードに入り、テストモードに入った時だけビット
線負荷のON抵抗を下げる手段を付加したものである。
The SRAM according to the present invention enters the test mode by some external signal, and has additional means for lowering the ON resistance of the bit line load only when the test mode is entered.

〔作用〕[Effect]

この発明におけるSRAMは、長い時間をかけてディス
ターブすることによって発生するようなメモリセルの不
具合を単時間でリジエクトすることができる。
The SRAM according to the present invention is capable of rejecting a memory cell failure that occurs due to long-term disturb in a single period of time.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。bl
,b2は一対のビット線,Ll,L2,Ml,M2はb
l,b2についている負荷トランジスタ,AI,A2,
II,I2はメモリセルのトランジスタ,Rl,R2は
メモリセルの負荷抵抗を表わす。これらのトランジスタ
は、全てNチャネルトランジスタである。Wはメモリセ
ル選択線,Vceは電源電圧,GNDは接地電位を表わ
す。
An embodiment of the present invention will be described below with reference to the drawings. bl
, b2 are a pair of bit lines, Ll, L2, Ml, M2 are b
l, load transistor attached to b2, AI, A2,
II and I2 represent transistors of the memory cell, and Rl and R2 represent load resistances of the memory cell. These transistors are all N-channel transistors. W represents a memory cell selection line, Vce represents a power supply voltage, and GND represents a ground potential.

al,a2はノード名である。al and a2 are node names.

第1図のビット線負荷トランジスタMl,M2は、通常
はOFF (ゲート“L”レベル)にしてあるので、動
作に何ら影響をおよぼさない。つまり、通常使用する際
は、従来の回路と全く同じである。
Since the bit line load transistors M1 and M2 in FIG. 1 are normally turned off (gates at "L" level), they do not affect the operation in any way. In other words, when used normally, it is exactly the same as a conventional circuit.

一方、テストモード信号を何らかの形で“H”にして、
動作させる場合はビット線の負荷はL1十M1とL2十
M2になるので、メモリセルの特性が変化する。第2図
(a)でL 1 (M 1を含む)とA1,I1で構成
されるインバータは、M1がOFFしている時は実線の
ように、M1がONt,ていろ時は点線のようになり、
メモリセルの特性図も斜線部の面積が小さくなり、安定
度が小さくなっている。この状態でも、デイスターブを
かけない限り、通常のメモリセルは正常動作するが、不
具合のあるメモリセルは、第2図(b)のような特性と
なり、メモリセルのラッチがかからず、通常のファンク
シ冒ンテストでもリジエクトされることになる。
On the other hand, somehow set the test mode signal to “H”,
When operated, the load on the bit line becomes L10M1 and L20M2, so the characteristics of the memory cell change. In Fig. 2 (a), the inverter composed of L 1 (including M 1), A1, and I1 is shown as a solid line when M1 is OFF, and as a dotted line when M1 is ON and OFF. become,
In the characteristic diagram of the memory cell, the area of the shaded area is also smaller, and the stability is lower. Even in this state, normal memory cells will operate normally unless disturb is applied, but a defective memory cell will have the characteristics shown in Figure 2 (b), and the memory cell will not latch and will function normally. He will also be rejected from the funksi test.

また、上記実施例では、b1締とb2@に同一ディメン
ジソンのトランジスタMl,M2を付け加えたが、M1
のみ付ける場合と、M2のみ付け加える場合に分けて、
メモリセルの対称性を悪くする方法も存在する。
In addition, in the above embodiment, transistors M1 and M2 of the same Dimensison were added to b1 and b2@, but M1
For cases where only M2 is added and cases where only M2 is added,
There are also methods for making the symmetry of memory cells worse.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、ビット線負荷をテス
トモード時のみ大きなデイメンジ宵ンをもつように構成
したので、リジエクトするのに時間がかかっていた不良
を短時間でリジエクトするのが可能となった。
As described above, according to the present invention, since the bit line load is configured to have a large amount of damage only in the test mode, it is possible to reject defects that previously took a long time to reject in a short time. It became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体記憶装璽のメ
モリセルを含む回路の一部を示す回路図、第2図(a)
 (b)は第1図のメモリセルの特性を表わす特性図で
ある。第3図は従来の半導体記憶装置のメモリセルを含
む回路の一部を示す回路図、第4図は第3図の回路の一
部を抜き出した図、第5図は通常のメモリセルの特性図
、第6図は不具合のあるメモリセルの特性図を示すもの
である。 図において. (bl) (b2)はビット線. (L
l) (L2J (Ml)(M2)は負荷トランジスタ
、(AI) (A2) (It) (12)はトランジ
スタ、(Rl) (R2)は負荷抵抗である。 なお、各図中同一符号は同一又は相当部分を示す。
FIG. 1 is a circuit diagram showing a part of a circuit including memory cells of a semiconductor memory device according to an embodiment of the present invention, and FIG. 2(a)
(b) is a characteristic diagram showing the characteristics of the memory cell shown in FIG. 1; Fig. 3 is a circuit diagram showing part of a circuit including memory cells of a conventional semiconductor memory device, Fig. 4 is an extracted part of the circuit in Fig. 3, and Fig. 5 is a characteristic of a normal memory cell. FIG. 6 shows a characteristic diagram of a defective memory cell. In the figure. (bl) (b2) is a bit line. (L
l) (L2J (Ml) (M2) is the load transistor, (AI) (A2) (It) (12) is the transistor, (Rl) (R2) is the load resistance. Note that the same symbols in each figure are the same. or a corresponding portion.

Claims (1)

【特許請求の範囲】[Claims]  複数のフリップフロップ型メモリセルと、これらのメ
モリセルと周辺回路の信号の入力、出力する一対のビッ
ト線、これらのビット線を一定レベルに固定するための
負荷トランジスタを備えた半導体記憶装置において、出
荷テストをする際のみに前記ビット線の負荷の大きさが
変更可能なことを特徴とする半導体記憶装置。
A semiconductor memory device includes a plurality of flip-flop memory cells, a pair of bit lines for inputting and outputting signals from these memory cells and peripheral circuits, and a load transistor for fixing these bit lines to a constant level. A semiconductor memory device characterized in that the magnitude of the load on the bit line can be changed only during a shipping test.
JP2002263A 1990-01-08 1990-01-08 Semiconductor memory device Pending JPH03207092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263A JPH03207092A (en) 1990-01-08 1990-01-08 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263A JPH03207092A (en) 1990-01-08 1990-01-08 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH03207092A true JPH03207092A (en) 1991-09-10

Family

ID=11524483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263A Pending JPH03207092A (en) 1990-01-08 1990-01-08 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH03207092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022122673A1 (en) 2020-12-07 2022-06-16 L'oreal Assembly for cleaning the skin and/or keratin fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022122673A1 (en) 2020-12-07 2022-06-16 L'oreal Assembly for cleaning the skin and/or keratin fibers

Similar Documents

Publication Publication Date Title
US4700089A (en) Delay circuit for gate-array LSI
US6327176B1 (en) Single event upset (SEU) hardened latch circuit
JP6490688B2 (en) Dual port memory cell
US6822894B1 (en) Single event upset in SRAM cells in FPGAs with leaky gate transistors
JPH04119592A (en) Static semiconductor storage device
JPH01166399A (en) Static type random access memory
JPH0883498A (en) Semiconductor storage device
US7724586B2 (en) Implementing local evaluation of domino read SRAM with enhanced SRAM cell stability with minimized area usage
US7768816B2 (en) SRAM cell design to improve stability
JP2006507617A (en) SRAM cell and method for compensating leakage current flowing into the SRAM cell
JP4035923B2 (en) Latch circuit
US6504788B1 (en) Semiconductor memory with improved soft error resistance
US7724585B2 (en) Implementing local evaluation of domino read SRAM with enhanced SRAM cell stability
US6295242B1 (en) SRAM with current-mode test read data path
JPH03207092A (en) Semiconductor memory device
JPH01166400A (en) Static type random access memory
JPS61222090A (en) Static ram with flash clearing function
KR100231966B1 (en) Self-locking load structure for static ram
JPS63166260A (en) Semiconductor memory device
KR100331520B1 (en) Write multiplexer apparatus and method for multiple write port programmable memory
US8207802B2 (en) Memory cell based array of tuning circuit
JPH06132747A (en) Semiconductor device
JPH03276500A (en) Semiconductor storage device
US6590812B2 (en) Memory cells incorporating a buffer circuit and memory comprising such a memory cell
Kumar et al. Low Power High Performance SRAM Design Using VHDL