JPH03205719A - Gas-blast circuit-breaker - Google Patents

Gas-blast circuit-breaker

Info

Publication number
JPH03205719A
JPH03205719A JP53390A JP53390A JPH03205719A JP H03205719 A JPH03205719 A JP H03205719A JP 53390 A JP53390 A JP 53390A JP 53390 A JP53390 A JP 53390A JP H03205719 A JPH03205719 A JP H03205719A
Authority
JP
Japan
Prior art keywords
shutting
shut
arc time
cycle
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP53390A
Other languages
Japanese (ja)
Inventor
Hiroshi Arita
浩 有田
Yukio Kurosawa
黒沢 幸夫
Masanori Tsukushi
正範 筑紫
Kunio Hirasawa
平沢 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53390A priority Critical patent/JPH03205719A/en
Publication of JPH03205719A publication Critical patent/JPH03205719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prolong equivalent shut-able arc time to at least 1.0 cycle and improve supply reliability while eliminating shutting disability even when multi- lightning happenes by connecting a plurality of shutting parts in series electrically and shifting the shortest shut-able arc time to at least 0.5 cycle. CONSTITUTION:A plurality of shutting parts 1, 2 are connected in series electrically and a shut-able arc time is shifted at least 0.5 cycle. The shut-able arc time width 4, 5 of the shutting parts 1, 2 are at least 0.5 cycle and the shortest shut-able arc time F of the shutting parts 2 is shifted 0.5 cycle from the shortest shut-able arc time E of the shutting parts 1 and thus practical shut-able arc time width becomes at least 1.0 cycle. Short-circuitted current owing to the first lightning is shut at the point C by the shutting part 1 but shutting is not able to be carried out at the C point due to multi-lightning and when current zero point moves to G point, shutting is not achieved by the shutting part 1 but by the shutting part 2. In this way, a circuit-breaker which is able to shut even the case of multi-lightning is obtained and supply reliability is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガス遮断器に係り、特に,遮断可能アーク時
間幅を広げることに有効な構或に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas circuit breaker, and particularly to a structure that is effective in widening the arc time width that can be interrupted.

〔従来の技術〕[Conventional technology]

現在の電力系統では、六フッ化硫黄ガスを吹き付けて遮
断するガス遮断器が主流になっており、一般に、高電圧
大容量の回路遮断器として、遮断部構造が簡単で、遮断
性能の優れたパツファ形ガス遮断器が採用されている。
In current power systems, gas circuit breakers that spray sulfur hexafluoride gas to shut off the circuits are the mainstream, and are generally used as high-voltage, large-capacity circuit breakers that have a simple circuit structure and excellent disconnection performance. A Patsufa type gas circuit breaker is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は送電線への多重雷が発生した場合につい
て考慮がなされておらず、遮断性能の点で問題があった
。すなわち、大きな雷が一発だけ落ちた場合には、パツ
ファ形遮断器で対応できるが、きわめて短時間に何回も
続けて落雷する多重雷の際には、遮断不能になる現象が
起きている。
The above-mentioned conventional technology does not consider the case where multiple lightning strikes occur on the power transmission line, and there is a problem in terms of interrupting performance. In other words, a patchwork circuit breaker can handle a single large lightning strike, but it becomes unable to shut off when multiple lightning strikes occur several times in a very short period of time. .

第7図にパツファ形遮断部の圧力上昇特性を示す。Figure 7 shows the pressure rise characteristics of the puffer type shutoff section.

遮断ストロークの動きにつれて、パツファ圧力は上昇す
るが、短絡電流を遮断できる圧力は、例えば、ABライ
ン以上を必要とする。このライン以上のときにC点のよ
うに電流零点を迎えると、遮断が戊功するが、多重雷の
ため、アーク時間が伸びてD点に電流零点がくると、遮
断不能に陥る。
The puffer pressure increases as the cutoff stroke moves, but the pressure that can cut off the short circuit current requires, for example, the AB line or higher. If the current reaches a zero point like point C when the current is above this line, the interruption will be successful, but if the arc time increases due to multiple lightning strikes and the current reaches zero point at point D, the interruption will become impossible.

一般に、パツファ形遮断部の遮断可能アーク時間幅は、
0.5 サイクル(50Hzで10ms,60Hzで8
.3ms )程度であるため、遮断器が切りかかった時
に、また、雷がくるとアーク時間が10ms以上となり
対応できない。
Generally, the arc time width that can be interrupted by a puffer type interrupter is:
0.5 cycles (10ms at 50Hz, 8 at 60Hz
.. 3ms), so if the circuit breaker trips or there is lightning, the arcing time will be 10ms or more, making it impossible to deal with it.

本発明の目的は、上記問題点を解決す′ることにあり、
多重雷の発生時でも遮断不能なく、供給信頼度の向上を
図ることにある。
The purpose of the present invention is to solve the above problems,
The aim is to improve supply reliability without being unable to shut down even when multiple lightning strikes occur.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題を解決するために、本発明は、複数の遮断部を
電気的に直列に接続し、最速遮断可能アーク時刻を0.
5 サイクル以上ずらしたものである。
In order to solve the above problem, the present invention electrically connects a plurality of interrupting parts in series, and sets the fastest interruptible arc time to 0.
It is shifted by more than 5 cycles.

〔作用〕[Effect]

複数の遮断部の最速遮断可能アーク時刻を0.5サイク
ル以上ずらすことにより、等価的遮断可能アーク時間は
1.0 サイクル以上にのびるため、短時間に多重雷が
生じたとしても、後期に動作する遮断部で遮断すること
ができる。また、さらに遅れた雷撃に対しては、複数の
遮断部の極間が開いた状態になるため、雷インパルスに
耐える構威となっている。
By shifting the fastest interruptible arc times of multiple interrupting sections by 0.5 cycles or more, the equivalent interruptible arc time extends to 1.0 cycles or more, so even if multiple lightning strikes occur in a short period of time, it will not work in the later stages. It can be shut off at the shut off section. In addition, in the event of a delayed lightning strike, the gaps between the poles of the multiple blocking sections are open, making it capable of withstanding lightning impulses.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図,第2図により説明す
る。二つの遮断部1,2が電気的に直列に接続され、各
遮断部の遮断指令は,制御装置3により出される。遮断
部1,2の遮断可能アーク時間幅4及び5は、少なくと
も、0.5 サイクル以上ある。遮断部2の最速遮断ア
ーク時刻Fは、遮断部工の最速遮断アーク時刻Eより0
.5 サイクルずらしている。これにより、実質的な遮
断アーク時間幅は1.0 サイクル以上となる。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Two cutoff sections 1 and 2 are electrically connected in series, and a control device 3 issues a cutoff command for each cutoff section. The interruptible arc time widths 4 and 5 of the interrupters 1 and 2 are at least 0.5 cycles or more. The fastest breaking arc time F of the breaking part 2 is 0 from the fastest breaking arc time E of the breaking part work.
.. 5 cycles shifted. As a result, the actual interruption arc time width becomes 1.0 cycles or more.

最初の雷撃による短絡電流は、C点で、遮断部1により
遮断するが、多重雷によりC点で、遮断不能となり、電
流零点がG点になった場合、遮断部lでは遮断すること
ができず、遮断部2により遮断する。このように、本実
施例によれば、多重雷でも、遮断可能な遮断器を提供す
ることができ、供給信頼性の向上が図れる。
The short-circuit current caused by the first lightning strike is interrupted at point C by interrupter 1, but if multiple lightning strikes cause it to become uninterruptible at point C and the current zero point becomes point G, interrupter l cannot interrupt the short-circuit current. First, the shutoff section 2 shuts off. As described above, according to this embodiment, it is possible to provide a circuit breaker that can interrupt even multiple lightning strikes, thereby improving supply reliability.

第3図,第4図は、本発明のさらに変形例を示す。山間
部等の雷撃発生の確率の大きい地域では、数十msの長
い時間にわたって何回か落雷する場合がある。そのため
、四つの遮断部1,2,6.7を電気的に直列に接続し
た場合である。各遮断部の遮断可能アーク時間幅は4,
5,8.9に示され、最速遮断可能アーク時刻は0.5
 サイクルずつ遅らせている。これにより、実質的遮断
可能アーク時間幅は2.0 サイクル以上となる。第l
図,第3図の構成は、それぞれ最終に動作する遮断部2
、または、遮断部7の遮断時、雷インパルスに耐電圧す
る。
FIGS. 3 and 4 show further variations of the present invention. In areas where there is a high probability of lightning strikes, such as mountainous areas, lightning may strike several times over a long period of several tens of milliseconds. Therefore, this is a case where the four interrupting parts 1, 2, 6.7 are electrically connected in series. The interruptible arc time width of each interrupting section is 4,
5, 8.9, the fastest arc time that can be interrupted is 0.5
It's delayed by cycles. As a result, the effective arc time width that can be interrupted becomes 2.0 cycles or more. No.l
The configurations shown in Fig. 3 and Fig. 3 are as follows.
, or when the cut-off part 7 is cut off, the voltage withstands the lightning impulse.

第5図は二つのパツファ形遮断部10.11の両可動部
を同一の絶縁操作ロッド15で駆動する例を示す。遮断
部10と遮断部l1のストローク特性は、第6図に示す
ように,S1と82のように変えている。すなわち、遮
断部11の方が0.5サイクル以上遅れて開極すること
により、多重雷で遮断部10が遮断不能となったとして
も、遮断部11で遮断することができる。
FIG. 5 shows an example in which both movable parts of two puffer-type cut-off parts 10.11 are driven by the same insulated operating rod 15. The stroke characteristics of the blocking portion 10 and the blocking portion l1 are changed as shown in S1 and 82, as shown in FIG. That is, by opening the circuit breaker 11 with a delay of 0.5 cycles or more, even if the circuit breaker 10 becomes unable to shut off due to multiple lightning strikes, the circuit breaker 11 can perform the circuit.

第5図の構成を説明する。図示を省略した密封容器内に
はSFeガスが所定圧力で充填されている。密封容器の
内面に固定した絶縁支持等筒12にはブラケット13が
結合されており、このブラケット13にはリンク機構1
4の一端が支持されている、リンク機構14の一端は絶
縁操作ロツド15に連結され、出力側は二つの端が構成
され、一方は遮断部10の可動接触子16に連結され、
他方は遮断部11の可動接触子■7に連結されている。
The configuration of FIG. 5 will be explained. A sealed container (not shown) is filled with SFe gas at a predetermined pressure. A bracket 13 is coupled to an insulating support cylinder 12 fixed to the inner surface of the sealed container, and a link mechanism 1 is attached to this bracket 13.
One end of the link mechanism 14, on which one end of the link mechanism 14 is supported, is connected to the insulated operating rod 15, and the output side has two ends, one of which is connected to the movable contact 16 of the interrupting part 10,
The other end is connected to the movable contact 7 of the blocking section 11.

可動接触子16にはシリンダl8が連結され、また可動
接触子16を包囲するように、絶縁ノズル19が取り付
けられている。ブラケット13に結合したピストン20
はシリンダl8が摺動し得る関係にあって両者によって
圧縮装置を構成している。この圧縮装置はパツファ室2
l内のガスを圧縮し、このガスを絶縁ノズルl9によっ
て導いて、固定接触子26と可動接触子16間に発生し
たアークに対し吹き付けを行う。遮断部の接触子と電気
的に並列に主通電用の主接触子24.25が構成されて
いる。遮断部11も遮断部10と同一構戊で形或されて
いる。遮断部10と遮断部↓lはブラケットl3を介し
て電気的に直列に接続されており、各遮断部と電気的に
並列に分圧用インピーダンス22.23が接続されてい
る。
A cylinder l8 is connected to the movable contact 16, and an insulating nozzle 19 is attached to surround the movable contact 16. Piston 20 coupled to bracket 13
The cylinder l8 is in a sliding relationship, and the two constitute a compression device. This compression device is
The gas in l is compressed, and this gas is guided through an insulating nozzle l9 to spray against the arc generated between the fixed contact 26 and the movable contact 16. Main contacts 24 and 25 for main energization are configured electrically in parallel with the contacts of the cutoff section. The blocking section 11 also has the same structure and shape as the blocking section 10. The cutoff part 10 and the cutoff part ↓l are electrically connected in series via the bracket l3, and voltage dividing impedances 22 and 23 are electrically connected in parallel with each cutoff part.

リンク機構l4は、遮断部10と11では構造が異なり
、以下、後者の構成について説明する。
The structure of the link mechanism l4 is different between the blocking parts 10 and 11, and the latter structure will be explained below.

絶縁操作ロツド15に一端を固定したリンク30の他端
は、可動接触子17の動作方向に沿って形成した楕円形
31内を案内される。このリンク30の全軸長の約半分
の位置には、この全軸長の約半分の軸長をもつリンク3
2の一端が連結され,このリンク32の他端はブラケッ
ト13へ可回転的に支持されている。この構成によって
絶縁操作ロツド15の図面左右動作は,リンク30の他
端を楕円孔31内に沿って図面上下移動に変換される。
The other end of the link 30, one end of which is fixed to the insulated operating rod 15, is guided within an ellipse 31 formed along the direction of movement of the movable contact 17. At a position approximately half of the total axial length of this link 30, there is a link 3 having an axial length approximately half of this total axial length.
The other end of the link 32 is rotatably supported by the bracket 13. With this configuration, the horizontal movement of the insulated operating rod 15 in the drawing is converted into vertical movement of the other end of the link 30 along the inside of the oval hole 31.

可動接触子17の軸33のブラケット13の内端にはリ
ンク34の一端が連結され、リンク34の他端には、一
端をブラケット13へ可回転的に支持したリンク35の
他端が連結されている。
One end of a link 34 is connected to the inner end of the bracket 13 of the shaft 33 of the movable contactor 17, and the other end of a link 35 whose one end is rotatably supported on the bracket 13 is connected to the other end of the link 34. ing.

リンク34.35の連結点にはリンク36の一端が連結
され、このリンク36の他端はリンク30の他端に連結
されている。
One end of a link 36 is connected to the connection point of the links 34 and 35, and the other end of this link 36 is connected to the other end of the link 30.

従って、リンク30の他端が楕円孔31を図面上方の回
路方向へ移動すると、リンク36を介してリンク34.
35間の連結部を幾分図面下方の閉路方向に移動させ、
やがて、可動接触子17を上方の開路方向へと駆動する
ことになり、この可動接触子17の動作特性は第6図の
ストローク特性S2のようになる。可動接触子17が一
度閉路方向へ動作するのを望まないなら、リンクの途中
に楕円孔による連結部を形成して遅延する一般的方法を
採用することができる。このような実施例によれば、遮
断可能アーク時間幅が遮断部10とl1の共通項だけ広
がるため、多重雷が生じても、後期に動作する遮断部1
工で遮断することができる。
Therefore, when the other end of the link 30 moves through the oval hole 31 in the circuit direction upward in the drawing, the link 34.
The connecting part between 35 and 35 is moved somewhat downward in the drawing in the closing direction
Eventually, the movable contact 17 is driven upward in the opening direction, and the operating characteristics of the movable contact 17 become as shown in the stroke characteristic S2 in FIG. 6. If it is not desired for the movable contactor 17 to move once in the closing direction, a general method of delaying movement by forming a connecting portion using an elliptical hole in the middle of the link can be adopted. According to such an embodiment, the arc time width that can be interrupted is expanded by the common term between the interrupting parts 10 and l1, so even if multiple lightning strikes occur, the interrupting part 1 that operates later
It can be shut off by construction.

第5図は遮断部10.11をパツファ形遮断部で構成さ
れているが、自力形遮断部など他の構成の遮断部を用い
ても第5図と同様の効果が得られる。
In FIG. 5, the cut-off parts 10, 11 are constructed of puffer-type cut-off parts, but the same effect as shown in FIG. 5 can be obtained even if a cut-off part of other structure such as a self-acting cut-off part is used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複数の遮断部を電気的に直列に接続し
、遮断可能アーク時刻を0.5 サイクル以上ずらすこ
とにより、等価的に遮断可能アーク時間を拡大できるの
で、短時間に多重雷が系統に生じたとしても、後期に動
作する遮断部で遮断することができる。
According to the present invention, by electrically connecting a plurality of interrupting parts in series and shifting the interruptable arc time by 0.5 cycles or more, it is possible to equivalently expand the interruptable arc time, so multiple lightning strikes can occur in a short time. Even if a problem occurs in the system, it can be shut off by a shutoff unit that operates at a later stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は第1
図の時間関係図、第3図は本発明の他の実施例のブロッ
ク図、第4図は第3図の時間関係図、第5図は本発明の
一実施例のガス遮断器の縦断面図、第6図は第5図のス
トローク説明図、第7図は従来例の原理図である。 1,2・・・遮断部,3・・・遮断指令制御装置、4,
5・・・遮断可能アーク時間幅。 第 1 図 2 第 2 図 第 3 図 第4図 第5図 吟間→
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
Fig. 3 is a block diagram of another embodiment of the present invention, Fig. 4 is a time relation diagram of Fig. 3, and Fig. 5 is a longitudinal section of a gas circuit breaker according to an embodiment of the present invention. 6 is a stroke explanatory diagram of FIG. 5, and FIG. 7 is a principle diagram of a conventional example. 1, 2... Cutoff unit, 3... Cutoff command control device, 4,
5... Arc time width that can be interrupted. 1 Figure 2 Figure 2 Figure 3 Figure 4 Figure 5 Ginma →

Claims (1)

【特許請求の範囲】 1、複数のガス遮断器を電気的に直列に接続して配置し
たものにおいて、 少なくとも一方の前記ガス遮断部の最速遮断可能時刻を
0.5サイクル以上ずらしたことを特徴とするガス遮断
器。 2、複数のガス遮断部を電気的に直列に接続して配置し
たものにおいて、 少なくとも一方の前記ガス遮断部の開極時間を0.5サ
イクル以上遅れて開離したことを特徴とするガス遮断器
[Scope of Claims] 1. A plurality of gas circuit breakers are electrically connected in series and arranged, characterized in that the fastest possible shutdown time of at least one of the gas circuit breakers is shifted by 0.5 cycles or more. gas circuit breaker. 2. A gas cutoff in which a plurality of gas cutoff parts are electrically connected and arranged in series, characterized in that the opening time of at least one of the gas cutoff parts is delayed by 0.5 cycles or more. vessel.
JP53390A 1990-01-08 1990-01-08 Gas-blast circuit-breaker Pending JPH03205719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53390A JPH03205719A (en) 1990-01-08 1990-01-08 Gas-blast circuit-breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53390A JPH03205719A (en) 1990-01-08 1990-01-08 Gas-blast circuit-breaker

Publications (1)

Publication Number Publication Date
JPH03205719A true JPH03205719A (en) 1991-09-09

Family

ID=11476402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53390A Pending JPH03205719A (en) 1990-01-08 1990-01-08 Gas-blast circuit-breaker

Country Status (1)

Country Link
JP (1) JPH03205719A (en)

Similar Documents

Publication Publication Date Title
KR20060050183A (en) High voltage bulk circuit breaker
US4617435A (en) Hybrid circuit breaker
KR200428448Y1 (en) Gas Insulated Circuit Breaker
JPH03205719A (en) Gas-blast circuit-breaker
KR100631007B1 (en) A gas insulated switchgear
JP2609652B2 (en) Puffer type gas circuit breaker
JPH02117043A (en) Buffer type gas breaker
JP2670375B2 (en) Puffer type gas circuit breaker
JP2653502B2 (en) Gas circuit breaker
JPH07105799A (en) Gas-blast circuit-breaker
JPH01304630A (en) Buffer type gas circuit breaker
JP2002124164A (en) Bilateral drive gas-blast circuit-breaker
JPH01209622A (en) Buffer type gas-blasted circuit breaker
KR20230099876A (en) Gas circuit breaker
JPS6196623A (en) Gas breaker
JPH05205581A (en) Circuit breaker operated without natural zero crossing of current
JP2557492B2 (en) Reactor current interruption device
JPH01102824A (en) Puffer type gas breaker device
JPH01248423A (en) Buffer type gas-blasted circuit breaker
JPH03246841A (en) Buffer type gas blast circuit breaker
JPS61193321A (en) Buffer type gas breaker
JPH02162629A (en) Buffer type gas circuit breaker
JPH03101025A (en) Buffer type gas-blast circuit breaker
JPH07122165A (en) Gas insulating ground switch
JPS63181221A (en) Buffer type gas breaker