JPH03205455A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPH03205455A
JPH03205455A JP84290A JP84290A JPH03205455A JP H03205455 A JPH03205455 A JP H03205455A JP 84290 A JP84290 A JP 84290A JP 84290 A JP84290 A JP 84290A JP H03205455 A JPH03205455 A JP H03205455A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
spherical
resin
graphite
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP84290A
Other languages
Japanese (ja)
Other versions
JP2855225B2 (en
Inventor
Yoshiteru Nakagawa
喜照 中川
Satoru Nakatani
悟 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP84290A priority Critical patent/JP2855225B2/en
Publication of JPH03205455A publication Critical patent/JPH03205455A/en
Application granted granted Critical
Publication of JP2855225B2 publication Critical patent/JP2855225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve the mechanical strengths, sliding properties, and surface flatness by mixing a thermoplastic resin with a spherical carbon and/or a spherical graphite. CONSTITUTION:95-50wt.% particulate or powdered thermoplastic resin (e.g. polycarbonate) is mixed with 5-50wt.% spherical carbon and/or shperical graphite with a particle diameter of 1-80mum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱可塑性樹脂組戊物に関する。[Detailed description of the invention] Industrial applications The present invention relates to thermoplastic resin composites.

従来技術およびその課題 近年、各種電子機器部品、スポーツ用品、レジャー用品
等の広い分野において、商品の高度化に伴い摺動特性に
も優れた熱可塑性樹脂、すなわち低摩耗量で低摩擦係数
の熱可塑性樹脂が求められるようになってきている。そ
こで、このような現状に対応すべく熱可塑性樹脂の摺動
特性を改善する試みが多くなされてきている。熱可塑性
樹脂の摺動特性を向上せしめる方法としては、例えば熱
可塑性樹脂に無機粒子を混入する方法がある。しかしな
がら、この方法によるときは、得られる戊形品自体の摩
耗量は減少するが、接触する相手材の摩耗量が増加し、
しかも戊形時の樹脂の流動性が悪化するために加工性に
劣り、肉薄戊形品などの精密成形品の製造が困難となる
Conventional technology and its challenges In recent years, as products have become more sophisticated, thermoplastic resins with excellent sliding properties, i.e., thermoplastic resins with low wear and low coefficient of friction, have been used in a wide range of fields such as various electronic device parts, sports goods, and leisure goods. There is an increasing demand for plastic resins. Therefore, many attempts have been made to improve the sliding properties of thermoplastic resins in order to cope with the current situation. As a method for improving the sliding properties of thermoplastic resin, there is, for example, a method of mixing inorganic particles into thermoplastic resin. However, when this method is used, although the amount of wear of the obtained molded product itself is reduced, the amount of wear of the other material with which it comes into contact increases,
In addition, the fluidity of the resin during molding deteriorates, resulting in poor processability, making it difficult to manufacture precision molded products such as thin-walled molded products.

また、熱可塑性樹脂に炭素繊維、ガラス繊維などの繊維
を混入して、樹脂の摺動特性を改善する方法も提案され
ているが、繊維の配向によって得られる戊形品の物性が
異方的となり、成形品が歪んだり変形したりする。さら
に戊形品の表面平滑性も得られない。
In addition, a method has been proposed to improve the sliding properties of thermoplastic resin by mixing fibers such as carbon fiber or glass fiber, but the physical properties of the shaped product obtained due to the orientation of the fibers are anisotropic. This causes the molded product to become distorted or deformed. Furthermore, the surface smoothness of the shaped product cannot be obtained.

このように、これら従来の方法による熱可塑性樹脂は、
摺動特性の向上に伴って樹脂の本来有する機械的特性、
電気的特性、化学的特性などの諸特性の低下をきたすも
のであり、広範な用途に適用できるものではない。
In this way, thermoplastic resins produced by these conventional methods are
With the improvement of sliding properties, the inherent mechanical properties of resin,
This causes deterioration of various properties such as electrical properties and chemical properties, and it cannot be applied to a wide range of applications.

課題を解決するための手段 本発明者は、上記の如き技術の現状に鑑みて鋭意研究を
重ねた結果、熱可塑性樹脂に球状の炭素および/または
球状の黒鉛を混入して複合材料としたときは、熱可塑性
樹脂の有する諸特性を損なうことなく都合よく摺動特性
を向上させ得ることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems As a result of extensive research in view of the current state of technology as described above, the present inventor has developed a composite material by mixing spherical carbon and/or spherical graphite into a thermoplastic resin. discovered that the sliding properties could be conveniently improved without impairing the properties of thermoplastic resins, and completed the present invention.

すなわち、本発明は、 (イ)熱可塑性樹脂95〜60重量%、及び(口)粒子
径1〜80μmの球状の炭素、球状の黒鉛もしくはこれ
らの混合物5〜40重量%からなる熱可塑性樹脂組戊物
に係るものである。
That is, the present invention provides a thermoplastic resin set consisting of (a) 95 to 60% by weight of a thermoplastic resin, and (a) 5 to 40% by weight of spherical carbon, spherical graphite, or a mixture thereof with a particle size of 1 to 80 μm. It is related to the ornament.

本発明における熱可塑性樹脂としては、特に限定されず
、公知のものを広く使用することができ、例えばナイロ
ン、ポリアセタール、ポリカーボネート、変性ポリフエ
ニレンオキサイド、ポリブチレンテレフタレート、ポリ
エチレンテレフタレー3 ト、ポリスルフォン、ポリエーテルスルフォン、ポリフ
エニレンスルフィド、ポリアリレー1・、ポリアミドイ
ミド、ポリエーテルイミド、ポリエチルエーテルケトン
、ポリイミド、フッ素樹脂などが例示される。
The thermoplastic resin in the present invention is not particularly limited, and a wide variety of known resins can be used, such as nylon, polyacetal, polycarbonate, modified polyphenylene oxide, polybutylene terephthalate, polyethylene terephthalate, and polysulfone. , polyether sulfone, polyphenylene sulfide, polyaryl 1, polyamideimide, polyetherimide, polyethyl ether ketone, polyimide, fluororesin, and the like.

本発明は、上記熱可塑性樹脂に炭素質フィラ・一(炭素
、黒鉛)の球状物を混入して用いることを特徴とする。
The present invention is characterized in that spherical carbonaceous filler (carbon, graphite) is mixed into the thermoplastic resin.

フィラーとして用いる下記球状の炭素、黒鉛は、その特
性によって、熱可塑性樹脂に良好な摺動特性を付与する
ことができる。また、球状の炭素質フィラーは、その混
入により熱可塑性樹脂の形成時の流動性を低下せしめる
ことがなく、加工成形に悪影響を与えることもない。さ
らに、炭素質フィラーは、熱可塑性樹脂との混和性及び
接着性が良《、熱可塑性樹脂中に混入したときでも該樹
脂自体の有する曲げ強度、引張強度などの機械的強度を
低下せしめることなく反対に向上せしめ、しかも比較的
多い量を添加するこどができる。このような作用を有し
本発明に有効に用いられる球状の炭素、黒鉛としては、
例えば次のようなものなどが挙げられる。
The following spherical carbon and graphite used as fillers can impart good sliding properties to thermoplastic resins depending on their properties. In addition, the spherical carbonaceous filler does not reduce the fluidity of the thermoplastic resin when it is formed, and does not adversely affect processing and molding. Furthermore, carbonaceous fillers have good miscibility and adhesion with thermoplastic resins, and even when mixed into thermoplastic resins, they do not reduce the mechanical strength such as bending strength and tensile strength of the resin itself. On the contrary, it can be improved by adding a relatively large amount. Spherical carbon and graphite that have such an effect and can be effectively used in the present invention include:
Examples include the following:

(1)球状の熱硬化性樹脂を、800〜2000℃程度
で炭化、もしくは2000℃以上で黒鉛化したアモルフ
ァス球状炭素 (2)石炭系または石油系の重質油から得られるメソカ
ーボンマイクロビーズを炭化もしくは黒鉛化したもの (3)200℃以上の温度で軟化溶融する石炭系または
石油系の重質油分を高圧で噴霧して製造される微小球体
を炭化もしくは黒鉛化したもの(4)200℃以上の温
度で軟化溶融する石炭系または石油系の重質分を微粉砕
し、気相もしくは液相で球状化して得られる微小球体を
炭化もしくは黒鉛化したもの。
(1) Amorphous spherical carbon made by carbonizing spherical thermosetting resin at about 800 to 2000°C or graphitizing at 2000°C or higher. (2) Mesocarbon microbeads obtained from coal-based or petroleum-based heavy oil. Carbonized or graphitized (3) Carbonized or graphitized microspheres produced by spraying at high pressure coal- or petroleum-based heavy oil that softens and melts at temperatures of 200°C or higher (4) 200°C Carbonized or graphitized microspheres obtained by finely pulverizing coal-based or petroleum-based heavy components that soften and melt at temperatures above and spheroidizing them in the gas or liquid phase.

また、上記球状の炭素、黒鉛の表面をカップリング、空
気酸化、硝酸などによる薬品酸化などのq 方法により表面処理することで、熱可塑性樹脂との混和
性及び接着性をより向上することができ、このような表
面処理を行なったものをも本発明において有効に使用で
きる。
In addition, by surface-treating the surface of the above-mentioned spherical carbon or graphite using methods such as coupling, air oxidation, and chemical oxidation using nitric acid, miscibility and adhesion with thermoplastic resins can be further improved. , those subjected to such surface treatment can also be effectively used in the present invention.

本発明では、これら球状の炭素質フィラーの粒子径が1
〜80μm程度、より好ましくは1〜20μmのものを
使用するのがよい。この粒子径は、通常のカーボン系フ
ィラーとして用いられている各種カーボンブラックの粒
子径に比べてμm単位で2ケタ程度大きいものである。
In the present invention, the particle diameter of these spherical carbonaceous fillers is 1
It is preferable to use one having a diameter of about 80 μm, more preferably 1 to 20 μm. This particle size is about two orders of magnitude larger in micrometers than the particle size of various carbon blacks used as ordinary carbon fillers.

従って、本発明でいう球状の炭素、黒鉛の吸油量は小さ
く、熱可塑性樹脂との混合を容易に行うことができる。
Therefore, the oil absorption amount of the spherical carbon and graphite as used in the present invention is small, and they can be easily mixed with the thermoplastic resin.

以上のような特性を有する本発明における球状の炭素質
フィラーは、単独で使用することもでき、また必要に応
じて2種以上を併用して使用することもでき、その配合
比は、組戊物中5〜50重量%程度、より好ましくは1
0〜30重量%とするのがよい。
The spherical carbonaceous filler of the present invention having the above-mentioned characteristics can be used alone, or two or more types can be used in combination as necessary, and the blending ratio is determined depending on the composition. About 5 to 50% by weight, more preferably 1
The content is preferably 0 to 30% by weight.

また、本発明において、上記成分以外に従来より当分野
で用いられている無機粒子、有機もしくは無機の繊維状
物質、分散剤、安定剤などを適宜加えることも有効であ
る。
In the present invention, it is also effective to appropriately add inorganic particles, organic or inorganic fibrous substances, dispersants, stabilizers, etc. that have been conventionally used in the art in addition to the above-mentioned components.

熱可塑性樹脂とフィラーとを混合する際には、熱可塑性
樹脂を粒状もしくは粉状として加えるのがよく、特に粉
状とすることで均一混合を容易に行うことができる。
When mixing the thermoplastic resin and the filler, it is preferable to add the thermoplastic resin in the form of granules or powder, and in particular, by adding the thermoplastic resin in the form of powder, uniform mixing can be easily performed.

本発明の熱可塑性樹脂組戊物の戊形は、樹脂或形で用い
られている通常の方法に基づいて容易に行うことができ
る。
The thermoplastic resin composite of the present invention can be easily shaped using conventional methods used for resin shaping.

発明の効果 本発明によれば、摺動特性に優れた樹脂部材を任意の形
状にて容易に得ることができる。また、得られる樹脂成
形品は、等方構造で機械的強度が高く、しかも表面平滑
性に優れたものである。
Effects of the Invention According to the present invention, a resin member having excellent sliding properties can be easily obtained in any shape. Furthermore, the resulting resin molded product has an isotropic structure, high mechanical strength, and excellent surface smoothness.

実施例 以下実施例により本発明の特徴とするところを7 一層明確なものとする。Example The following examples show 7 features of the present invention. Make it even clearer.

尚、実施例中及び表中に記載の記号の意味は、次の通り
である。
In addition, the meanings of the symbols described in the examples and tables are as follows.

POM・・・粒状ポリアセタール樹脂“ジュラコンM9
0−02” (ポリプラスチック製)尚、使用に際して
予め90゜Cで12時間以上乾燥した。
POM...granular polyacetal resin "Duracon M9"
0-02'' (made of polyplastic) Before use, it was dried at 90°C for 12 hours or more.

PPS・・・粉末状ポリフェニレンスルフィド樹脂“ラ
イトンP−4” (フィリップスペトローリアム製)尚
、使用に際して予め1 2 0 0Cで12時間以上乾
燥した。
PPS: Powdered polyphenylene sulfide resin "Ryton P-4" (manufactured by Phillips Petroleum) Before use, the resin was dried at 120 0 C for 12 hours or more.

A・・・メソカーボンマイクロビーズ 炭化パウダー 平均粒子径6μm(粒子径分布1〜18μm)B・・・
メソカーボンマイクロビーズ 炭化パウダー 平均粒子径20μm(粒子径分布2〜80μm) 8 C・・・メソカーボンマイクロビーズ 黒鉛化パウダー 平均粒子径6μm(粒子径分布1〜18μm)D・・・
メソカーボンマイクロビーズ 黒鉛化パウダー 平均粒子径20μm(粒子径分布2〜80μm) 実施例1〜12 第1表に示す配合割合でそれぞれ混合し、その後2軸押
出し機を用いて約200℃でペレット化し、冷却乾燥後
射出戊型機を用いて約210℃の温度で射出戊形して樹
脂戊形体を得た。そして、これら戊形体を試料として物
性試験に供した。その結果を第3〜5表に示す。
A... Mesocarbon microbead carbonized powder average particle diameter 6 μm (particle size distribution 1-18 μm) B...
Mesocarbon microbead carbonized powder average particle diameter 20 μm (particle size distribution 2 to 80 μm) 8 C... Mesocarbon microbead graphitized powder average particle diameter 6 μm (particle size distribution 1 to 18 μm) D...
Mesocarbon microbead graphitized powder average particle diameter 20 μm (particle size distribution 2-80 μm) Examples 1 to 12 They were mixed at the proportions shown in Table 1, and then pelletized at about 200°C using a twin-screw extruder. After cooling and drying, injection molding was performed at a temperature of about 210° C. using an injection molding machine to obtain a resin molded body. These rod-shaped bodies were then used as samples for physical property tests. The results are shown in Tables 3-5.

比較例1 実施例1〜12と同様にしてPOMのみの戊形体を得た
。これを用いた物性試験の結果を第3〜5表に示す。
Comparative Example 1 A hollow body made of only POM was obtained in the same manner as in Examples 1 to 12. The results of physical property tests using this are shown in Tables 3 to 5.

実施例13〜24 第2表に示す配合割合でそれぞれ混合し、その後2軸押
出し機を用いて約280℃でベレット化し、冷却乾燥後
射出戊形機を用いて約310℃の温度で射出戊形して樹
脂戊形体を得た。そして、これら或形体を試料として物
性試験に供した。その結果を第6〜8表に示す。
Examples 13 to 24 They were mixed at the proportions shown in Table 2, and then formed into pellets at about 280°C using a twin-screw extruder, cooled and dried, and then injection molded at a temperature of about 310°C using an injection molding machine. A resin rod was obtained by shaping. These shaped bodies were then used as samples for physical property tests. The results are shown in Tables 6-8.

11 比較例2 実施例13〜24と同様にしてPPsのみの戊形体を得
た。これを用いた物性試験の結果を第6〜8表に示す。
11 Comparative Example 2 A hollow body made of only PPs was obtained in the same manner as in Examples 13-24. The results of physical property tests using this are shown in Tables 6-8.

〔物性試験〕[Physical property test]

上記実施例1〜24及び比較例1、2で得られた成形体
の物性を以下の試験により調べた。
The physical properties of the molded bodies obtained in Examples 1 to 24 and Comparative Examples 1 and 2 were examined by the following tests.

0曲げ強さ、曲げ弾性率 JIS  K  7203に準拠して測定した。0 bending strength, bending modulus Measured in accordance with JIS K 7203.

測定条件 サンプル数(n)二5(物性値は平均値で示
した。以下同じ。) 支点間距離:60mm 試験速度: 2mm/min O静、動摩擦係数 ASTM  D  1894に準拠して測定した。
Measurement conditions Number of samples (n) 25 (Physical property values are shown as average values. The same applies hereinafter.) Distance between fulcrums: 60 mm Test speed: 2 mm/min Static and dynamic coefficient of friction Measured in accordance with ASTM D 1894.

測定条件 n:2 試料寸法:50X50mm スレッド荷重:500gf 12 試験速度: 2 0 0 mm/min被摩擦面:鉄板
(SS41ペーパー 1000番研摩) 0摩耗量 JIS  K  7204に準拠して試料の摩耗量を測
定した(テーバー式)。
Measurement conditions n: 2 Sample dimensions: 50 x 50 mm Thread load: 500 gf 12 Test speed: 200 mm/min Friction surface: Iron plate (SS41 paper No. 1000 polished) 0 Wear amount The amount of wear of the sample was determined in accordance with JIS K 7204. measured (Taber method).

測定条件 n:2 摩耗輪:GC−150H 荷重:500gf 試験回数: 1000回 0引張強さ、伸び、引張弾性率 JIS  K  7113に準拠して測定した。Measurement conditions n:2 Wear wheel: GC-150H Load: 500gf Number of tests: 1000 times 0 tensile strength, elongation, tensile modulus Measured in accordance with JIS K 7113.

測定条件 n:5 試験片形状:1号形試験片 引張速度: 5mm/min  (但し弾性率測定はI
Ilm/min) 15 16
Measurement conditions n: 5 Test piece shape: No. 1 test piece Tensile speed: 5 mm/min (However, elastic modulus measurement is
Ilm/min) 15 16

Claims (1)

【特許請求の範囲】[Claims] (1)(イ)熱可塑性樹脂95〜50重量%、及び (ロ)粒子径1〜80μmの球状の炭素、球状の黒鉛も
しくはこれらの混合物5〜50重量% からなる熱可塑性樹脂組成物。
(1) A thermoplastic resin composition comprising (a) 95 to 50% by weight of a thermoplastic resin, and (b) 5 to 50% by weight of spherical carbon, spherical graphite, or a mixture thereof having a particle size of 1 to 80 μm.
JP84290A 1990-01-05 1990-01-05 Thermoplastic resin composition Expired - Lifetime JP2855225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP84290A JP2855225B2 (en) 1990-01-05 1990-01-05 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP84290A JP2855225B2 (en) 1990-01-05 1990-01-05 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPH03205455A true JPH03205455A (en) 1991-09-06
JP2855225B2 JP2855225B2 (en) 1999-02-10

Family

ID=11484876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP84290A Expired - Lifetime JP2855225B2 (en) 1990-01-05 1990-01-05 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP2855225B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137961A (en) * 2005-11-16 2007-06-07 Sumitomo Bakelite Co Ltd Thermoplastic resin composition and molded article obtained by molding the same
WO2013000679A1 (en) * 2011-06-27 2013-01-03 Total Research & Technology Feluy Expandable graphite - containing vinyl aromatic polymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137961A (en) * 2005-11-16 2007-06-07 Sumitomo Bakelite Co Ltd Thermoplastic resin composition and molded article obtained by molding the same
WO2013000679A1 (en) * 2011-06-27 2013-01-03 Total Research & Technology Feluy Expandable graphite - containing vinyl aromatic polymers

Also Published As

Publication number Publication date
JP2855225B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
EP1735376B1 (en) Method of producing a conductive resin composition
Karatas et al. Synergetic effect of graphene nanoplatelet, carbon fiber and coupling agent addition on the tribological, mechanical and thermal properties of polyamide 6, 6 composites
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
Khan et al. Review on nitride compounds and its polymer composites: a multifunctional material
JP5641359B2 (en) Resin composite material
JP2008530304A (en) Thermostable thermoplastic resin composition, method for producing the same, and article containing the same
Shanmugharaj et al. Influence of aminosilane‐functionalized carbon nanotubes on the rheometric, mechanical, electrical and thermal degradation properties of epoxidized natural rubber nanocomposites
JP2635253B2 (en) Short fiber-containing polymer composition and method for controlling electric resistance of polymer composition
Choi et al. Effect of crosslink density on thermal conductivity of epoxy/carbon nanotube nanocomposites
Guo et al. TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi‐walled carbon nanotubes nanofillers
Kashyap et al. Effect of amino-functionalization of MWCNTs on the mechanical and thermal properties of MWCNTs/epoxy composites
Wang et al. Synergistic effect of surface modification of carbon fabrics and multiwall carbon nanotube incorporation for improving tribological properties of carbon fabrics/resin composites
Dravid et al. Nickel nanoparticle-filled high-performance polymeric nanocomposites for EMI shielding applications
Suresha et al. Role of graphene nanoplatelets and carbon fiber on mechanical properties of PA66/thermoplastic copolyester elastomer composites
KR20120077647A (en) Polymer/carbon nano tube composites and preparation method thereof
Bazireh et al. Polythiophene-coated multi-walled carbon nanotube-reinforced epoxy nanocomposites for enhanced mechanical, electrical and thermal properties
JPH0586982B2 (en)
KR100943125B1 (en) Antistatic resin composition
JPH03205455A (en) Thermoplastic resin composition
JPH05331314A (en) Heat-resistant resin sliding material
JP2005264134A (en) Conductive polymer, its preparation process and its application
Cho et al. Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview
Dominguez et al. Modification of Oligomeric Cyanate Ester Polymer Properties with Multi‐Walled Carbon Nanotube‐Containing Particles
Wu et al. Synthesizing multi‐walled carbon nanotube‐polymethyl methacrylate conductive composites and poly (lactic acid) based composites
Mallick et al. The Effect of Functionalized MWCNT on Mechanical and Electrical Properties of PMMA Nanocomposites