JPH03205354A - Alumina-spinel carbon based refractory - Google Patents

Alumina-spinel carbon based refractory

Info

Publication number
JPH03205354A
JPH03205354A JP2000087A JP8790A JPH03205354A JP H03205354 A JPH03205354 A JP H03205354A JP 2000087 A JP2000087 A JP 2000087A JP 8790 A JP8790 A JP 8790A JP H03205354 A JPH03205354 A JP H03205354A
Authority
JP
Japan
Prior art keywords
alumina
spinel
carbon
powder
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000087A
Other languages
Japanese (ja)
Other versions
JPH0679977B2 (en
Inventor
Kunio Minato
湊 邦夫
Yoshinori Tanaka
良典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2000087A priority Critical patent/JPH0679977B2/en
Publication of JPH03205354A publication Critical patent/JPH03205354A/en
Publication of JPH0679977B2 publication Critical patent/JPH0679977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide the title refractory having excellent strength, corrosion resistance and residual swell characteristics and reduced in damage of material by composing the title material of magnesia-enriched spinel crude grains, alumina-based refractory material crude grains, alumina based refractory material fine powder, a carbon material and a carbon bond forming agent. CONSTITUTION:5-87wt.% magnesia-enriched spinel crude grains are blended with 0-82wt.% alumina based refractory material crude grains, 10-47wt.% alumina based refractory material fine powder, 3-30wt.% carbon material and 1-10wt.% carbon bond forming agent (e.g. tar). Then te blend is sufficiently kneaded and dried to afford the unburned alumina-spinel carbon based refractory material, which is as necessary burned in non-oxidizing atmosphere to provided the burnt product. Furthermore, metal silicon powder, Al powder, Mg powder, silicon carbide, etc., can be further blended therewith so as to improve spalling resistance and prevent permeation of slag and oxidation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は製銑、溶銑予備処理や溶鋼処理段階の各炉の内
張り耐火物として使用され、特に受銑、受鋼容器類に好
適に使用できる、耐食性及び残存膨張性に優れたアルミ
ナ−スピネル−カーボン質耐火物に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used as a refractory lining for each furnace in the pig iron making, hot metal pretreatment and molten steel processing stages, and is particularly suitable for use in pig iron receiving vessels and steel receiving vessels. The present invention relates to an alumina-spinel-carbon refractory having excellent corrosion resistance and residual expansion property.

[従来の技術] 従来、上述の各種容器類に使用される溶融金属用耐火物
はロウ石、シャモット、アルミナ、ムライト、スピネル
などの骨材と、炭化珪素、金属珪素、窒化珪素、黒鉛、
ピッチ、結合粘土などの混合物を用いるものであった。
[Prior Art] Conventionally, refractories for molten metal used in the various containers mentioned above have been made of aggregates such as waxite, chamotte, alumina, mullite, and spinel, as well as silicon carbide, metallic silicon, silicon nitride, graphite,
It used a mixture of pitch, binding clay, etc.

例えば、特開昭55−37459号公報には、アルミナ
、スピネルまたはスピネルとマグネシアクリンカーの混
合物、炭化珪素及び樹脂状ピッチからなる溶融金属樋用
耐火物が開示されている。この耐火物はマトリックス部
にセラミックボンドとカーボンボンドを生成させること
により、ボンド部の強化と溶損バランスを調整して耐食
性の向上を図ったものである。
For example, JP-A-55-37459 discloses a refractory for molten metal gutter comprising alumina, spinel or a mixture of spinel and magnesia clinker, silicon carbide and resinous pitch. This refractory is designed to improve corrosion resistance by forming ceramic bonds and carbon bonds in the matrix part, thereby adjusting the balance between strengthening and melting of the bond parts.

また、特開昭5!11−3069号公報には、マグネシ
アか、マグネシア富化スピネルの何れかの100ミクロ
ン以下の微粉を、全配合量に対し、ペリクレースとして
0 . 5−4 . 0重景%添加してマトリックス部
をカーボン結合とスピネル結合の組織としたアルミナー
炭化珪素一カーボン質耐火物が開示されている。この耐
火物はアルミナー炭化珪素一カーボン系耐火物の主原料
であるアルミナの骨材粒子間にスピネルを形成させ、マ
トリックス部をスピネル結合とカーボン結合の複合組織
とすることにより、マトリックス部の先行損傷が抑制さ
れ、これによってアルミナ骨材の離脱を防止し、アルミ
ナ骨材の耐食性を充分発揮させようとしたものである。
Furthermore, in Japanese Patent Application Laid-Open No. 511-3069, fine powder of either magnesia or magnesia-enriched spinel with a size of 100 microns or less is added to the total amount of periclase in an amount of 0. 5-4. An alumina-silicon carbide-carbon refractory is disclosed in which the matrix portion has a structure of carbon bonds and spinel bonds by adding 0 weight percent. This refractory is made by forming spinel between aggregate particles of alumina, which is the main raw material for alumina-silicon carbide-carbon refractories, and by making the matrix part a composite structure of spinel bonds and carbon bonds, it prevents damage to the matrix part. This is to prevent the separation of the alumina aggregate and to fully demonstrate the corrosion resistance of the alumina aggregate.

[発明が解決しようとする課題コ しかし、前記特開昭55− 37459号の耐火物は、
マトリックス部、すなわち微粉部にスピネルとマグネシ
アクリン力一の混合物を使用するものであり、ここでい
うスピネルはMtr○=28.3重量%、Ae20.7
 1 .7重量%の理論組成に近いものを用いており、
このようなスピネルは使用時あるいは加熱によるスピネ
ル生戒は起こらず、目地損傷等を起こし易い。
[Problems to be solved by the invention However, the refractory of JP-A No. 55-37459,
A mixture of spinel and magnesia clinone is used in the matrix part, that is, the fine powder part, and the spinel here has Mtr○=28.3% by weight and Ae20.7.
1. We use something close to the theoretical composition of 7% by weight,
Such spinel does not suffer from spinel damage during use or heating, and is susceptible to joint damage.

また、マグネシアクリン力一を微粉で用いると2 スピネルの過剰生戒による熱膨張の過多及び繰り返し加
熱において、残存膨張の永続性の欠乏等の欠点を有する
Furthermore, when magnesia clean powder is used as a fine powder, there are disadvantages such as excessive thermal expansion due to excessive spinel growth and lack of persistence of residual expansion during repeated heating.

更に、前記特開昭59 − 3069号の耐火物は、分
散性を考慮してマグネシアまたはマグネシア富化スピネ
ルを100ミクロン以下の微粉として配合するところに
特徴を有するものであるが、このような形態で使用する
と、ペリクレースとして0.5重量%未溝のマグネシア
またはマグネシア富化スピネルの配合量であると、耐食
性が劣り、また、4.0重量%を超えると、スピネルの
過剰生成による熱膨張の過多及び繰り返し加熱において
、残存膨張の永続性の欠乏等の欠点を有し、目地損傷等
を起こし易く、マグネシアまたはマグネシア富化スピネ
ル微粉の添加配合量に厳しい制約を受ける。
Furthermore, the refractory of JP-A-59-3069 is characterized in that magnesia or magnesia-enriched spinel is blended as a fine powder of 100 microns or less in consideration of dispersibility. When used as periclase, if the content is 0.5% by weight of ungrooved magnesia or magnesia-enriched spinel, corrosion resistance will be poor, and if it exceeds 4.0% by weight, thermal expansion will be reduced due to excessive spinel formation. It has drawbacks such as lack of persistence of residual expansion when heated excessively and repeatedly, and joint damage is likely to occur, and there are severe restrictions on the amount of magnesia or magnesia-enriched spinel fine powder added.

しかし、上述のようなこれまでに既知のアルミナーマグ
ネシアーカーボン質れんがは、受熱によりマグネシア粒
表面からマトリックスの高アルミナ原料へMgOが物質
移動してスピネルを生成するために、残存膨張性があり
、しかもセラミック結合のマトリックス部を形戒するた
めに高耐食性を有するという利点をもつが、同時に、ス
ピネル化反応によりマグネシア粒自体は元の大きさより
も小さくなり、マグネシア粒周囲に空隙を生じ、れんが
組織をポーラス化させるために充分な強度が得られない
ことがある。
However, the previously known alumina-magnesia carbon bricks described above have residual expansivity because MgO is transferred from the surface of the magnesia grains to the high alumina raw material of the matrix by heat reception to form spinel. Moreover, it has the advantage of having high corrosion resistance because it forms the matrix part of the ceramic bond, but at the same time, the magnesia grains themselves become smaller than their original size due to the spinelization reaction, creating voids around the magnesia grains, and the brick Sufficient strength may not be obtained to make the tissue porous.

従って、本発明の目的は上述の欠点を解消した、各種容
器類に好適に使用できるアルミナ−スピネル−カーボン
質耐火物を提供することにある。
Accordingly, an object of the present invention is to provide an alumina-spinel-carbon refractory which can be suitably used in various containers and which eliminates the above-mentioned drawbacks.

[課題を解決するための手段] 即ち、本発明はマグネシア富化スピネル粗粒5〜87重
量%、アルミナ質耐火材粗粒O〜82重量%、アルミナ
質耐火材微粉10〜47重量%、炭素材3〜30重量%
及び炭素結合形戒剤1〜10重量%(外掛)よりなるア
ルミナースピネルカーボン質耐火物に係る。
[Means for Solving the Problems] That is, the present invention includes 5 to 87% by weight of magnesia-enriched spinel coarse particles, O to 82% by weight of alumina refractory coarse particles, 10 to 47% by weight of alumina refractory fine powder, and charcoal. Material 3-30% by weight
and an alumina spinel carbonaceous refractory comprising 1 to 10% by weight (outer layer) of a carbon-bonded reagent.

また、本発明のアルミナースピネルーカーボン質耐火物
は金属珪素粉、アルミニウム粉、マグネシウム粉等また
はそれらの合金粉、及び炭化珪素粉よりなる群から選択
された1種または2種以上の成分を含有することができ
る。
Further, the alumina-spinel-carbon refractory of the present invention contains one or more components selected from the group consisting of metal silicon powder, aluminum powder, magnesium powder, etc. or alloy powder thereof, and silicon carbide powder. It can contain.

[作  用] 本発明はアルミナ−スピネル−カーボン質耐火物のスピ
ネル原料としてマグネシア富化スピネル粗粒を使用する
ところに特徴を有する。
[Function] The present invention is characterized in that magnesia-enriched spinel coarse particles are used as a spinel raw material for the alumina-spinel-carbon refractory.

スピネルは理論組戒MgO−A(120 3をもち、M
gO 2 8 .3重量%とA(l2037 1 .7
重量%の化学量論比よりなるものであるが、本発明耐火
物に使用するマグネシア富化スピネル粗粒はMgO含量
が上記化学量論比を超えるスピネル原料の粗粒であり、
不純物が少なく、ペリクレースを均一に含有するものが
好ましい。なお、本発明に使用するマグネシア富化スピ
ネル粗粒の粒度は0.3mm以上のものである。
Spinel has a theory group MgO-A (120 3, M
gO28. 3% by weight and A(l2037 1.7
The magnesia-enriched spinel coarse particles used in the refractory of the present invention are spinel raw material coarse particles with an MgO content exceeding the above stoichiometric ratio,
It is preferable that there are few impurities and that uniformly contains periclase. The particle size of the magnesia-enriched spinel coarse particles used in the present invention is 0.3 mm or more.

前記特開昭59− 3069号公報に記載されているよ
ウニマクネシア富化スピネルを微粉形態で添加すると、
スピネルの過剰生成による熱間膨張の過多及び繰り返し
加熱において、残存膨張の永続性の欠乏等の欠点を有す
るために、マグネシア富化スピネルを多量に添加するこ
とは好ましくない。しかし、マグネシア富化スピネルを
多量に添加する方が耐食性の面で好ましい。従って、本
発明ではマグネシア富化スピネルを上記粒径範囲の粗粒
として添加する。
When Unimacnesia-enriched spinel is added in the form of fine powder as described in JP-A-59-3069,
It is not preferable to add a large amount of magnesia-enriched spinel because it has drawbacks such as excessive hot expansion due to overproduction of spinel and lack of persistence of residual expansion during repeated heating. However, it is preferable to add a large amount of magnesia-enriched spinel from the viewpoint of corrosion resistance. Therefore, in the present invention, magnesia-enriched spinel is added as coarse particles having the above particle size range.

該マグネシア富化スピネル粗粒の添加配合量は5〜87
重量%である。マグネシア富化スピネル粗粒の添加配合
量が5重量%未溝の場合には、得られる耐火物が残存膨
張性及び耐食性に劣るために好ましくなく、また、該添
加配合量が87重量%を超えると、相対的に微粉使用量
が少なくなるため、充填性が悪くなり、緻密な耐火物組
織が得られないために好ましくない。
The amount of the magnesia-enriched spinel coarse particles added is 5 to 87.
Weight%. If the amount of magnesia-enriched spinel coarse particles added is 5% by weight without grooves, the resulting refractory will have poor residual expansion properties and corrosion resistance, which is undesirable, and if the amount added exceeds 87% by weight. This is not preferable because the amount of fine powder used is relatively small, resulting in poor filling properties and a dense refractory structure not being obtained.

また、本発明耐火物の第2の成分はアルミナ質耐火材で
ある。アルミナ質耐火材はAI2203含有量約70重
量%以上の耐火材例えば電融アルミナ、焼結アルミナ、
仮焼アルミナ、ボーキサイト、ばん土頁岩、ムライト、
マグネシア含有量28.3重量%未満のスピネル原料等
を使用することができる。アルミナ質耐火材は微粉から
粗粒までの広7 範囲にわたる粒度のものを使用することができ、アルミ
ナ質耐火材粗粒の添加配合量は0〜82重量%である。
Further, the second component of the refractory of the present invention is an alumina refractory material. Alumina refractory materials include refractory materials containing approximately 70% by weight or more of AI2203, such as fused alumina, sintered alumina,
Calcined alumina, bauxite, clay shale, mullite,
A spinel raw material having a magnesia content of less than 28.3% by weight can be used. The alumina refractory material can have a wide range of particle sizes from fine powder to coarse particles, and the amount of the coarse alumina refractory material added is 0 to 82% by weight.

該添加配合量が82重量%を超えると、相対的にマグネ
シア富化スピネル粗粒の添加量が少なくなるために、ア
ルミナ骨材粒子間に生戊スピネルによるセラミック結合
を充分には形戒できないために好ましくない。
If the amount added exceeds 82% by weight, the amount of magnesia-enriched spinel coarse particles added will be relatively small, so it will not be possible to sufficiently form a ceramic bond between the alumina aggregate particles by raw spinel. unfavorable to

また、アルミナ質耐火材微粉の添加配合量は10〜47
重量%である。該添加配合量が10重量%未満であると
、71・リックス部のスピネル生成量が少なくなるため
に、マトリックス部を強化させにくいために好ましくな
く、また、47重量%を超えると、れんが戒形時にラミ
ネーションを発生し易いために好ましくない。なお、本
発明に使用するアルミナ質耐火材微粉とは粒度0.3m
m未満のものをいう。
In addition, the addition amount of alumina refractory material fine powder is 10 to 47
Weight%. If the amount added is less than 10% by weight, the amount of spinel produced in the 71-lix part will be reduced, making it difficult to strengthen the matrix part, which is undesirable. This is not preferable because lamination may sometimes occur. In addition, the alumina refractory material fine powder used in the present invention has a particle size of 0.3 m.
means less than m.

なお、アルミナ質耐火材粗粒とマグネシア富化スピネル
粗粒の合計量は87重量%以下とする必要がある。これ
は、粗粒の合計量が87重量%を超えると、相対的に微
粉使用量が少なくなるため8 に充填性が悪くなり、緻密な耐火物組織が得られないた
めである。
Note that the total amount of the alumina refractory material coarse particles and the magnesia-enriched spinel coarse particles must be 87% by weight or less. This is because when the total amount of coarse particles exceeds 87% by weight, the amount of fine particles used becomes relatively small, resulting in poor filling properties and a dense refractory structure not being obtained.

本発明耐火物の第3の成分は炭素材である。炭素材とし
ては例えば黒鉛、コークス等を使用することができる。
The third component of the refractory of the present invention is a carbon material. As the carbon material, for example, graphite, coke, etc. can be used.

炭素材の添加配合量は3〜30重量%である。炭素材の
添加配合量が3重量%未満では得られる耐火物に耐スポ
ール性を付与することが困難であり、また、該添加配合
量が30重量%を超えると、耐火物の稼働表面の脱炭現
象が増加してスラグに対する耐食性が低下するために好
ましくない。
The amount of carbon material added is 3 to 30% by weight. If the amount of carbon material added is less than 3% by weight, it is difficult to impart spalling resistance to the resulting refractory, and if the amount added exceeds 30% by weight, the working surface of the refractory may become detached. This is undesirable because charcoal phenomenon increases and corrosion resistance against slag decreases.

本発明のアルミナ−スピネル−カーボン質耐火物は上述
の3成分に外掛で1〜10重量%の炭素結合形或剤を添
加してなるものである。該炭素結合形成剤としては例え
ば合成樹脂類、タール、ピッチ、糖蜜等を使用すること
ができる。炭素結合形成剤の添加配合量が1重量%未満
であると、結合効果が得られず、また、10重量%を超
えると、加熱により亀裂の発生や軟化変形が起こり易い
ので好ましくない。
The alumina-spinel-carbon refractory of the present invention is made by adding 1 to 10% by weight of a carbon bonding agent to the above-mentioned three components. As the carbon bond forming agent, for example, synthetic resins, tar, pitch, molasses, etc. can be used. If the amount of the carbon bond forming agent added is less than 1% by weight, no bonding effect can be obtained, and if it exceeds 10% by weight, cracking or softening deformation is likely to occur due to heating, which is not preferable.

上述のマグネシア富化スピネル或分、アルミナ質耐火材
(粗粒、微粉)及び炭素材よりなる杯土混合物に常法に
より上述の炭素結合形戒剤を添加し、混練し、乾燥する
ことにより不焼戊品どして本発明のアルミナ−スピネル
ーカーボン質耐火物を得ることができる。
The above-mentioned carbon-bonded additive is added to the above-mentioned cup soil mixture consisting of the above-mentioned magnesia-enriched spinel or alumina refractory material (coarse particles, fine powder), and carbon material, kneaded, and dried. The alumina-spinel-carbon refractory of the present invention can be obtained by baking.

また、上述の不焼戒品を更に非酸化性雰囲気中で焼成し
て焼戒品として得るこどもできる。
In addition, the above-mentioned non-burnable gift can be further baked in a non-oxidizing atmosphere to obtain a baked gift.

なお、本発明のアルミナ−スピネルーカーボン質耐火物
には、耐スポーリング性向上、スラグの浸透防止、酸化
防止等の目的で例えば金属珪素粉、アルミニウム粉、マ
グネシウム粉等またはそれらの合金粉、及び炭化珪素粉
等を使用するこどができる。これらの成分は1種または
2種以上を併用して使用することができる。該成分の添
加配合量は0.5〜10重量%程度である。
The alumina-spinel-carbon refractory of the present invention may contain, for example, metal silicon powder, aluminum powder, magnesium powder, or alloy powder thereof, for the purpose of improving spalling resistance, preventing slag penetration, and preventing oxidation. Also, silicon carbide powder can be used. These components can be used alone or in combination of two or more. The amount of this component added is approximately 0.5 to 10% by weight.

前記成分を添加配合した本発明の耐火物も上述と同様に
不焼成品または焼或品どして使用することができる。
The refractory of the present invention containing the above-mentioned components can also be used as an unfired product or a fired product in the same manner as described above.

[実 施 例] 以下に、実施例を挙げて本発明のアルミナ−スピネル−
カーボン質耐火物を更に説明する。
[Example] Examples will be given below to demonstrate the alumina spinel of the present invention.
The carbonaceous refractory will be further explained.

実施例 以下の第1表に本発明品及び比較品を使用するために使
用したマグネシア富化スピネルの化学組成を記載する: Mg○              48.9AR20
3              50.0CaO   
               O.6Si○2   
           0.2ペリクレース量    
 29.2 以下の第2表に記載する配合割合をもつ杯土混合物に炭
素結合形成剤として液状フェノール樹脂を3重量%(外
掛)で添加、混練し、230mmX1 1 4mmX 
6 5mmの形状に戒形し、150℃で24時間乾燥す
ることにより不焼成品として本発明品1〜4及び比較品
1〜3を作製した。得られた本発明品及び比較品の特性
を第2表に併記する。
Examples Table 1 below lists the chemical composition of the magnesia-enriched spinel used for the products of the present invention and comparative products: Mg○ 48.9AR20
3 50.0CaO
O. 6Si○2
0.2 periclase amount
29.2 Add 3% by weight (outer weight) of liquid phenol resin as a carbon bond forming agent to a potting soil mixture having the blending ratio shown in Table 2 below, knead it, and mix it to a size of 230 mm x 1 1 4 mm x
Inventive products 1 to 4 and comparative products 1 to 3 were produced as unfired products by shaping into a 65 mm shape and drying at 150° C. for 24 hours. The properties of the obtained products of the present invention and comparative products are also listed in Table 2.

一11 [発明の効果] 本発明のアルミナ−スピネル−カーボン質耐火物は、マ
グネシア富化スピネル粗粒を使用することによりマグネ
シアを使用した場合と同様にスピネル生成によりマトリ
ックスを強化するという利点を有し、しかも空隙を生戒
することが少ないために、充分な強度及び耐食性を有す
る。
111 [Effects of the Invention] The alumina-spinel-carbon refractory of the present invention has the advantage that by using magnesia-enriched spinel coarse particles, the matrix is strengthened by spinel formation, similar to when magnesia is used. Moreover, since there are few voids, it has sufficient strength and corrosion resistance.

また、本発明のアルミナースピネルーカーボン質耐火物
は適度な残存膨張を持続することができるために、目地
損傷が少ない等の利点を有する。
Further, since the alumina-spinel-carbon refractory of the present invention can maintain a moderate residual expansion, it has advantages such as less joint damage.

Claims (2)

【特許請求の範囲】[Claims] 1.マグネシア富化スピネル粗粒5〜87重量%、アル
ミナ質耐火材粗粒0〜82重量%、アルミナ質耐火材微
粉10〜47重量%、炭素材3〜30重量%及び炭素結
合形成剤1〜10重量%(外掛)よりなるアルミナ−ス
ピネル−カーボン質耐火物。
1. Magnesia enriched spinel coarse particles 5-87% by weight, alumina refractory material coarse particles 0-82% by weight, alumina refractory material fine powder 10-47% by weight, carbon material 3-30% by weight, and carbon bond forming agent 1-10 Alumina-spinel-carbon refractory consisting of % by weight (exterior).
2.金属珪素粉、アルミニウム粉、マグネシウム粉また
はそれらの合金粉、及び炭化珪素粉よりなる群から選択
された1種または2種以上の成分を含有してなる請求項
1記載のアルミナ−スピネル−カーボン質耐火物。
2. The alumina-spinel-carbon material according to claim 1, which contains one or more components selected from the group consisting of metal silicon powder, aluminum powder, magnesium powder or alloy powder thereof, and silicon carbide powder. Refractory.
JP2000087A 1990-01-05 1990-01-05 Alumina Spinel-Carbon Refractory Expired - Fee Related JPH0679977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087A JPH0679977B2 (en) 1990-01-05 1990-01-05 Alumina Spinel-Carbon Refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087A JPH0679977B2 (en) 1990-01-05 1990-01-05 Alumina Spinel-Carbon Refractory

Publications (2)

Publication Number Publication Date
JPH03205354A true JPH03205354A (en) 1991-09-06
JPH0679977B2 JPH0679977B2 (en) 1994-10-12

Family

ID=11464346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087A Expired - Fee Related JPH0679977B2 (en) 1990-01-05 1990-01-05 Alumina Spinel-Carbon Refractory

Country Status (1)

Country Link
JP (1) JPH0679977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238811A (en) * 1992-02-26 1993-09-17 Kawasaki Refract Co Ltd Alumina-magnesia-enriched spinel carbon bricks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034568A (en) * 1973-06-27 1975-04-02
JPS6048467A (en) * 1983-08-24 1985-03-16 積水化学工業株式会社 Method of driving heat pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034568A (en) * 1973-06-27 1975-04-02
JPS6048467A (en) * 1983-08-24 1985-03-16 積水化学工業株式会社 Method of driving heat pump device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238811A (en) * 1992-02-26 1993-09-17 Kawasaki Refract Co Ltd Alumina-magnesia-enriched spinel carbon bricks

Also Published As

Publication number Publication date
JPH0679977B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US4061501A (en) Refractory linings
KR0139421B1 (en) Refractory materials bonded by a sialon matrix and method of preparation
US3992214A (en) Refractory castable
US5382555A (en) High alumina brick with metallic carbide and its preparation
JPS6060985A (en) Refractory composition for ladle lining
JPS6132378B2 (en)
JPS6119584B2 (en)
JPH03205354A (en) Alumina-spinel carbon based refractory
JP3197680B2 (en) Method for producing unburned MgO-C brick
JP4960541B2 (en) Magnesia-alumina-titania brick
JPH03205355A (en) Alumina-magnesia-carbon based refractory
WO1984000158A1 (en) Magnesia-carbon-silicon carbide refractory
JPS593069A (en) Alumina-silicon carbide-carbon refractories
JPH01294582A (en) Carbon-containing castable refractory
JPS6243948B2 (en)
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH07267719A (en) Alumina-magnesia-carbon brick
JP3209842B2 (en) Irregular refractories
JPH0354162A (en) Refractory
JP2765458B2 (en) Magnesia-carbon refractories
JPS5913469B2 (en) basic brick
JP2002068850A (en) High alumina brick for ladle for high alloy steel and production method thereof
JPH03232762A (en) Magnesia-containig refractory
JPS61281064A (en) Refractories for sliding nozzle
JPH05279135A (en) Carbon-containing amorphous refractory

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees