JPH03205082A - Method for forming rhombic polyhedron - Google Patents

Method for forming rhombic polyhedron

Info

Publication number
JPH03205082A
JPH03205082A JP34487589A JP34487589A JPH03205082A JP H03205082 A JPH03205082 A JP H03205082A JP 34487589 A JP34487589 A JP 34487589A JP 34487589 A JP34487589 A JP 34487589A JP H03205082 A JPH03205082 A JP H03205082A
Authority
JP
Japan
Prior art keywords
rhombic
polyhedron
hedron
regular
truncated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34487589A
Other languages
Japanese (ja)
Inventor
Toshiaki Betsumiya
別宮 利昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34487589A priority Critical patent/JPH03205082A/en
Publication of JPH03205082A publication Critical patent/JPH03205082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rhombic polyhedron represented by n(n-1) by excluding the specific polyhedrons among the rhombic polyhedrons which are obtained as the locus of the lines by synthesizing a plurality of vectors which are directed to the apex from the center of the polyhedron. CONSTITUTION:A vector is generated towards the apex from the center of a regular polyhedron or quasi-regular polyhedron, and the truncated octahedron (Kelvine's 14-hedron) of the quasi-regular polyhedron, 4.6.8-hedrons, truncated 12,20-hedrons among the rhombic polyhedrons obtained as the locus of the lines through the synthesis of a plurality of vectors are excluded, and further the rhombic 12-hedron, rhombic 30-hedron and the truncated rhombic 12-hedron are excluded. As the result, the rhombic polyhedron is obtained which is represented by n(n-1), n=10 or more. The rhombic polyhedron which is represented by n(n-1) is prepared by arranging n-pieces of strips made of paper, plastics, metal plate, etc., and weaving like woven fabric or forming a puzzle form by printing a world map, drawing, or design, on the strip or forming an unevenness.

Description

【発明の詳細な説明】 本発明は菱形多面体を創る方法に関するものと該菱形多
面体を創る方法によって具現された形の特質を応用して
菱形多面体を作る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for creating a rhombic polyhedron, and a method for creating a rhombic polyhedron by applying the characteristics of the shape realized by the method for creating a rhombic polyhedron.

本発明の菱形多面体を創る方法を図面に従って説明する
A method for creating a rhombic polyhedron according to the present invention will be explained with reference to the drawings.

第1図は正4面体の中心Oより4個の各頂点に向かって
ベクトルを発生させ合成すると外側の形は菱形12面体
になる。 別な表現を用いれば点が中心0より頂点に向
かって移動して線になり線が平行移動して菱形面になり
、菱形面が平行移動して菱形6面体になり、菱形6面体
が平行移動して菱形12面体になる。 ここで内部の線
や面には本発明では問題として取り上げないで、線の移
動した軌跡の外周面の形だけを取り上げる。そしてX、
Y、zの三輪方向から見て同じに見える対称性の良い正
多面体(プラトンの立体)や準正多面体(アルキメデス
の立体)の中心から各頂点に向かうベクトルの長さが等
しいので求められる菱形多面体の辺の長さは全て等しく
なっている。
In Figure 1, when vectors are generated from the center O of a regular tetrahedron toward each of the four vertices and combined, the outer shape becomes a rhombic dodecahedron. In other words, a point moves from the center 0 toward the vertex to form a line, the line moves in parallel and becomes a rhombic surface, the rhombic surface moves in parallel to become a rhombic hexahedron, and the rhombic hexahedron is parallel It moves and becomes a rhombic dodecahedron. Here, internal lines and surfaces are not considered as a problem in the present invention, but only the shape of the outer circumferential surface of the trajectory of the line is taken up. And X,
A rhombic polyhedron is obtained because the length of the vector from the center to each vertex of a regular polyhedron (Plato's solid) or quasi-regular polyhedron (Archimedes' solid) that looks the same when viewed from the triangular direction of Y and z is the same. All sides of are of equal length.

第2図は立方体の中心から各頂点に向かってベクトルを
発生させると一辺が2の菱形12面体になる、 立方体
の頂点は8個あるが、図にお0てP  O,Pt、は−
直線に並んでいるので二つのベクトルの合成は菱形面に
ならず直線に退化している。そして P+、 O,P−
も−直線に並んでいるので中7シ・Oから頂点 Pl、
 P、、 P+、’P4  に向かう4本のベクトルで
初めて一辺が2の菱形面が造られる。 他の頂点も同様
になるので、第1図の正4面体と同じく菱形12面体に
なる。
Figure 2 shows that when a vector is generated from the center of the cube toward each vertex, it becomes a rhombic dodecahedron with 2 sides.The cube has 8 vertices, but in the figure P O, Pt, -
Since they are lined up in a straight line, the combination of the two vectors does not become a rhombic surface but degenerates into a straight line. And P+, O, P-
Also, since they are lined up in a straight line, from the middle school 7th grade O to the apex Pl,
For the first time, a rhombic surface with 2 sides is created using four vectors directed toward P,, P+, and 'P4. The same goes for the other vertices, so it becomes a rhombic dodecahedron, just like the regular tetrahedron in Figure 1.

第3図も同様、正8面体の頂点は6個あり、各頂点から
中心0を通る直線上にもう一つの頂点がある。従って1
辺が2の立方体になる。
Similarly, in FIG. 3, there are six vertices of the regular octahedron, and there is another vertex on a straight line from each vertex passing through the center 0. Therefore 1
It becomes a cube with 2 sides.

ここで平面的に見ると第4図(A)は三角形の中心から
頂点に向ってベクトルを発生させると、ベクトルの合成
は六角形になる。(D)の六角形の場合は各頂点と中心
を通る直線上にもう一つのTr1点があるから一辺が2
の六角形になる。(C)の五角形からは10角形、(F
)の10角形からは一辺が2の10角形がつくられる。
Viewed from a plane, FIG. 4(A) shows that when vectors are generated from the center of a triangle toward the apex, the combination of vectors becomes a hexagon. In the case of the hexagon (D), there is another Tr1 point on the straight line passing through each vertex and the center, so one side is 2
becomes a hexagon. From the pentagon in (C), there is a decagon, (F
) makes a decagon with side 2.

般に正 多角形は奇数多角形の場合中心から頂点に向つ
Cベクトルを発生させると、外周の形は倍の偶数多角形
になり、偶数多角形場合は一辺が2の相似形になる。
In general, if a regular polygon is an odd-numbered polygon, if a C vector is generated from the center toward the vertex, the shape of the outer periphery becomes an even-numbered polygon, and if it is an even-numbered polygon, it becomes a similar shape with 2 sides.

本発明は形を求めるのが目的の一つでもあるので一辺が
1の形だけを求める。 例えば第4図の(B)、(DJ
。(IE)、(Flのハツチングをした所の形を求める
ため断面指示した線の片側のみを取り上げればよい。
Since one of the purposes of the present invention is to find shapes, only shapes with one side are found. For example, (B) in Figure 4, (DJ
. (IE), (In order to find the shape of the hatched area of Fl, it is only necessary to pick up one side of the line that indicates the cross section.

第4図の矢印の先にある図形は多角形の面よりベクトル
発生する点 0 を上に移動させ多角錐状にしたもので
、三角形からは平行6面体、四角形からは平行12面体
、五角形からは平行20面体が得られるが点0 が多角
形の面上にあれば平行多面体は面に退化する。 二次元
の正多角形は奇数と偶数は一つおきにあるが、三次元の
正多面体車止多百体では頂点と中心0 を通る直線上に
他の頂点が無いのは正四面体と切頭正四面体のみである
。他の正多面体、準正多面体は全て頂点と中心0 を通
る直線上に他の頂点がある。したがって正四面体と切頭
正四面体は奇数系の多面体。
The figure at the end of the arrow in Figure 4 is made into a polygonal pyramid by moving the point 0, which generates a vector, from the polygon's face upwards, making it a parallelepiped from a triangle, a parallelepiped from a quadrilateral, and a parallelidodecahedron from a pentagon. obtains a parallel icosahedron, but if point 0 is on a surface of the polygon, the parallel polyhedron degenerates into a surface. In a two-dimensional regular polygon, there are odd and even numbers at every other corner, but in a three-dimensional regular polyhedron, there are no other vertices on the straight line passing through the vertex and the center 0, which means it is cut by a regular tetrahedron. It has only a regular tetrahedron. All other regular polyhedra and quasi-regular polyhedra have other vertices on a straight line passing through the vertex and the center 0. Therefore, the regular tetrahedron and truncated regular tetrahedron are odd-numbered polyhedra.

他は全て偶数系の多面体であるといえる。All others can be said to be even-numbered polyhedra.

偶数系の多面体は中心D を通り頂点を通らない平面で
二つに分割して菱形多面体の形を求めればよい、第3図
の正8面体の頂点は6個あるが。
An even-numbered polyhedron can be divided into two by a plane that passes through the center D and does not pass through the vertices to obtain the shape of a rhombic polyhedron, although the regular octahedron in Figure 3 has six vertices.

立方体をつくるには3本のベクトルでよいことになる。Three vectors are needed to create a cube.

同様に第2図の立方体は8個の頂点を有するが、中心 
0 を通り頂点を通らない平面で二つに分割して菱形多
面体の形を求める。
Similarly, the cube in Figure 2 has eight vertices, but the center
Find the shape of the rhombic polyhedron by dividing it into two along a plane that passes through 0 and does not pass through the vertices.

菱形多面体の面の数はn(n−1)で表わされる。正四
面体と切頭正四面体以外の正多面体、準正多面体は全て
頂点と中心Oを通る直線上唇こ他の頂点があるので、菱
形多面体の形を求めるとき頂点の数を半分にして予測が
出来る。
The number of faces of a rhombic polyhedron is represented by n(n-1). Regular polyhedra and quasi-regular polyhedra other than regular tetrahedrons and truncated regular tetrahedrons all have a vertex and a straight upper lip passing through the center O and other vertices, so when calculating the shape of a rhombic polyhedron, predict by halving the number of vertices. I can do it.

第5図の正20面体の頂点の数は12個であるから半分
にしてn=6  これをn(n−1)に代入して 6x
5 =30   すなわち菱形30面体が求められる。
The number of vertices of the regular icosahedron in Figure 5 is 12, so halve it to n=6 and substitute this to n(n-1) to get 6x
5 = 30, that is, a rhombic 30-hedron is obtained.

第6図は立方6面体の頂点の数も12個であるが半分に
して6本のベクトルで求められるがその・)も3本のベ
クトルが同−平面のある組み合わせが4あるので平面に
退化した六角形が表面に表われるが六角は3個の菱形に
分割される。
In Figure 6, the number of vertices of the cubic hexahedron is also 12, but it can be found by halving it and using 6 vectors, but since there are 4 combinations where 3 vectors are the same - plane, it degenerates into a plane. A hexagon appears on the surface, but the hexagon is divided into three diamonds.

8x3+6=30  これはケルビンの14面体である
8x3+6=30 This is a Kelvin tetradecahedron.

第7図は24面体(同心の立方体と正8面体を球面に投
影したもの)で頂点の数は14、ベクトルの数は7、切
n菱形12面体になる。 6角形は3IIIの菱形に分
割されるので、 菱形42面体でもある。
Figure 7 shows a 24-hedron (a projection of a concentric cube and a regular octahedron onto a spherical surface), which has 14 vertices and 7 vectors, making it a truncated n-rhombic dodecahedron. Since the hexagon is divided into 3III rhombuses, it is also a rhomboid tetrahedron.

第8図は立方8面体と正8面体を同心の球面に投!ニし
たもので、4・6・8面対が求められる。
Figure 8 shows a cubic octahedron and a regular octahedron projected onto a concentric sphere! 4-, 6-, and 8-sided pairs are required.

6角形は3個の菱形に分割され、8角形は61[1の1
!形に分割されるので、菱形722伊−どもある。
The hexagon is divided into three rhombuses, and the octagon is divided into 61 [1 of 1
! Since it is divided into shapes, there are 722 rhombuses.

第9図は正12Fli体と正12面体から求められた菱
形90面体である。菱形90面体は二種類の菱形を持ち
暢の広い菱形は菱形12面体と同じ形で短い対角線と長
い対角線の比はl+72、これに対し鋭いほうの菱形は
5短い対角線と長し)対角線の比は1:1:’、幅の広
い菱形の短い対角線を1とすると鋭いほうの菱形の短い
対角線はτ長い対角線はでであり菱形同志が黄金比を保
っている。
FIG. 9 shows a rhombic 90-hedron obtained from a regular 12Fli body and a regular dodecahedron. The rhombic 90-hedron has two types of rhombuses.The wide rhombus has the same shape as the rhombic dodecahedron, and the ratio of the short diagonal to the long diagonal is l + 72, whereas the sharp rhombus has the ratio of the short diagonal to the long diagonal (5). is 1:1:', and if the short diagonal of the wide rhombus is 1, then the short diagonal of the sharper rhombus is τ, and the long diagonal is d, and the rhombuses maintain the golden ratio.

第10図の左の図は同心の球面に内接する立方体と立方
8面体の頂点を結んで凸条面体にしたもので、この形か
ら右の図のもう一つの菱形90面体が求められた。
The figure on the left in Figure 10 is a convex ray-hedron formed by connecting the vertices of a cube inscribed in concentric spheres and a cuboctahedron, and from this shape another rhombic 90-hedron, shown in the figure on the right, was determined.

第1)図は左が菱形立方8面体で右が切頭4面体である
。ここに二つ並べたのは菱形立方8面体は偶数系の多面
体で頂点の数は24であり半分にして12、切頭4面体
は奇数系の多面体で頂点の数は12である。 これら二
つの多面体から。
In Figure 1), the left side is a rhombic octahedron and the right side is a truncated tetrahedron. The two shown here are the rhombic octahedron, which is an even-numbered polyhedron with 24 vertices, which is halved to 12, and the truncated tetrahedron, which is an odd-numbered polyhedron, has 12 vertices. From these two polyhedra.

第12図の菱形132面体が求められる。但し右側の切
頭4面体は準正多面体ではなく六角形において隣の六角
形と共有する辺の長さと三角面と共有する辺の長さとの
比がl・J2になっている。
The rhombic 132-hedron shown in FIG. 12 is obtained. However, the truncated tetrahedron on the right is not a quasi-regular polyhedron, but a hexagon in which the ratio of the length of the side shared with the neighboring hexagon to the length of the side shared with the triangular surface is l·J2.

第13図は第6図の切頭8面体の6角形の隣の四角形と
共有する辺の長さと六角形と共有する辺の長さとの比が
l・J2に修整してから求めたものでx、y、z、三輪
が六角形の中心を通る。
Figure 13 is obtained after the ratio of the length of the side shared by the hexagon of the truncated octahedron in Figure 6 with the neighboring quadrilateral and the length of the side shared with the hexagon is corrected to l J2. The three rings, x, y, and z, pass through the center of the hexagon.

第14図は同心の球面に立方体、正8面体、立方8面体
を投影してできた多面体からもとめたもので8角形を菱
形に分割すると菱形156面体になる。
Figure 14 was obtained from a polyhedron created by projecting a cube, regular octahedron, and cubo-octahedron onto concentric spherical surfaces.If the octagon is divided into rhombuses, it becomes a rhombic 156-hedron.

第15図は12・20面体と12・20面体を利用して
つくられた切頭12・20面体である。
Figure 15 shows a truncated 12-icosahedron and a truncated 12-icosahedron made using 12-icosahedrons.

IO内角形面は10個の菱形に分割できるので、菱形2
10面体でもある。
Since the IO internal square surface can be divided into 10 rhombuses, rhombus 2
It is also a decahedron.

第16図は同心の球面に菱形30面体を投影してできた
60面体と、それを利用してつくられた90面体である
。30個の8角形を菱形に分割すると菱形240面体と
いえる。
Figure 16 shows a 60-hedron created by projecting a rhombic 30-hedron onto a concentric spherical surface, and a 90-hedron created using it. When 30 octagons are divided into rhombuses, it can be said to be a rhombic 240hedron.

本発明の菱形多面体の創り方とは正多面体等の中心から
頂点へ向けてベクトルを発生させて元の正多面体等に対
応する菱形多面体を見出す方法であり、第16図の菱形
240面体よりも球に近ずくには次々に新しくできた菱
形多面体を同心のに球面に投影してp+ (か、別の多
面体を組み合わせて球面に投影していくかすれば、装飾
的な多面体が見出されるものである。
The method of creating a rhombic polyhedron according to the present invention is to generate a vector from the center of a regular polyhedron toward the vertex to find a rhombic polyhedron corresponding to the original regular polyhedron. To get closer to the sphere, one after another, newly created rhombic polyhedra are concentrically projected onto the spherical surface, p+ be.

本発明の菱形多面体の利用は建築ではドーム、その他、
照明器具、地球儀、パズル、等が考えられる。
The rhomboid polyhedron of the present invention can be used in architecture, such as domes, etc.
Possible items include lighting equipment, globes, puzzles, etc.

ドームについては、パラクミンスター・フラが開発した
シイデシツク・ドームやラメラドームがあるが種類に変
化がなく単調である。
As for domes, there are the Šideştsk dome and the lamellar dome developed by Palakminster Hula, but they are monotonous and do not vary in type.

ジオデシック・ドームは正20面体を同心の球面上に投
影しさらに三角形や六角形に曲面分割を繰返してできて
いるが、最初の正20面体の頂点近くの辺と、三角面の
中央部あたりから投影された箇所の辺とでは長さが異な
る0本発明の方法によれば、一定の辺の長さでつくられ
、装飾的にも優れ変化にも冨んでいる。また菱形の短い
ほうの対角線には目立たぬように骨組みを補強すれば三
角形の構造と同様の強度を得る。
A geodesic dome is made by projecting a regular icosahedron onto a concentric spherical surface and then repeatedly dividing the surface into triangles and hexagons. According to the method of the present invention, the length of the side is different from the side of the projected area, and the length of the side is constant, and it is excellent in decoration and has many variations. Also, by reinforcing the framework inconspicuously on the short diagonals of the rhombus, the same strength as a triangular structure can be obtained.

照明器具として例えばステンドグラスで菱形132面体
を試作してみたが、非常に雰囲気のよい高級感のある置
物として重宝している。
For example, I tried making a diamond-shaped 132-hedron using stained glass as a lighting fixture, and it has come in handy as a luxurious ornament with a very nice atmosphere.

次に第17図はパラクミンスター・フラーが、1954
年、版権をとったタイマクジョン・スカイオーシャンで
あり、第18図はその展開図である。これは非常に優れ
たもので、平面に展開したとき各大陸ができるだけつな
がりを持つように設計されている。
Next, Figure 17 shows Parachminster Fuller's 1954
This is Taimakujon Sky Ocean, which was copyrighted in 2010, and Figure 18 is an expanded view of it. This is really cool, and it's designed to make each continent as connected as possible when laid out on a flat surface.

多面体に世界地図を投影した例は多いらしい。There seem to be many examples of world maps being projected onto polyhedrons.

1913年、カーヒルが正8面体の世界地図で特許をと
っている。
In 1913, Cahill patented his octahedral world map.

また1944年 フィッシャーは自分の作った正20面
体の世界地図にライカブローブと名付けた。
Also in 1944, Fischer named his icosahedral world map the Leica Globe.

本発明の 菱形多面体を創る方法 によって創られた 
菱形多面体を作る方法 はパズルとしても面白い。
Created by the method of creating a rhombic polyhedron of the present invention
How to make a rhomboid polyhedron is also interesting as a puzzle.

第19図は菱形12面体の4回対称の頂点に南北の極が
くるよう6射図法により世界地図をプリントしたもので
あるが、第21図はその展開図で地図はバラバラである
。これお横方向に切り離し4本のジグザグの帯にして点
線のところは山折りの折り癖をつけておく、第20図A
のごとく4本の帯を北極の地図に合せてから白地を下に
潜らせ織物の様に地図が上に出る様に折ると第20図B
の様になり最後に互いに相手方の地図のしたへ余白部分
を差し込むと第19図のような地球儀が出来上がる。
Figure 19 is a world map printed using a hexagonal projection so that the north and south poles are at the vertices of the four-fold symmetry of a rhombic dodecahedron, but Figure 21 is an expanded view of the world map, which is broken up into pieces. Cut this horizontally and make four zigzag strips, making a mountain fold along the dotted lines. Figure 20A
Align the four strips with the map of the North Pole as shown, then fold the white strips downwards and fold them so that the map comes out like a fabric, as shown in Figure 20B.
Finally, insert the blank space at the bottom of each other's map to create a globe as shown in Figure 19.

第22図は3回対称の頂点を極にしたもので。Figure 22 shows the 3-fold symmetry with the vertices as poles.

同じ帯でありながら第21図の展開図とは織り方がこと
なる。 最初は3本の帯を北極の地図に合せて織り、途
中赤道の帯を他の帯と織り進んで最後は南極で相手方の
帯の下に余白を差し込む。
Although it is the same belt, the weaving method is different from the developed view in Figure 21. At first, three strips are woven to match the map of the North Pole, then the equator strip is woven with other strips along the way, and finally the blank space is inserted under the other strip at the South Pole.

第23図は菱形30面体の地球儀の展開図である+  
6本の帯で地球儀をつくることができる。
Figure 23 is a developed diagram of a rhombic 30-sided globe.
You can make a globe with six strips.

そして12本の帯なら第26図の花形12面体もつくれ
る。
If there are 12 strips, the flower-shaped dodecahedron shown in Figure 26 can also be created.

第24図は第7図の切頭菱形12面体を織ることができ
る7本の帯の展開図である。対称性がよくないのか帯が
2種類に成っている。
FIG. 24 is a developed view of seven strips from which the truncated rhombic dodecahedron of FIG. 7 can be woven. There are two types of obi, perhaps because the symmetry is not good.

第25図は菱形90面体の展開図である。FIG. 25 is a developed view of a rhombic 90-hedron.

10本の帯に切り離し、5本の帯の中央部で5回対称の
先端から織り始め途中で5本の帯をずらせながら織り終
えてから、最初の5本の帯の余白部分を互いに相手方の
下に差し込んで出来上がる。
Cut it into 10 strips, start weaving from the 5-fold symmetrical tips in the center of the 5 strips, shift the 5 strips in the middle, finish weaving, and then use the margins of the first 5 strips to separate each other. Insert it below and you're done.

第26図は、菱形30面体を織って作れるジグザグの帯
を2個分で織って作れる花形12面体である。
Figure 26 shows a flower-shaped dodecahedron that can be made by weaving two zigzag bands that can be made by weaving a rhombic tricosahedron.

第27図は正12面体の中心からベクトルを各頂点にも
かって発生させたとして1辺が2の菱形90面体を作る
途中でこのようなあたかも正12面体の辺を菱形12面
体におき替えたような形がでてきた。ステンドグラスな
どで造れば豪勢なジャンプリアになるものと予想される
Figure 27 shows a vector generated from the center of a regular dodecahedron by applying it to each vertex, and in the process of creating a rhombic 90-hedron with 2 sides, the sides of the regular dodecahedron are replaced with rhombic dodecahedrons. A shape like this has appeared. It is expected that if it is made of stained glass, it will become a luxurious Jumpria.

以上のように本発明は、1.菱形多面体を創る方法によ
ってその形を知り 2、その知った菱形多面体を紙、プ
ラスチック、金属板等の帯を複数用意して織物のように
菱形多面体を織る、3その帯に世界地図や絵や模様を印
刷したり凹凸をつけるなりしてパズルにしてもよい、ま
た−辺の長さが一定で、菱形のかたちの種類もそれほど
多(ならないため、ガラス片の菱形とそれを嵌込む金属
のシフインドを用意すれば、従来知られていなかった形
の照明器具なども作りつることができる。
As described above, the present invention provides 1. Learn the shape of a rhomboid polyhedron by creating it. 2. Prepare multiple strips of paper, plastic, metal plates, etc., and weave the rhomboid polyhedron like textiles. 3. Weave world maps, pictures, etc. onto the strips. You can also make puzzles by printing patterns or adding unevenness.Also, since the length of the sides is constant and there are not many types of diamond shapes (there are not many types), it is possible to make a puzzle by printing a pattern or adding unevenness. If you prepare a shifter, you can create lighting fixtures with shapes that were previously unknown.

(r+=4) 菱形12面体 辺が2の菱形12面体 (n=3+ 一辺が2の立方体 第 5 図 正20面体 菱形30面体 第 図 第 図 菱形90面体(5回対称) 第 ■ 図 立方体中立方8面体 菱形90面体(4回対称) 第 図 切頭菱形12面体 第 図 (立方8面体十正8面体) 4゜ 6゜ 8面体 第 図 菱形立方8面体 切頭4面体 第 図 菱形132面体 菱形132面体 第14図 切l1jI12 16図 20面体(菱形210面体) (正12面体十正20面体) 菱形240面体 菱形156面体 図面の浄書(内容に変更なし)  8 図 し ダイマクション ダ 624− 第 26 図 菱形30面体2個分の帯で織れる花形12面体菱形12
面体30個でできた′ジャンプリヤ手続補正書 (方式) 1、事件の表示 平成1年 特許願 第344875号 2、発明の名称 菱形多面体の創り方 3、補正をする者 事件との関係
(r+=4) Rhombic dodecahedron Rhombic dodecahedron with 2 sides (n=3+ Cube with 2 sides Figure 5 Regular icosahedron Rhombic 30sahedron Figure 9 Rhombic 90sahedron (5-fold symmetry) Figure ■ Cube inside Cubic octahedron rhombic 90-hedron (4-fold symmetry) Figure truncated rhombic dodecahedron Figure 4 (cubic octahedron dodecahedron) Figure 4゜6゜octahedron Figure rhombic cubic octahedron truncated tetrahedron Figure 13 rhombic 132-hedron Rhombic 132-hedron No. 14 drawing cut l1jI12 16-Fig. Icosahedron (Rhombic 210-hedron) (Regular dodecahedron Idecahedron) Rhombic 240-hedron Rhombic 156-hedron Drawing engraving (no change in content) 8 Fig. Dymaxionda 624- No. 26 Flower-shaped dodecahedral rhombus 12 woven with a band for two rhombic tricosahedrons
'Jump Priest Procedural Amendment Form Made of 30 Face Pieces (Method) 1. Display of the Case 1999 Patent Application No. 344875 2. Name of the Invention How to Create a Rhombic Polyhedron 3. Person Making the Amendment Relationship with the Case

Claims (3)

【特許請求の範囲】[Claims] (1)正多面体、準正多面体の中心Oから多面体に頂点
に向かってベクトルを発生させ複数のベクトルの合成に
より線の軌跡として得られた菱形多面体のうち準正多面
体の切頭8面体(ケルビンの14面体)、4・6・8面
体、切頭12、20面体を除外し、さらに菱形12面体
、 菱形30面体、切頭菱形12面体を除外し、n(n−1
)で表わされる菱形多面体の n=10以上の菱形多面体。
(1) A truncated octahedron (Kelvin ), 4, 6, and octahedrons, truncated 12, and icosahedrons, and further excluded rhombic dodecahedrons, rhombic 30hedrons, and truncated rhombic dodecahedrons, and n(n-1
) A rhombic polyhedron with n=10 or more.
(2)n(n−1)で表わされる菱形多面体をn本のジ
グザグの帯を織物のように織って菱形多面体を作る方法
。但しn=3の立方体は除外する。
(2) A method of making a rhombic polyhedron represented by n(n-1) by weaving n zigzag bands like a textile. However, the cube with n=3 is excluded.
(3)n本のジグザグの帯に一つおきに地図、イラスト
、色模様等をつけ織物のように織って仕上げる地球儀、
イラスト、色、横様を合せるパズル。但しn=3の立方
体は除外する。
(3) A globe made of n zigzag bands with maps, illustrations, color patterns, etc. placed on every other band and woven like textiles.
A puzzle that matches illustrations, colors, and horizontal patterns. However, the cube with n=3 is excluded.
JP34487589A 1989-12-31 1989-12-31 Method for forming rhombic polyhedron Pending JPH03205082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34487589A JPH03205082A (en) 1989-12-31 1989-12-31 Method for forming rhombic polyhedron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34487589A JPH03205082A (en) 1989-12-31 1989-12-31 Method for forming rhombic polyhedron

Publications (1)

Publication Number Publication Date
JPH03205082A true JPH03205082A (en) 1991-09-06

Family

ID=18372668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34487589A Pending JPH03205082A (en) 1989-12-31 1989-12-31 Method for forming rhombic polyhedron

Country Status (1)

Country Link
JP (1) JPH03205082A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233900A (en) * 2003-01-31 2004-08-19 Hinomoto Gosei Jushi Seisakusho:Kk Molecule model
WO2008081961A1 (en) * 2007-01-04 2008-07-10 Hajime Narukawa Information processing method
JP2009187008A (en) * 2008-02-06 2009-08-20 Yasuo Shinozuka Map in azimuthal equidistant hemispheric projection with reduced distortion
WO2023157528A1 (en) * 2022-02-21 2023-08-24 進 細川 Multi-dimensional truss system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233900A (en) * 2003-01-31 2004-08-19 Hinomoto Gosei Jushi Seisakusho:Kk Molecule model
WO2008081961A1 (en) * 2007-01-04 2008-07-10 Hajime Narukawa Information processing method
JPWO2008081961A1 (en) * 2007-01-04 2010-04-30 肇 鳴川 Information processing method
US8665273B2 (en) 2007-01-04 2014-03-04 Hajime Narukawa Method of mapping image information from one face onto another continuous face of different geometry
US9519995B2 (en) 2007-01-04 2016-12-13 Hajime Narukawa Method of mapping image information from one face onto another continuous face of different geometry
JP2009187008A (en) * 2008-02-06 2009-08-20 Yasuo Shinozuka Map in azimuthal equidistant hemispheric projection with reduced distortion
WO2023157528A1 (en) * 2022-02-21 2023-08-24 進 細川 Multi-dimensional truss system
JP2023121237A (en) * 2022-02-21 2023-08-31 進 細川 Multiple space truss system

Similar Documents

Publication Publication Date Title
US5036635A (en) Building system using saddle zonogons and saddle zonohedra
US5011411A (en) Method of making a non-repetitive modular design
EP0502261A1 (en) Pyramid puzzle
JP4310419B1 (en) 3D puzzle
AU2007209726A1 (en) Three dimensional geometric puzzle
JPH11342276A (en) Assembly symmetrical body
EP0233869A4 (en) Hue sequence for ball.
US4350341A (en) Surface covering tiles
US4717342A (en) Combinable set of quadratic elements
US4844466A (en) Block puzzle
US4121831A (en) Geometrical constructions
US3902270A (en) First and second toy modules, each mateable with similar modules and with each other
JPH03205082A (en) Method for forming rhombic polyhedron
Makovicky Symmetrology of art: Coloured and generalized symmetries
JP7261490B2 (en) Mobius kaleidocycle
US7029364B1 (en) Geometric craft and educational kit
US20090091079A1 (en) Three-dimensional logic puzzle
US3475030A (en) Geometric puzzle game
Meurant Towards a New Order of the Polyhedral Honeycombs: Part I: The New Order Introduced
Mišić et al. Three-dimensional rosettes based on the geometry of concave deltahedral surfaces
JPS6118935Y2 (en)
SU980739A1 (en) Spatial logic game
JPH02249576A (en) Stereo puzzle block
JP2715766B2 (en) Golf ball
GB2238253A (en) Puzzle