JPH0320441A - Salt-resistant reinforcing bar for preventing deterioration of concrete - Google Patents

Salt-resistant reinforcing bar for preventing deterioration of concrete

Info

Publication number
JPH0320441A
JPH0320441A JP12227889A JP12227889A JPH0320441A JP H0320441 A JPH0320441 A JP H0320441A JP 12227889 A JP12227889 A JP 12227889A JP 12227889 A JP12227889 A JP 12227889A JP H0320441 A JPH0320441 A JP H0320441A
Authority
JP
Japan
Prior art keywords
concrete
salt
reinforcing bar
reinforcing bars
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12227889A
Other languages
Japanese (ja)
Other versions
JP2745066B2 (en
Inventor
Haruo Shimada
島田 春夫
Yoshiaki Sakakibara
榊原 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPH0320441A publication Critical patent/JPH0320441A/en
Application granted granted Critical
Publication of JP2745066B2 publication Critical patent/JP2745066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Building Environments (AREA)

Abstract

PURPOSE:To obtain the salt-resistant reinforcing bar for preventing the deterioration of concrete exposed to salt damage by specifying the compsn. constituted of C, Si, Mn, P, S, Cu, W, Al and Fe. CONSTITUTION:The salt-resistant reinforcing bar for preventing the deterioration of concrete contains 0.001 to 0.1% C, 0.01 to 0.05% si, 0.01 to <0.3% Mn, <0.025% P, <0.005% S, 0.01 to 0.5% Cu, 0.01 to 0.5% W and 0.001 to 0.10% Al, furthermore contains, at need, total 0.01 to 0.5% of one or two kinds among Nb, V, Ti and Mo and the balance Fe with inevitable impurities, which almost perfectly prevents the corrosion of a reinforcing bar caused by the salinity in the state of free Cl<-> such as sea salt grains and sea water splashes penetrating into a concrete wall and the generation of cracks in concrete following the above. By using the reinforcing bar, the service life of concrete structures exposed to salt damage can be prolonged and its stability can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は海浜地帯に設置されるコンクリート建造物,海
洋に設置されるコンクリート構造物等、海塩粒子,海水
の飛沫に曝らされる鉄筋コンクリート構造物,コンクリ
ート橋などの劣化防止作用の著しく優れた耐塩鉄筋に関
するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to reinforced concrete structures that are exposed to sea salt particles and seawater spray, such as concrete structures installed in seaside areas and concrete structures installed in the ocean. This article relates to salt-resistant reinforcing bars that are extremely effective in preventing deterioration of structures, concrete bridges, etc.

(従来の技術) 最近、海砂を使用した鉄筋コンクリート建築物や、海浜
地帯に設置されたコンクリート建造物,コンクリート橋
のヒビ割れ劣化が各方面で問題になっており、種々の防
止法が提案されたり実施に移されている. このコンクリート劣化の最大の原因は海砂中に含まれて
いる塩分や海浜地帯でコンクリート壁を浸透してくる海
塩粒子の塩分によってコンクリート中に埋設された鉄筋
が腐食し、その体積が鉄の約2.2倍になるため、その
膨張力に耐え切れなくなって埋設鉄筋に沿ったコンクリ
ートに亀裂が発生する.その亀裂が0. 2 am以上
になると外部の腐食因子たる酸素や塩分、空気中の炭酸
ガスがこの亀裂を通してより容易に内部の埋設鉄筋付近
に浸透し、さらに一層鉄筋の腐食を助長したり、コンク
リートの中性化を促進してコンクリートの劣化を早める
ことになる. 本発明者らはこのようなコンクリートの劣化を防止する
ために、鉄筋自体の化学組成を制御し、微量の特殊な添
加元素を添加することによって鉄筋自体の耐塩性を向上
する研究を実施し、その威果として先づCuとWを同時
添加した耐海水性に優れたコンクリート用鉄筋(特公昭
55−22546号公報)、さらに耐塩性を著しく向上
したコンクリート用鉄筋(特開昭57−48054号公
報,特開昭59−44457号公報)を開発し、これら
の内容はすでに他の各方面でも公表されている(“OF
FSHORE GOTEBORG ’8 1 ’Pap
er Na4 2 Goeteborg SWEDEN
  19B1年,“′セメントコンクリート” k 4
34(1983) P.23/31“Corrosio
n of Reinforcement  in Co
ncreteConstruction” P. 41
9 +1983年,“建築の技術施工” 1985年 
Nへ2291月号 P155/164,彰国社).又鉄
筋自体の耐塩性向上に寄与する鉄筋の鋼戒分の耐塩機構
についてもこれらの公表論文の中に詳細に記されており
、現在実用化が進んでいるものである。
(Prior art) Recently, cracking and deterioration of reinforced concrete buildings using sea sand, concrete buildings installed in coastal areas, and concrete bridges has become a problem in various fields, and various prevention methods have been proposed. The measures are being put into practice. The biggest cause of this concrete deterioration is that the reinforcing bars embedded in the concrete corrode due to the salt contained in sea sand and the salt from sea salt particles that permeate through concrete walls in beach areas, and the volume of the reinforcing steel increases. Since the expansion force increases by approximately 2.2 times, the concrete along the buried reinforcing bars can no longer withstand the expansion force and cracks occur. The crack is 0. When the temperature exceeds 2 am, external corrosion factors such as oxygen, salt, and carbon dioxide in the air can more easily penetrate through these cracks to the vicinity of the buried reinforcing bars, further promoting corrosion of the reinforcing bars and causing carbonation of the concrete. This will accelerate the deterioration of concrete. In order to prevent such deterioration of concrete, the present inventors conducted research to improve the salt resistance of the reinforcing bars themselves by controlling the chemical composition of the reinforcing bars themselves and adding small amounts of special additive elements. As a result of this, first of all, there is the reinforcing steel for concrete with excellent seawater resistance by adding Cu and W at the same time (Japanese Patent Publication No. 55-22546), and the reinforcing steel for concrete with significantly improved salt resistance (Japanese Patent Publication No. 57-48054). Publication, Japanese Unexamined Patent Publication No. 59-44457), the contents of which have already been published in other fields ("OF
FSHORE GOTEBORG '8 1' Pap
er Na4 2 Goeteborg SWEDEN
19B1, “'Cement Concrete” k 4
34 (1983) P. 23/31 “Corrosio”
of Reinforcement in Co
ncreteConstruction” P. 41
9 +1983, “Architectural Technology and Construction” 1985
N2291 January issue P155/164, Shokokusha). In addition, the salt-resistant mechanism of the reinforcing bars, which contributes to improving the salt resistance of the reinforcing bars themselves, is also described in detail in these published papers, and is currently being put into practical use.

(発明が解決しようとする課題) 本発明は従来の本発明者等の開発を軸にして最近、とく
に問題となってきたコンクリート壁を浸透してくる海塩
粒子や海水飛沫等のフリーなCI−の状態で存在する塩
分による鉄筋の腐食とそれに伴なうコンクリートの亀裂
発生を殆ど完全に停止することにある. 現在各方面で問題となっている10年以上経過したコン
クリート構造物中の埋設鉄筋近傍のフリー塩分はNaC
1換算で0.15〜0.25%に達して鉄筋の著しい腐
食とそれに伴うコンクリートの亀裂発生、成長をひき起
こしている.したがってフリー塩分0.25%の状態で
コンクリートの亀裂発生を殆ど完全に停止できることが
望ましい.(課題を解決するための手段) 本発明の前記の目的は、C ;0.001〜1.0%,
Mn; 0.01〜0. 3%未満, Si ; 0.
01〜0.05%lP;025%未満. S  ;00
5%未満, Cu ; 0.01〜0.50%, W 
 ;0.01〜0.50%, A# : 0.001〜
0.10%を含有し、残部鉄および不可避的不純物より
なることを特徴とするコンクリート用鉄筋、さらには前
記或分に選択戒分としてNb, L Tin Moをl
種又は2種添加したコンクリート用鉄筋によって達威さ
れる。
(Problems to be Solved by the Invention) The present invention is based on the conventional development by the present inventors, and aims to solve the problem of free CI, such as sea salt particles and sea water spray, which have recently become a problem, especially when penetrating through concrete walls. The goal is to almost completely stop the corrosion of reinforcing bars and the accompanying cracking of concrete caused by the salt present in - conditions. Free salt near buried reinforcing bars in concrete structures that are more than 10 years old, which is currently a problem in various fields, is NaC.
It reaches 0.15 to 0.25% in terms of 1%, causing significant corrosion of reinforcing bars and accompanying crack initiation and growth in concrete. Therefore, it is desirable to be able to almost completely stop cracking in concrete with a free salt content of 0.25%. (Means for Solving the Problems) The above object of the present invention is to provide C; 0.001 to 1.0%,
Mn; 0.01-0. Less than 3%, Si; 0.
01-0.05%lP; less than 025%. S ;00
Less than 5%, Cu; 0.01-0.50%, W
;0.01~0.50%, A#: 0.001~
Concrete reinforcing bar containing 0.10%, the balance consisting of iron and unavoidable impurities;
This is accomplished by adding one or two types of reinforcing steel for concrete.

本発明の最大の特徴は鋼中のSi,  S量を極端に下
げ、かつCu.W添加により耐塩効果を向上させ、コン
クリートの劣化を防止するものである。
The greatest feature of the present invention is that the amount of Si and S in the steel is extremely reduced, and the amount of Cu. The addition of W improves salt resistance and prevents concrete from deteriorating.

この原因としては、Si量を下げることによって鯖の生
或.tc長を抑えると同時に鉄筋自体の鯖化に伴って生
成する鉄の腐食抑制剤の−04−インヒビターの生成量
を飛躍的に多くすることと、slの著しい低下にともな
い錆発生点となるMnS liが著しく低下することに
より耐食性が飛躍的に向上するものであると推測される
The reason for this is that lowering the amount of Si reduces the growth of mackerel. At the same time as suppressing the tc length, it is possible to dramatically increase the amount of -04-inhibitor, a corrosion inhibitor for iron that is generated as the reinforcing bar itself turns into a mackerel. It is presumed that corrosion resistance is dramatically improved due to a significant decrease in li.

又、Si.Sの極端な低下はコンクリートのアルカリ雰
囲気中における埋設鉄筋表面の不働態被膜が添加したC
uによって補強されるものと考えられる. 以下に本発明で各戒分を限定した理由を説明する。
Also, Si. The extreme decrease in S is due to the C added to the passive film on the surface of the buried reinforcing bars in the alkaline atmosphere of concrete.
This is thought to be reinforced by u. The reasons for limiting each precept in the present invention will be explained below.

C量を0.001〜1.0%に限定した理由は、Cfo
.oot%未満では必要強度が得られず、C量1,0%
超では跪化をひき起こすためである。
The reason for limiting the amount of C to 0.001 to 1.0% is that Cfo
.. If it is less than oot%, the required strength cannot be obtained, and the C amount is 1.0%.
This is because it causes people to kneel.

又、F4+1量を0.01〜0.3%未満に限定した理
由はMn10.01%未満では必要強度が得られず0。
Further, the reason why the amount of F4+1 was limited to less than 0.01% to less than 0.3% is that if the Mn content is less than 10.01%, the required strength cannot be obtained.

3%未満では錆生威を著しく低減させるためである。This is because if it is less than 3%, the rust growth will be significantly reduced.

Si量を0.01〜0.05%とした理由は、Si量を
下げれば下げるほど請生威量を飛躍的に低下させWO.
−−イオンの有効量を飛躍的に増大させるが、Siが0
.05%以下で旧量0. 3%未満の場合に錆生成が著
しく低減するためである。
The reason why the amount of Si was set to 0.01 to 0.05% is that the lower the amount of Si is, the more the strength of the regeneration will be dramatically lowered, and WO.
--The effective amount of ions is dramatically increased, but Si is 0
.. The old amount is 0.05% or less. This is because rust formation is significantly reduced when the content is less than 3%.

Pを0.025%未満とした理由はPが0.025%以
上ではコンクリートのようなアルカリ性雰囲気で錆成長
を抑制する効果がなく、むしろ助長する傾向があるため
である。
The reason why P is set to be less than 0.025% is that if P is 0.025% or more, there is no effect of suppressing rust growth in an alkaline atmosphere such as concrete, and the rust growth tends to be promoted.

CuをO.01〜0.5%と限定した理由はCu O.
01%未満では鉄筋表面の不働態被膜補強に効果がなく
0. 5%超では綱の脆化をひき起こすためである。
Cu is O. The reason why it was limited to 01 to 0.5% is that CuO.
If it is less than 0.01%, it will not be effective in reinforcing the passive film on the reinforcing bar surface. This is because if it exceeds 5%, the rope becomes brittle.

なお、Cuを多く添加した場合、熱延スケールの剥離性
向上を目的にNiを0.03〜0.3%添加することが
ある。
Note that when a large amount of Cu is added, 0.03 to 0.3% of Ni may be added for the purpose of improving the releasability of hot-rolled scale.

Wを0.01〜0.5%と限定した理由は0.01%未
満では−04−イオンの生tc量が少なく耐食効果が認
められず、0. 5%超では経済性の点で高価になるか
らである。
The reason why W is limited to 0.01 to 0.5% is that if it is less than 0.01%, the raw tc amount of -04- ions will be small and no corrosion resistance effect will be observed. This is because if it exceeds 5%, it becomes expensive in terms of economy.

Mを0.001〜0.10%と限定した理由はMが0.
001%未満では鋼中に存在する酸素を安定なMの酸化
物として固定できず、Mが0.10%超では大型の介在
物が生威し鋼の脆化をひき起こすので脱酸効果に必要な
量と強度の点から上記威分範囲に限定した。
The reason why M is limited to 0.001 to 0.10% is that M is 0.001% to 0.10%.
If the M content is less than 0.01%, the oxygen present in the steel cannot be fixed as a stable M oxide, and if the M content exceeds 0.10%, large inclusions will grow and cause embrittlement of the steel, so the deoxidizing effect will not be effective. In terms of the required amount and strength, the amount was limited to the above range.

又S量を0.005%未満と限定した理由は錆の発生起
源であるMnS ilを減らすことにありこのS量低下
のために脱硫剤として使用されるCa化合物、希土類元
素によりMnSが(Mn + Ca) S等に変化する
ことによる耐食性向上効果も期待できる。また鋼中のS
量を低下するために上記のような操業を行なうことは常
識となっているので、若干のCa,Ce等が混入してく
ることがあるが、これらの元素は耐食性などに悪影響を
及ぼすものではないのでCa, Ce量は規定しない。
The reason for limiting the S amount to less than 0.005% is to reduce MnS il, which is the source of rust. +Ca) It can also be expected to improve corrosion resistance by changing to S and the like. Also, S in steel
It is common knowledge to carry out the above-mentioned operations to reduce the amount of corrosion, so a small amount of Ca, Ce, etc. may be mixed in, but these elements do not have a negative effect on corrosion resistance. Therefore, the amounts of Ca and Ce are not specified.

又必要に応じてNb + V, Tit Moを添加す
るが、鉄筋の強度.靭性向上のための元素として添加す
るもので1種又は2種を合計して0.01〜0.5%添
加する.o.oi%未満では所定の強度, !71性が
得られず、0. 5%を超えると大型の介在物が生威し
、疵の原因となるので0.01−0.5%とした。
Also, Nb + V and Tit Mo are added as necessary, but depending on the strength of the reinforcing bars. It is added as an element to improve toughness, and one or both of them are added in a total of 0.01 to 0.5%. o. If the oi% is less than the specified strength, ! 71 characteristics were not obtained, and 0. If it exceeds 5%, large inclusions will grow and cause scratches, so the content was set at 0.01-0.5%.

本発明に従い前記の化学成分で構威された鋼は転炉.電
気炉等で溶製され、次いで造塊,分塊の工程を経るか、
あるいは連続鋳造後、圧延された後に必要に応じてパテ
ンティング等の熱処理が施され、線引きされて鉄筋とし
て供される。又、必要に応じて表面に亜鉛メッキ,有機
被覆を施すこともできる。
The steel constructed with the above chemical composition according to the invention can be used in a converter. It is melted in an electric furnace, etc., and then goes through the steps of ingot making and blooming, or
Alternatively, after continuous casting and rolling, heat treatment such as patenting is performed as necessary, and wire is drawn to serve as a reinforcing bar. Further, the surface can be galvanized or coated with an organic coating, if necessary.

(実施例) 転炉で本発明の成分範囲の綱を溶製し、造塊,分塊後、
線引きした鉄筋と、比較鋼の鉄筋,従来からの電炉綱か
らなる鉄筋の戒分,およびこれらの鉄筋を埋設したコン
クリートの劣化状況,埋設鉄筋の腐食状況の経時変化を
表に示した。
(Example) A steel having the composition range of the present invention was melted in a converter, and after ingot formation and blooming,
The table shows the classification of drawn reinforcing bars, comparison steel reinforcing bars, and conventional electric furnace steel reinforcing bars, as well as the deterioration status of the concrete in which these reinforcing bars are buried, and the changes over time in the corrosion status of the buried reinforcing bars.

表の各種鉄筋は9mIlφの熱延鉄筋で表面を機械研磨
後、脱脂し、水・セメント比0.60,砂中の全塩分量
をNalJ換算で0.50%のコンクリートモルタル中
に埋設し、第1図のようなコンクリート供試体を作製し
、28日間養生後、コンクリート供試体を恒温恒湿槽に
挿入し、湿潤48hr,乾燥24hr,湿潤48hr,
乾燥48hrで1週fgt(2サイクル)経過するサイ
クルで56.70,100,138日間曝露してコンク
リートの亀裂発生を観察した。第1図中1はコンクリー
ト供試体,2は埋設鉄筋9Mφ.3はモルタル塗りの上
エポキシシール,j!ばかぶり厚さを示す。
The various reinforcing bars shown in the table are hot-rolled reinforcing bars of 9 mlφ, whose surfaces are mechanically polished, degreased, and buried in concrete mortar with a water/cement ratio of 0.60 and a total salt content in the sand of 0.50% in terms of NalJ. A concrete specimen as shown in Fig. 1 was prepared, and after curing for 28 days, the concrete specimen was inserted into a constant temperature and humidity tank, and the humidity was 48 hours, drying was 24 hours, and humidity was 48 hours.
The concrete was exposed for 56,70, 100, and 138 days in a cycle of 48 hours of drying and 1 week of fgt (2 cycles), and the occurrence of cracks in the concrete was observed. In Figure 1, 1 is a concrete specimen, and 2 is a buried reinforcing bar of 9Mφ. 3 is epoxy seal over mortar coating, j! Shows ridiculous thickness.

なお曝露条件を第2図のように設定したのは水蒸気中に
酸素が最大に固溶している80゜Cの高温で乾湿くり返
しを実施するという極めて苛酷な環境条件で埋設鉄筋の
腐食を促進するためである.又、同時にこれらコンクリ
ート供試体の空気中の炭酸ガスによる中性化深さの経時
変化、埋設鉄筋の腐食量の経時変化を調べた.コンクリ
ート供試体の亀裂はクラックゲージでその幅の最大値を
測定した。
The exposure conditions were set as shown in Figure 2 because the extremely harsh environmental conditions of repeatedly drying and moistening at a high temperature of 80°C, where the maximum amount of oxygen is dissolved in water vapor, promotes corrosion of buried reinforcing bars. This is to do so. At the same time, we investigated changes over time in the depth of carbonation of these concrete specimens due to carbon dioxide gas in the air, and changes over time in the amount of corrosion of buried reinforcing bars. The maximum width of cracks in concrete specimens was measured using a crack gauge.

炭酸ガスによる中性化深さはフェノールフタレイン溶液
をコンクリートに散布しコンクリート供試体で赤色→無
色に変化したコンクリート供試体の表層からの深さを測
定した。
The depth of neutralization by carbon dioxide gas was determined by spraying a phenolphthalein solution on the concrete and measuring the depth from the surface of the concrete specimen where the color changed from red to colorless.

埋設鉄筋の腐食量はコンクリートを破砕してとり出した
鉄筋の鯖を化学的にとり除いた後重量を測定し腐食前の
重量から差し引いて鉄筋長さ280当たりの腐食減量と
して求めた。
The amount of corrosion of the buried reinforcing bars was determined by crushing the concrete, chemically removing the mackerel from the reinforcing bars, measuring the weight, subtracting it from the weight before corrosion, and determining the corrosion weight loss per 280 reinforcing bar length.

参考までにこの表の鉄筋試料Nα1. Nt14, N
α5.をそれぞれ埋設したコンクリート供試体の劣化状
況を第3図に示す. 又、この表の鉄筋試料N(Ll, NO.2. NO.
3. NO.4,Nt15をそれぞれ埋設したコンクリ
ート供試体を100日間前記の恒温恒湿槽中に曝露後、
鉄筋近傍の全塩分量と冷水で抽出されてくるフリー塩分
量を化学分析して砂中換算NaCf(χ)として求めた
ところ全塩分量はいずれも約0.50%、フリー塩分量
は約0.25%であった。
For reference, reinforcing bar sample Nα1 in this table. Nt14, N
α5. Figure 3 shows the deterioration status of the concrete specimens buried in each case. Also, reinforcing bar sample N (Ll, NO.2. NO.
3. No. After exposing the concrete specimens embedded with 4 and Nt15 in the above-mentioned constant temperature and humidity chamber for 100 days,
The total salt content near the reinforcing bars and the free salt content extracted by cold water were chemically analyzed and calculated as sand equivalent NaCf (χ). The total salt content was approximately 0.50% in both cases, and the free salt content was approximately 0. It was .25%.

したがって本発明の鉄筋は鉄筋近傍のフリー塩分が砂中
換算で0.25%に達しても殆んど腐食が進行せず、コ
ンクリートの劣化を殆んど停止させる効果のあることが
判った。
Therefore, it was found that the reinforcing bars of the present invention hardly undergo corrosion even if the free salt near the reinforcing bars reaches 0.25% in terms of sand, and is effective in almost stopping the deterioration of concrete.

(発明の効果) 本発明は今後ますます問題になる塩害に曝されるコンク
リート構造物の耐久性を維持するのに飛躍的に有効なコ
ンクリート用鉄筋として役立つものである。
(Effects of the Invention) The present invention is useful as a concrete reinforcing bar that is extremely effective in maintaining the durability of concrete structures that are exposed to salt damage, which will become an increasingly problematic problem in the future.

本発明のコンクリート用鉄筋を使用することにより、コ
ンクリート構造物の長寿命化,安定性の向上に資するも
ので、各種用途向に使用することができる.
By using the reinforcing bars for concrete of the present invention, it contributes to extending the lifespan and improving the stability of concrete structures, and can be used for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a). (b)は鉄筋を埋設したコンクリート
供試体の形状・寸法と配筋状況を示す説明図、第2図は
鉄筋を埋設したコンクリート供試体の発請促進試験にお
ける試験条件を示す図、第3図はコンクリート供試体の
外観を示す図である。 1:コンクリート供試体、2:埋設鉄筋、3:モルタル
塗り上エボキシシール。 第1図 (d) (b) 計測部分 3:毛ルダル塗りのよエポ央シシール 第2図 涛間一一→
Figure 1(a). (b) is an explanatory diagram showing the shape, dimensions, and reinforcement arrangement of a concrete specimen with embedded reinforcing bars, Figure 2 is a diagram showing the test conditions for a promotion test for concrete specimens with embedded reinforcing bars, and Figure 3 is a diagram showing the appearance of a concrete specimen. 1: Concrete specimen, 2: Buried reinforcing bars, 3: Epoxy seal over mortar coating. Figure 1 (d) (b) Measuring part 3: Epo-o-shishiru of Kerugal lacquering Figure 2 Kazuichi Uma →

Claims (2)

【特許請求の範囲】[Claims] (1)C;0.001〜1.0%、 Si;0.01〜0.05%、 Mn;0.01〜0.3%未満、 P;0.025%未満、 S;0.005%未満、 Cu;0.01〜0.5%、 W;0.01〜0.5%、 M;0.001〜0.10% を含有し、残部鉄および不可避的不純物からなるコンク
リート劣化防止用耐塩鉄筋。
(1) C; 0.001 to 1.0%, Si; 0.01 to 0.05%, Mn; 0.01 to less than 0.3%, P; less than 0.025%, S; 0.005 %, Cu; 0.01 to 0.5%, W; 0.01 to 0.5%, M; 0.001 to 0.10%, with the balance consisting of iron and inevitable impurities to prevent concrete deterioration. Salt-resistant reinforcing bars for use.
(2)C;0.001〜1.0%、 Si;0.01〜0.05%、 Mn:0.01〜0.3%未満、 P;0.025%未満、 S;0.005%未満、 Cu;0.01〜0.5%、 W;0.01〜0.5%、 Al;0.001〜0.10% を含有し、さらにNb、V、Ti、Moのいずれか1種
又は2種を合計0.01〜0.5%含有し、残部鉄およ
び不可避的不純物からなるコンクリート劣化防止用耐塩
鉄筋。
(2) C; 0.001 to 1.0%, Si; 0.01 to 0.05%, Mn: 0.01 to less than 0.3%, P; less than 0.025%, S; 0.005 %, Cu; 0.01 to 0.5%, W; 0.01 to 0.5%, Al; 0.001 to 0.10%, and further contains any of Nb, V, Ti, and Mo. Salt-resistant reinforcing bars for preventing concrete deterioration, containing 0.01 to 0.5% of one or two types in total, with the balance consisting of iron and unavoidable impurities.
JP12227889A 1988-11-22 1989-05-16 Salt rebar for concrete deterioration prevention Expired - Lifetime JP2745066B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP29581188 1988-11-22
JP63-295811 1989-03-07
JP1-54670 1989-03-07
JP5467089 1989-03-07

Publications (2)

Publication Number Publication Date
JPH0320441A true JPH0320441A (en) 1991-01-29
JP2745066B2 JP2745066B2 (en) 1998-04-28

Family

ID=26395473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12227889A Expired - Lifetime JP2745066B2 (en) 1988-11-22 1989-05-16 Salt rebar for concrete deterioration prevention

Country Status (1)

Country Link
JP (1) JP2745066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106929751A (en) * 2017-02-13 2017-07-07 北京科技大学 A kind of corrosion resistant low alloy steel high suitable for high temperature littoral environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106929751A (en) * 2017-02-13 2017-07-07 北京科技大学 A kind of corrosion resistant low alloy steel high suitable for high temperature littoral environment
CN106929751B (en) * 2017-02-13 2020-06-02 北京科技大学 High-corrosion-resistance low alloy steel suitable for high-temperature coastal environment

Also Published As

Publication number Publication date
JP2745066B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
Pokorný et al. Evaluation of the impact of corrosion of hot-dip galvanized reinforcement on bond strength with concrete–a review
Rosenberg et al. A corrosion inhibitor formulated with calcium nitrite for use in reinforced concrete
Vedalakshmi et al. Longterm corrosion performance of rebar embedded in blended cement concrete under macro cell corrosion condition
JPH0320441A (en) Salt-resistant reinforcing bar for preventing deterioration of concrete
JPH03183740A (en) Salt-resistant reinforcing bar for preventing deterioration of concrete
JPS61279657A (en) Salt resistant iron reinforcing rod for preventing deterioration of concrete
WO2009048205A1 (en) Chloride threshold value method for steel corrosion in concrete
US4915901A (en) Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
Asmara Concrete Reinforcement Degradation and Rehabilitation: Damages, Corrosion and Prevention
US4861548A (en) Seawater-corrosion-resistant non-magnetic steel materials
McDonald Corrosion protection for concrete structures in marine environments
JPS61284552A (en) Salt resistant steel bar for iron reinforcing rod preventing deterioration of concrete
JPS6017060A (en) Steel fiber for reinforcing concrete or mortar
Cady Corrosion of reinforcing steel
JPH02170945A (en) Salt-resistant reinforcing bar steel for prevention of deterioration in concrete
Srimahajariyaphong et al. Corrosion prevention of rebar in concrete due to chloride
ZERBI Effectiveness of calcium nitrate as corrosion inhibitor in concrete
Batic et al. Rebar corrosion in mortars with high limestone filler content
JPH02138441A (en) Seawater corrosion resisting steel improved in rust resistance
US11384016B1 (en) Additive for reinforced concrete
JPH02138440A (en) Seawater corrosion resisting steel excellent in rust resistance
JPS62199748A (en) Steel bar for reinforcing bar seawater resistant
JPH0480112B2 (en)
JPH0372149B2 (en)
JPS62274050A (en) Reinforcing bar having resistance to salt-water corrosion