JPH03203236A - Insulation film forming method - Google Patents

Insulation film forming method

Info

Publication number
JPH03203236A
JPH03203236A JP34406589A JP34406589A JPH03203236A JP H03203236 A JPH03203236 A JP H03203236A JP 34406589 A JP34406589 A JP 34406589A JP 34406589 A JP34406589 A JP 34406589A JP H03203236 A JPH03203236 A JP H03203236A
Authority
JP
Japan
Prior art keywords
substrate
reactor
insulating film
heat treatment
reducing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34406589A
Other languages
Japanese (ja)
Inventor
Hisashi Fukuda
永 福田
Tomiyuki Arakawa
富行 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP34406589A priority Critical patent/JPH03203236A/en
Publication of JPH03203236A publication Critical patent/JPH03203236A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable film detect due to an uncoupled bond etc., which is produced during formation of an insulation film to be reduced by changing environment within a reaction furnace to a reducing gas environment during formation of the insulation film and by allowing a substrate where the insulation film is being formed to be subjected to heat treatment. CONSTITUTION:An environment within a reaction furnace 10 is changed to a reducing gas environment during formation of an insulation film and a process for performing heat treatment of a substrate 18 while forming the insulation film is included at least once. Thus, heat treatment within the reducing gas environment is performed appropriately for the insulation film which is being formed, thereby enabling the insulation film part which grows to a state before heat treatment is performed within the reducing gas environment to be accurate, with defects removed, contaminants on the surface removed, and then an unpaired coupling of a silicon atom included at this insulation film part and a distorted Si-O-Si coupling are reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、絶縁膜形成方法(こ関するもので、特に膜
厚の薄い絶m膜であって品貢の優れた絶縁膜を形成する
方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for forming an insulating film (particularly a method for forming an insulating film having a thin film thickness and excellent quality). It is related to.

(従来の技術) 最先端技術により形成されるシリコン集積回路、特にM
OS (Metal 0xide Sem1condu
ctor)集積回路では膜厚が極めて薄い酸化膜がゲー
ト絶縁膜に用いられる。とりわけ1.0um以下のゲー
ト長を有するサブミクロンMOSデバイスでは膜厚が例
えば]○Oλ以下となる酸化膜が用いられ、このように
膜厚を薄くすることによって利得の向上が図られている
(Conventional technology) Silicon integrated circuits formed using cutting-edge technology, especially M
OS (Metal Oxide Sem1condu
ctor) In integrated circuits, an extremely thin oxide film is used as a gate insulating film. In particular, in a submicron MOS device having a gate length of 1.0 um or less, an oxide film having a film thickness of, for example, ]0λ or less is used, and by reducing the film thickness in this way, the gain is improved.

酸化膜の従来の形成方法の一例としては、例えば文献:
 rMO5LsI製造技術、徳山  轟、橋本 哲−m
著、日経マグロウヒル社、P、65 (+985)」に
開示されるものがあった。
As an example of a conventional method for forming an oxide film, for example, see the literature:
rMO5LsI manufacturing technology, Todoroki Tokuyama, Satoshi Hashimoto
Author, Nikkei McGraw-Hill, Inc., p. 65 (+985)''.

この文献に開示されている方法では、まず、電気炉によ
って800〜1200”Clこ加熱した石英管内に、清
浄化した基板が配IIされる。その後、酸化膜形成のた
めの酸化性ガスが石英管内に導入される。酸化性ガスと
しては例えば、乾燥した酸素ガス、或は酸素及び水素の
混合ガス、或は塩酸を霧状にして酸素ガスと混合したガ
ス等が用いられる。酸化性ガスの導入された石英管内に
基板を、形成しようとする酸化膜の膜厚に見合った時間
一定温度で放置しておくことによって基板表面に均一な
膜厚の酸化膜が形成される。
In the method disclosed in this document, first, a cleaned substrate is placed in a quartz tube heated to 800-1200"Cl in an electric furnace. After that, an oxidizing gas for forming an oxide film is applied to the quartz tube. The oxidizing gas used is, for example, dry oxygen gas, a mixed gas of oxygen and hydrogen, or a gas obtained by atomizing hydrochloric acid and mixing it with oxygen gas. By leaving the substrate in the introduced quartz tube at a constant temperature for a period of time commensurate with the thickness of the oxide film to be formed, an oxide film with a uniform thickness is formed on the surface of the substrate.

(発明が解決しようとする課題) しかしながら、上述の文献に開示されている絶縁膜形成
方法では、膜厚が例えば100Å以下の薄い酸化I!@
形戒形成場合膜厚制御が困難であった。そのため、従来
の絶Rs形成方法で上述のような薄い酸化膜を形成する
場合は、石英管の加熱温度8800℃以下にする方法(
以下、これを低温酸化法と略称することもある。)或い
は、窒素で酸素を稀釈して酸化速度の低下を図る方法(
以下、これを稀釈酸化法と略称することもある。)をと
らざるを得ない。
(Problems to be Solved by the Invention) However, in the method for forming an insulating film disclosed in the above-mentioned document, the film thickness is thin, for example, 100 Å or less. @
It was difficult to control the film thickness in the case of formation. Therefore, when forming a thin oxide film as described above using the conventional absolute Rs formation method, there is a method in which the heating temperature of the quartz tube is lower than 8800°C
Hereinafter, this may be abbreviated as a low-temperature oxidation method. ) or a method of diluting oxygen with nitrogen to reduce the oxidation rate (
Hereinafter, this may be abbreviated as the dilution oxidation method. ).

しかし、低温酸化法では、シリコン(基板)/シリコン
酸化膜界面が荒れてしまうという問題点があった。また
、稀釈酸化法では窒素がシリコン/シリコン酸化膜界面
に偏析するので新たに界面準位が発生する等の問題点が
あった。
However, the low-temperature oxidation method has a problem in that the silicon (substrate)/silicon oxide film interface becomes rough. Further, in the diluted oxidation method, nitrogen segregates at the silicon/silicon oxide film interface, resulting in new interface states, and other problems.

また、低温酸化法及び稀釈酸化法のいずれの方法でも、
得られる酸化膜は、緻密でなく、シリコン/シリコン酸
化膜界面に例えばシリコン原子の不対結合や或いは歪ん
だSi−〇−Si結合が多く存在してしまい、このため
そもそも界面準位が高くなる傾向があった。従って、こ
のような酸化膜をMOS型電界効果トランジスタのゲー
ト絶縁膜として使用した場合、上記の原因に起因する種
々の問題が生じる。例えば、ゲート長11ユm以下の微
細なMOS型電界効果トランジスタの場合では、チャネ
ル領域で発生したホットエレク1〜ロンがこの酸化膜中
に侵入すると、電子はこの酸化膜中のシリコン原子の不
対結合や歪んだSi−〇−3i結合にトラップされ新た
な界面準位を発生させ、このためMO3型トランジスタ
における閾値電圧の変動や伝達コンダクタンスの低下を
引き起してしまう。
In addition, in both the low temperature oxidation method and the diluted oxidation method,
The resulting oxide film is not dense, and there are many unpaired bonds of silicon atoms or distorted Si-〇-Si bonds at the silicon/silicon oxide film interface, which causes the interface state to be high in the first place. There was a tendency. Therefore, when such an oxide film is used as a gate insulating film of a MOS field effect transistor, various problems arise due to the above-mentioned causes. For example, in the case of a fine MOS field effect transistor with a gate length of 11 μm or less, when hot electrons generated in the channel region enter the oxide film, electrons are removed from the silicon atoms in the oxide film. It is trapped by the pair bond or the distorted Si-〇-3i bond and generates a new interface state, which causes a fluctuation in the threshold voltage and a decrease in the transfer conductance in the MO3 type transistor.

この発明はこのような点に鑑みなされたものであり、従
ってこの発明の目的は、絶縁膜形成中に生じる未結合手
等に起因する膜欠陥を低減出来る絶am形成方法を提供
することにある。
The present invention has been made in view of the above points, and therefore, an object of the present invention is to provide an absolute am forming method that can reduce film defects caused by dangling bonds etc. that occur during the formation of an insulating film. .

(課題を解決するための手段) この目的の遺戒を図るため、この発明によれば、反応炉
内で基板に対し酸化性ガス雰囲気中での加熱処理を行な
って該基板に絶縁膜を形成する方法において、 絶縁膜形成途中において反応炉内雰囲気を還元性ガス雰
囲気に変えて絶縁膜形成中の基板を加熱処理する工程を
少なくとも1回含むことを特徴とする。
(Means for Solving the Problems) In order to achieve this objective, according to the present invention, a substrate is subjected to heat treatment in an oxidizing gas atmosphere in a reaction furnace to form an insulating film on the substrate. The method is characterized by including the step of changing the atmosphere in the reactor to a reducing gas atmosphere during the formation of the insulating film and heat-treating the substrate on which the insulating film is being formed at least once.

なお、ここで云う基板とは、シリコン基板等のような基
板そのものである場合は勿論のこと、基板上にエピタキ
シャル層が形成されたもの、基板やエピタキシャル層に
素子が作り込まれている中間体等、絶縁膜が形成される
べき広く下地を意味している。
Note that the substrate referred to here includes not only the substrate itself such as a silicon substrate, but also a substrate on which an epitaxial layer is formed, and an intermediate in which an element is built into a substrate or epitaxial layer. etc., broadly refers to the base on which an insulating film is formed.

また、この発明の実施に当たり、絶R膜の形成前に基板
に対し還元性ガス雰囲気中での加熱処理と反応性ガス雰
囲気中での加熱処理とを順次に行ない基板の清浄化を図
るのが好適である。
Further, in carrying out the present invention, it is preferable to sequentially perform heat treatment on the substrate in a reducing gas atmosphere and heat treatment in a reactive gas atmosphere to clean the substrate before forming the absolute R film. suitable.

さらにこの発明の実施に当たり、前述の酸化性ガス雰囲
気、還元性ガス雰囲気及び反応性ガス雰囲気夫々での加
熱処理を赤外線照射により行なうのが好適である。
Further, in carrying out the present invention, it is preferable to carry out the heat treatment in each of the oxidizing gas atmosphere, reducing gas atmosphere, and reactive gas atmosphere by infrared irradiation.

(作用) この発明の絶縁膜形成方法によれば、絶縁膜形成途中に
おいて反応炉内雰囲気を還元性ガス雰囲気に変えて絶縁
膜形成中の基板を加熱処理する工程を少なくとも1回含
むので、形成途中の絶縁膜に対し還元性ガス雰囲気での
加熱処理が適宜なされる。この結果、還元性ガス雰囲気
での加熱処理を行なう前までに成長した絶縁膜部分の緻
密化、欠陥除去、表面の汚染物の除去、さらに、この絶
縁膜部分に含まれるシリコン原子の不対結合や歪んだS
i−〇−8i結合の低減が図れる。
(Function) According to the insulating film forming method of the present invention, the step of changing the atmosphere in the reactor to a reducing gas atmosphere and heat-treating the substrate on which the insulating film is being formed is included at least once during the insulating film formation. Heat treatment in a reducing gas atmosphere is appropriately performed on the insulating film in the middle. As a result, the insulating film portion that had grown before the heat treatment in a reducing gas atmosphere becomes denser, defects are removed, contaminants on the surface are removed, and unpaired bonds of silicon atoms contained in this insulating film portion are removed. and distorted S
It is possible to reduce i-〇-8i coupling.

また、酸化性ガス雰囲気での加熱処理を赤外線ランプ照
射により行なった場合、基板の加熱及び冷却を応答性良
く行なえる。
Furthermore, when the heat treatment in an oxidizing gas atmosphere is performed by irradiation with an infrared lamp, the substrate can be heated and cooled with good responsiveness.

(実施例) 以下、図面を参照してこの発明の絶縁膜形成方法の実施
例につき説明する。
(Example) Hereinafter, an example of the insulating film forming method of the present invention will be described with reference to the drawings.

なお、図面はこの発明を理解出来る程度に、各構11i
、戒分の寸法、形状及び配設位1ft概略的に示してい
る(こすぎない。従って各構成成分の寸法、形状及び配
置関係は図示例に限定されるものではない。また、以下
の説明では、特定の材料及び特定の数値的条件を挙げて
説明するが、これら材料及び条件は単なる好適例にすぎ
ず、従ってこの発明はこれら材料及び条件に限定される
ものではない。
The drawings depict each structure 11i to the extent that this invention can be understood.
, the dimensions, shape, and location of the precepts are shown schematically (not too large. Therefore, the dimensions, shapes, and arrangement relationships of each component are not limited to the illustrated example. Also, in the following description, Although specific materials and specific numerical conditions will be cited and explained, these materials and conditions are merely preferred examples, and therefore, the present invention is not limited to these materials and conditions.

2日 まず、この発明の絶縁膜形成方法の説明に先立ち、この
方法の実施に用いて好適な絶縁膜形成装置につき説明す
る。
2nd First, prior to explaining the insulating film forming method of the present invention, an insulating film forming apparatus suitable for use in carrying out this method will be explained.

第2図はこの絶縁膜形成装置の主要部(主として反応炉
及び加熱部の構成)を概略的に示す断面図である。なお
、第2図では反応炉内に基板を設置した状態を示す。
FIG. 2 is a cross-sectional view schematically showing the main parts of this insulating film forming apparatus (mainly the structure of the reactor and heating section). Note that FIG. 2 shows a state in which the substrate is installed in the reactor.

また第3図はこの絶縁膜形成装置の全体構成を概略的に
示す図である。
Further, FIG. 3 is a diagram schematically showing the overall configuration of this insulating film forming apparatus.

第2図にも示すようにこの実施例では、反応炉(チャン
バー)10ヲ例えば本体10a、蓋部材10b及び昇降
部材10cから構成する。本体10a及び昇降部材10
cの形成材料としては例えば、ステンレスを、また蓋部
材10b及び後述の支持体20の形成材料としては、例
えば石英を用いる。
As shown in FIG. 2, in this embodiment, a reactor (chamber) 10 is composed of, for example, a main body 10a, a lid member 10b, and an elevating member 10c. Main body 10a and lifting member 10
For example, stainless steel is used as the forming material of c, and quartz, for example, is used as the forming material of the lid member 10b and the support body 20, which will be described later.

また上述の反応炉10の本体10a及び昇降部材10c
は分離可能に一体となって凹部aを形成するものである
。また、昇降部材10cの凹部aの側には基板18を載
せるための支持体20を設けて昇降部材10cの昇降に
よって支持体20をのせた基板18を反応炉10内へ入
れ或は反応炉10外へ取り出せるようにする。図示例で
は昇降部材10cを例えば機械的に昇降させるための昇
降装置22と連結させている。
Moreover, the main body 10a and the elevating member 10c of the above-mentioned reactor 10
are separably integrated to form the recess a. Further, a support 20 for placing the substrate 18 is provided on the side of the recess a of the elevating member 10c, and the substrate 18 with the support 20 placed thereon is put into the reactor 10 or the reactor 10 is moved up and down by the elevating member 10c. Make it possible to take it outside. In the illustrated example, the elevating member 10c is connected to, for example, an elevating device 22 for mechanically elevating the elevating member 10c.

また蓋部材10bを着脱自在に本体10aに取り付ける
。本体10aと蓋部材10b及び昇降部材10cとの間
には気密保持部材24例えばパイトンパツキンを設けて
おり、従って反応炉10内の真空引きを行なった際に気
密保持部材24を介し、気密状態が形成できる。
Further, the lid member 10b is detachably attached to the main body 10a. An airtight maintenance member 24, for example, a piton packing, is provided between the main body 10a, the lid member 10b, and the lifting member 10c. Therefore, when the inside of the reactor 10 is evacuated, the airtight state is maintained through the airtightness maintenance member 24. Can be formed.

また凹部aの基板近傍位置に基板18の表面温度を測定
するための温度測定手段26例えばオプティカルパイロ
メータを設ける。
Further, a temperature measuring means 26, such as an optical pyrometer, for measuring the surface temperature of the substrate 18 is provided in the recess a near the substrate.

さらにこの実施例では加熱部16ヲ任意好適な構成の赤
外線照射手段、例えば赤外線ランプ16aと、この赤外
線ランプ16a 7&支持するための支持部材+6bと
を以って構成する。赤外線ランプ16aとしてはタング
ステンハロゲンランプその他の任意好適なランプを用い
る。好ましくは、複数個の赤外線ランプ16a %反応
炉10内の加熱を均一に行なえるように配置する。通常
、赤外線ランプ16aは、反応炉10外(こ配置する。
Furthermore, in this embodiment, the heating section 16 is constructed of an infrared ray irradiation means of any suitable configuration, such as an infrared lamp 16a, and a support member +6b for supporting the infrared lamp 16a. The infrared lamp 16a may be a tungsten halogen lamp or any other suitable lamp. Preferably, a plurality of infrared lamps 16a are arranged so as to uniformly heat the interior of the reactor 10. Usually, the infrared lamp 16a is placed outside the reactor 10.

この際、反応炉1oの一部を、赤外線を反応炉10外が
ら反応炉1o内に透過させ得る構成とする。この実施例
では、蓋部材10bを既に説明したように石英で構成し
であるので赤外線の透過が可能である。
At this time, a part of the reactor 1o is configured to allow infrared rays to pass from the outside of the reactor 10 into the reactor 1o. In this embodiment, since the lid member 10b is made of quartz as described above, it is possible to transmit infrared rays.

また、赤外線ランプ16aの支持部材+6bの配設位M
をこれに限定するものではないが、図示例では支持部材
+6bを、支持部材161〕と本体10aとの間に蓋部
材+ob及び本体10aの当接部を閉じ込めるように、
本体10aに着脱自在に取り付け、さらに支持部材+6
bと本体10との間に気密保持部材24を設ける。この
ように支持部材+6bを設けることによって反応炉10
内の真空気密性の向上が図れる。
Moreover, the arrangement position M of the support member +6b of the infrared lamp 16a
Although not limited to this, in the illustrated example, the support member +6b is configured such that the contact portion of the cover member +ob and the main body 10a is confined between the support member 161] and the main body 10a.
The support member +6 is detachably attached to the main body 10a.
An airtight member 24 is provided between b and the main body 10. By providing the support member +6b in this way, the reactor 10
It is possible to improve the vacuum tightness inside.

なお、第2図において符号28は反応炉1o及びガス供
給部14の間に設けたガス供給管、また3oは反応炉1
0及び排気手段120間に設けた排気管を示す。
In addition, in FIG. 2, the reference numeral 28 is a gas supply pipe provided between the reactor 1o and the gas supply section 14, and 3o is the gas supply pipe provided between the reactor 1o and the gas supply section 14.
0 and an exhaust pipe provided between exhaust means 120.

次に、第3図を参照してこの実施例の真空排気系及びガ
ス供給系につき説明する。なお、真空排気系及びガス供
給系を以下に述べる例に限定するものではない。
Next, the vacuum evacuation system and gas supply system of this embodiment will be explained with reference to FIG. Note that the evacuation system and gas supply system are not limited to the examples described below.

まず真空排気系につき説明する。この実施例では排気手
段12ヲ例えばターボ分子ポンプ12aとこのポンプ1
2aと接続されたロータリーポンプ+2bとを以って構
成する。排気手段12を例えば図示のように配設した排
気管30及びバルブを介して反応炉10と連通させて接
続する。
First, the vacuum evacuation system will be explained. In this embodiment, the exhaust means 12 includes, for example, a turbo molecular pump 12a and this pump 1.
2a and a connected rotary pump +2b. The exhaust means 12 is connected in communication with the reactor 10 via, for example, an exhaust pipe 30 and a valve arranged as shown.

第3図において32a〜32dは排気管30に連通させ
て設けた真空計(或は圧力ゲージ)であり、真空計32
a及び32dを例えば1〜1(13Torrの範囲の圧
力測定に用いるバラトロン真空計(或いはビラニー真空
計)とし、また真空計32b及び32c %例えば10
−” 〜10−”T o r rの範囲の圧力測定に用
いるイオンゲージとする。真空計32bと排気管30と
の間には真空計32bを保護するための自動開閉バルブ
34を設け、真空計32bの動作時に真空計32bに対
して1(I”Torr以上の圧力を負荷しないようにバ
ルブ34の開閉を自動制御する。36a〜36fは排気
手段12及び反応炉10の間に設けられる自動開閉バル
ブであり、これらバルブ36a〜36f !それぞれ任
意好適に開閉することによって、反応炉10内の圧力を
任意好適な圧力に制御し反応炉10内に低真空排気状態
及び高真空排気状態を形成する。
In FIG. 3, 32a to 32d are vacuum gauges (or pressure gauges) provided in communication with the exhaust pipe 30.
a and 32d are, for example, Baratron vacuum gauges (or Villany vacuum gauges) used for pressure measurement in the range of 1 to 1 (13 Torr), and vacuum gauges 32b and 32c are, for example, 10
The ion gauge is used for pressure measurement in the range of -'' to 10-'' Torr. An automatic opening/closing valve 34 is provided between the vacuum gauge 32b and the exhaust pipe 30 to protect the vacuum gauge 32b, and when the vacuum gauge 32b is operated, a pressure higher than 1 (I" Torr) is not applied to the vacuum gauge 32b. The opening and closing of the valves 34 are automatically controlled as shown in FIG. The pressure inside the reactor 10 is controlled to any suitable pressure to form a low vacuum evacuation state and a high vacuum evacuation state within the reactor 10.

ざら(こ38は圧力調整用のニードルバルブ及び40は
レリーフバルブであり、バルブ4oは反応炉1o内の圧
力が大気圧例えば760To r rlfr越えた場合
に自動的に開放し、バルブ40の開放によってガス供給
部14から反応炉10内へ供給されたガスを排気する。
38 is a needle valve for pressure adjustment, and 40 is a relief valve. The valve 4o automatically opens when the pressure inside the reactor 1o exceeds the atmospheric pressure, for example, 760 Tor rlfr. The gas supplied from the gas supply section 14 into the reactor 10 is exhausted.

次にガス供給系につき説明する。この実施例ではガス供
給部14を還元性ガス源14aと、反応性ガス源+4b
と、酸化性ガス源14cと、不活性ガス源+4dとを以
って構成する。このガス供給部14ヲ例えば図示のよう
(こ配設した供給管28及びバルブを介して反応炉10
と連通させて接続する。
Next, the gas supply system will be explained. In this embodiment, the gas supply unit 14 includes a reducing gas source 14a and a reactive gas source +4b.
, an oxidizing gas source 14c, and an inert gas source +4d. For example, as shown in the figure, this gas supply section 14 is connected to the reactor 10 through a supply pipe 28 and a valve provided therein.
Connect by communicating with.

さらに第3図において42はガス供給系、44はバルブ
、46a 〜46d及び48a、48bは自動開閉バル
ブ、50a、50bはガス供給部14がら反応炉1oへ
導入されるガスの流量を制御する自動ガス流量コントロ
ーラである。
Furthermore, in FIG. 3, 42 is a gas supply system, 44 is a valve, 46a to 46d and 48a, 48b are automatic opening/closing valves, and 50a, 50b are automatic valves that control the flow rate of gas introduced into the reactor 1o from the gas supply section 14. It is a gas flow controller.

バルブ44.48a 、48b 、46a 〜46b 
IFrそれぞれ任意好適に開閉することによって、所望
のガスをガス供給部14から反応炉10へ供給できる。
Valves 44.48a, 48b, 46a to 46b
A desired gas can be supplied from the gas supply section 14 to the reactor 10 by opening and closing each IFr as desired.

チ5日 次に、基板としてシリコン基板を用いこの基板にシリコ
ン酸化膜を形成する例によりこの発明の絶縁膜形成方法
の実施例の説明を行なう。ここで、第1図は、この発明
の絶縁膜形成方法の説明に供する加熱サイクルを説明す
るための図である。なお、図は横軸に時間をとり縦軸に
温度をとって示しである。
Next, an embodiment of the insulating film forming method of the present invention will be explained using an example in which a silicon substrate is used as the substrate and a silicon oxide film is formed on this substrate. Here, FIG. 1 is a diagram for explaining a heating cycle for explaining the insulating film forming method of the present invention. Note that the diagram shows time on the horizontal axis and temperature on the vertical axis.

また、以下の説明では第2図及び第3図を適宜参照され
たい。
Also, please refer to FIGS. 2 and 3 as appropriate in the following description.

この実施例では、反応炉10内の支持体20にシリコン
基板18(以下、基板18と略称する。)を設置した後
、この基板18の清浄化を行なってがら絶縁膜の成膜処
理を行なう。以下、これにつき順次説明する。
In this embodiment, after a silicon substrate 18 (hereinafter referred to as the substrate 18) is installed on a support 20 in a reactor 10, an insulating film is formed while cleaning the substrate 18. . This will be explained in detail below.

■く清浄化〉 基板18の清浄化は例えばこの出願の出願人により提案
されている方法で行なえこの実施例でもその方法を用い
る。具体的に説明する。
(2) Cleaning> The substrate 18 can be cleaned, for example, by a method proposed by the applicant of this application, and this method is also used in this embodiment. I will explain in detail.

■−■・・・前処理 先ず、従来がら行なわれている如く化学薬品及び純水等
を用いて基板の前洗浄を行なう。
(1)-(2) Pretreatment First, the substrate is precleaned using chemicals, pure water, etc., as is conventionally done.

次に、反応炉1o内で基板18に自然酸化膜が形成され
るのを防止するため、反応炉lo内にパージ用のガスと
して例えば窒素ガス或いはアルゴン等のような不活性ガ
スを予め導入しておく。ここでは、還元性ガス、反応性
ガス及び酸化性ガスは未だ導入しない。このようにガス
供給を行なうには、バルブ44,48b及び46d @
開け、バルブ48a。
Next, in order to prevent the formation of a natural oxide film on the substrate 18 in the reactor 1o, an inert gas such as nitrogen gas or argon is introduced in advance into the reactor 1o as a purge gas. I'll keep it. No reducing gas, reactive gas or oxidizing gas is introduced here yet. To supply gas in this way, valves 44, 48b and 46d @
Open, valve 48a.

46a〜46cを閉しれば良い。46a to 46c may be closed.

次に反応炉10内に基板18を設置する。基板18は昇
降部材10cの支持体20上に固定する。
Next, the substrate 18 is placed inside the reactor 10 . The substrate 18 is fixed on a support 20 of the elevating member 10c.

次に、上述の如く前処理の済んだ基板に対し還元性ガス
雰囲気中での加熱処理と反応性ガス雰囲気中での加熱処
理とを順次に行ない基板の清浄化をする。具体的1こは
以下のよう1こ行なう。
Next, the substrate that has been pretreated as described above is sequentially subjected to heat treatment in a reducing gas atmosphere and heat treatment in a reactive gas atmosphere to clean the substrate. One concrete step is as follows.

■−■・・・自然酸化膜の除去 まず、バルブ44.48b、 46dを閉じて、反応炉
10内への不活性ガスの供給を停止する。
■-■ Removal of natural oxide film First, the valves 44, 48b and 46d are closed to stop the supply of inert gas into the reactor 10.

次に、排気手段12によって反応炉10内を例えば1x
lO−8Torrの真空度となるように排気し反応炉1
0内を清浄化する。なお、この真空排気のため、バルブ
38.36a 、36f 、 34、を閉じておいてバ
ルブ36b 、 36c 、36d %開き、ロータリ
ーポンプ12b @作動させ、反応炉10内の圧力を真
空計32aでモニター(監視)しながら反応炉10内を
排気する。さらに、反応炉10内が例えばlX1O−3
Torrの圧力となった後、バルブ36c 、36dを
閉じてバルブ36e 、341開き、真空計32bで反
応炉10内の圧力をモニターしながらlX1(IeTO
rrまで反応炉10内を排気する。
Next, the inside of the reactor 10 is pumped by the exhaust means 12, for example, by 1×
The reactor 1 was evacuated to a vacuum level of lO-8 Torr.
Clean the inside of 0. In addition, for this evacuation, the valves 38, 36a, 36f, 34 are closed, the valves 36b, 36c, 36d are opened %, the rotary pump 12b is operated, and the pressure inside the reactor 10 is monitored with the vacuum gauge 32a. (monitoring) while exhausting the inside of the reactor 10. Furthermore, the inside of the reactor 10 is, for example, lX1O-3
After reaching the pressure of Torr, the valves 36c and 36d are closed, the valves 36e and 341 are opened, and the pressure in the reactor 10 is monitored with the vacuum gauge 32b while
The reactor 10 is evacuated to rr.

反応炉10内を上述の如く高真空に排気したら、次に反
応炉10内に還元性ガス例えば水素ガスを導入する(第
1図の領@I:H270−)。この還元性ガスの導入1
こ当たっては、次1こ行なう還元性ガス雰囲気中での加
熱処理において反応炉10内の減圧状態を維持するため
に、バルブ36b、36e、34を閉じバルブ38.3
6aを開いた状態としこの状態でバルブ44.48a、
 46al開いて還元性ガス例えば水素ガスを反応炉1
0内に供給する。このときの反応炉10内の減圧状態の
維持は、還元性ガスを導入しながらバルブ38ヲ操作す
ると共に還元性ガスの流量を自動コントローラ50aで
調製することによって行なえる。この実施例では、反応
炉10内を例えば100〜1O−2Torrの低真空の
減圧状態に維持する。
After the reactor 10 is evacuated to a high vacuum as described above, a reducing gas such as hydrogen gas is introduced into the reactor 10 (region @I:H270- in FIG. 1). Introduction of this reducing gas 1
In this case, the valves 36b, 36e, and 34 are closed and the valve 38.
6a is open, and in this state valves 44, 48a,
46al is opened and a reducing gas such as hydrogen gas is introduced into the reactor 1.
Supply within 0. At this time, the reduced pressure state in the reactor 10 can be maintained by operating the valve 38 while introducing the reducing gas and adjusting the flow rate of the reducing gas with the automatic controller 50a. In this embodiment, the interior of the reactor 10 is maintained at a low vacuum of, for example, 100 to 1 O-2 Torr.

次に、加熱部16(こよって自然酸化膜の除去のための
加熱処理を行なう(第1図の領域の)。この加熱処理に
よって還元性ガス雰囲気中で基板18を加熱して基板1
8の自然酸化膜を還元し、自然酸化111M基板18か
ら除去する。なおこの実施例では、反応炉10内を減圧
状態に維持しながら加熱処理を行なう。これにより、自
然酸化膜の還元による反応生成物が反応炉10外へ排気
され、その結果、反応生成物によって基板18及び反応
炉10内が汚染される度合を低減出来る。
Next, the heating section 16 (thus performs heat treatment for removing the natural oxide film (in the area shown in FIG. 1). This heat treatment heats the substrate 18 in a reducing gas atmosphere,
The natural oxide film No. 8 is reduced and removed from the naturally oxidized 111M substrate 18. In this example, the heat treatment is performed while maintaining the inside of the reactor 10 in a reduced pressure state. Thereby, the reaction products resulting from the reduction of the natural oxide film are exhausted to the outside of the reactor 10, and as a result, the degree of contamination of the substrate 18 and the inside of the reactor 10 by the reaction products can be reduced.

ここで、この加熱処理は、加熱部16の赤外線ランプ1
6aによって行なっている、そして、基板18の表面温
度を温度測定手段26で測定しながら例えば基板18の
表面温度を50℃/秒〜200℃/秒の間の適当な割合
で好ましくは約り00℃/秒で上昇させて、約1000
℃となったら約10〜30秒問1000℃の状態を保持
するように基板18の加熱を制御する。
Here, this heat treatment is carried out by the infrared lamp 1 of the heating section 16.
6a, and while measuring the surface temperature of the substrate 18 with the temperature measuring means 26, for example, the surface temperature of the substrate 18 is measured at a suitable rate between 50° C./sec and 200° C./sec, preferably about 0.00° C./sec. Rise at ℃/sec to about 1000
Once the temperature reaches 1000°C, the heating of the substrate 18 is controlled so as to maintain the temperature at 1000°C for approximately 10 to 30 seconds.

次に、加熱部16による基板18の加熱を停止すると共
にバルブ46a IFr閉じて還元性ガスの供給を停止
し、そして基板18の表面温度が室温例えば約25℃と
なるまで基板18が冷却するのを待つ。この冷却は基板
18が自然に冷却するよう(こしても良いし、強制的に
冷却するようにしでも良い。強制冷却は、例えばバルブ
48a ta閉じバルブ48b、 46dを開けて不活
性ガスを反応炉10内に大量に導入することにより行な
える。
Next, the heating of the substrate 18 by the heating unit 16 is stopped, and the IFr valve 46a is closed to stop the supply of reducing gas, and the substrate 18 is cooled until the surface temperature of the substrate 18 reaches room temperature, for example, about 25°C. wait. This cooling may be done so that the substrate 18 is naturally cooled (by straining or forcedly cooled). For forced cooling, for example, the valves 48a and 48a are closed and the valves 48b and 46d are opened and an inert gas is pumped into the reactor. This can be done by introducing a large amount into 10 cells.

次に、バルブ38.36at閉じてバルブ36b、 3
6eを開けて反応炉10内を例えば1x10−8Tor
rの高真空に排気し、反応炉10内を清浄化する。
Next, valves 38 and 36at are closed and valves 36b and 3 are closed.
6e is opened and the inside of the reactor 10 is heated to, for example, 1x10-8 Torr.
The inside of the reactor 10 is cleaned by evacuating to a high vacuum of r.

■−■・・・基板表面の清浄化 次(こ、バルブ36b、36e %閉じてバルブ38,
36aV開き、反応性ガス例えば重量比で1%塩酸−9
9%水素ガスの比で塩酸を霧状にして水素ガスと混合し
たガスを反応炉10内に導入する(第1図の領域■:日
Cβフロー)。反応性ガスの導入に当たっては、次に行
なう反応性ガス雰囲気中での加熱処理において反応炉1
0内の減圧状態を維持するために、自然酸化膜除去の際
の加熱処理と同様にして反応炉10内を例えば100〜
100−2TOrrの低真空の減圧状態に維持する。
■-■...Cleaning of the board surface (close valves 36b and 36e%, then close valve 38,
36aV opening, reactive gas e.g. 1% hydrochloric acid-9 by weight
Hydrochloric acid is atomized at a ratio of 9% hydrogen gas and mixed with hydrogen gas, and the gas is introduced into the reactor 10 (region ■ in FIG. 1: day Cβ flow). When introducing the reactive gas, the reaction furnace 1 is
In order to maintain the reduced pressure state within 0, the inside of the reactor 10 is heated to
Maintain a low vacuum of 100-2 TOrr.

次に加熱部16によって加熱処理を行なう。この処理に
よって熱的に活性化された反応性ガスが基板18自体及
び不純物と化学的に反応して揮発するので基板18に付
着している無機物等の不純物を除去出来る。反応性ガス
の熱的活性化はこの実施例の場合は反応性ガスに赤外線
を照射することにより行なう。また、反応炉10内を減
圧状態(こ維持しながら加熱処理を行なうので、基板1
8のエツチングによる揮発性の反応生成物が反応炉10
外へ排気され、その結果、反応生成物によって基板18
及び反応炉10内が汚染される度合を低減出来る。
Next, heat treatment is performed by the heating section 16. By this process, the thermally activated reactive gas chemically reacts with the substrate 18 itself and impurities and evaporates, so that impurities such as inorganic substances adhering to the substrate 18 can be removed. Thermal activation of the reactive gas is carried out in this embodiment by irradiating the reactive gas with infrared rays. In addition, since the heat treatment is performed while maintaining the inside of the reactor 10 in a reduced pressure state, the substrate 1
The volatile reaction products from the etching in step 8 are transferred to the reactor 10.
The substrate 18 is evacuated to the outside by reaction products.
And the degree of contamination inside the reactor 10 can be reduced.

この基板表面の清浄化は、例えば、基板18の表面温度
を約1000℃に保持するように基板18ヲ加熱しなが
ら(第1図の領域■)約20秒間、反応性ガスによる基
板18のエツチングを行なえば良い。
This cleaning of the substrate surface can be done, for example, by etching the substrate 18 with a reactive gas for about 20 seconds while heating the substrate 18 so as to maintain the surface temperature of the substrate 18 at about 1000° C. (region ■ in FIG. 1). All you have to do is

次に、加熱部16(こよる加熱処理を停止すると共1こ
バルブ46b !閉じて反応性ガスの供給を停止し、基
板18が室温まで冷却するのを待つ。この冷却は基板1
8の自然冷却としても良いし、強制冷却としても良い。
Next, the heating section 16 (the heating process is stopped) and the valve 46b is closed to stop the supply of reactive gas and wait for the substrate 18 to cool down to room temperature.
8, natural cooling may be used, or forced cooling may be used.

次に、バルブ38.36a!閉じ、バルブ36b、36
e lFr開き反応炉10内を例えば1x10−’To
rrの高真空に排気する。
Next, valve 38.36a! Closed, valves 36b, 36
e lFr open reactor 10, for example, 1x10-'To
Evacuate to high vacuum of rr.

■〈酸化膜の成膜〉 次(こ、酸化性ガス雰囲気中で加熱処理を行なって基板
18に酸化膜を形成するため、バルブ36b。
(2) <Formation of oxide film> Next, in order to form an oxide film on the substrate 18 by performing heat treatment in an oxidizing gas atmosphere, the valve 36b is used.

36e lFr開じ、バルブ38.36a、 48b、
 46+J開き酸化性ガス例えば酸素ガスを反応炉10
内に供給する(第1図の領域m : 0270−)。酸
化膜形成は大気圧下でも行なえるが、酸化膜形成時の反
応性生成物を反応炉10外に排気するため、反応炉10
内を例えば100〜1O−2Torrの低真空の減圧状
態に維持する。この状態で加熱部16による加熱処理に
よって基板18を加熱して基板表面に酸化膜を形成する
36e lFr open, valves 38.36a, 48b,
46+J open oxidizing gas such as oxygen gas into the reactor 10
(area m in FIG. 1: 0270-). Although oxide film formation can be performed under atmospheric pressure, in order to exhaust the reactive products during oxide film formation to the outside of the reactor 10,
The interior is maintained at a low vacuum of, for example, 100 to 1 O-2 Torr. In this state, the substrate 18 is heated by heat treatment by the heating section 16 to form an oxide film on the surface of the substrate.

この基板18の加熱は加熱部16の赤外線ランプ16a
によって行なう。この際に、基板180表面温度を温度
測定手段26で測定しながら、基板18の温度を例えば
50℃/秒〜200℃/秒の間の適当な割合で、好まし
くは昇温速度的100℃/秒で上昇させた後、約20秒
間、1000℃に保持するように行なう(第1図の領域
■)。この場合、温度の上昇割合が一定となるように加
熱を行なうのが好適であるが、それは酸化膜の成長度合
を一定にして品質の良い酸化Sを形成するためである。
The substrate 18 is heated by the infrared lamp 16a of the heating section 16.
It is done by At this time, while measuring the surface temperature of the substrate 180 with the temperature measuring means 26, the temperature of the substrate 18 is increased at an appropriate rate of, for example, 50°C/sec to 200°C/sec, preferably at a heating rate of 100°C/sec. After raising the temperature for about 20 seconds, the temperature was maintained at 1000° C. (region ■ in FIG. 1). In this case, it is preferable to perform heating so that the rate of increase in temperature is constant, and this is because the growth rate of the oxide film is kept constant and oxide S of good quality is formed.

このような条件で基板を加熱することによって膜厚的5
0λの酸化1m(以下、説明の都合上第1の酸化膜と称
する。)を形成出来る。なお第1の酸化膜の膜厚制御は
例えば、酸化温度、酸化時間及び酸化ガスの流量を調整
することによって行なえる。
By heating the substrate under these conditions, the film thickness increases by 5.
An oxidation film of 1 m (hereinafter referred to as the first oxide film for convenience of explanation) having a temperature of 0λ can be formed. Note that the thickness of the first oxide film can be controlled, for example, by adjusting the oxidation temperature, oxidation time, and flow rate of the oxidizing gas.

次に、この実施例では、絶縁膜形成途中において反応炉
内雰囲気を還元性ガス雰囲気に変えて絶線膜形成中の基
板を加熱処理することを、以下のように行なう。
Next, in this embodiment, during the formation of the insulating film, the atmosphere in the reactor is changed to a reducing gas atmosphere and the substrate on which the disconnected film is being formed is subjected to heat treatment in the following manner.

先ず、赤外線ランプ16aを消し基板18の加熱を停止
する。次に、バルブ3・+ 36a!閉じ、バルブ36
b、368 !開いて反応炉10内を例えばlXl0−
’Torrの高真空に排気する。
First, the infrared lamp 16a is turned off to stop heating the substrate 18. Next, valve 3 + 36a! Closed, valve 36
b, 368! For example, lXl0-
'Evacuate to high vacuum of Torr.

次に、バルブ36b、36c、36d、36eを閉じ、
バルブ36a、 38を開き、この状態でバルブ44.
48a、 46aを開いて還元性ガス例えば水素ガスを
反応炉10内に供給する(第1図の領域■:ロ270−
)。この際、反応炉10内は減圧状態に維持するのが好
適である。これによれば、後の加熱処理において還元性
ガスにより第1の酸化膜から除去される不純物等を反応
炉10外に効率的に除去出来るからである。反応炉10
内の減圧状態の維持は、還元性ガスを導入しながらバル
ブ38を操作すると共に還元性ガス野流量を自動コント
ローラ50aで調製することによって行なえる。この実
施例では、反応炉10内を例えば100〜10−2To
 r rの低真空の減圧状態に維持する。
Next, close the valves 36b, 36c, 36d, and 36e,
Valves 36a and 38 are opened, and in this state valve 44.
48a and 46a are opened to supply a reducing gas, such as hydrogen gas, into the reactor 10 (area ■ in FIG. 1: 270-
). At this time, it is preferable to maintain the inside of the reactor 10 in a reduced pressure state. According to this, impurities and the like that are removed from the first oxide film by the reducing gas in the subsequent heat treatment can be efficiently removed to the outside of the reactor 10. Reactor 10
Maintaining the reduced pressure inside the tank can be achieved by operating the valve 38 while introducing the reducing gas and adjusting the flow rate of the reducing gas field using the automatic controller 50a. In this embodiment, the inside of the reactor 10 is, for example, 100 to 10-2 To
Maintain a low vacuum of r r.

なお、第1の酸化膜形成後に反応炉雰囲気を酸化性ガス
雰囲気から還元性ガス雰囲気に変えることを、基板の加
熱を続けたままの状態で行なうことも考えられるが、最
終的な膜厚が100λ程度というような薄い酸化膜を形
成する場合ガス交換中に酸化膜の成長が進み最終的な膜
厚になってしまう危険が高い。従って、この実施例では
、基板加熱を停止した状態でガス交換を行なっている。
Note that it is possible to change the reactor atmosphere from an oxidizing gas atmosphere to a reducing gas atmosphere after forming the first oxide film while continuing to heat the substrate, but the final film thickness may When forming an oxide film as thin as about 100λ, there is a high risk that the oxide film will grow during gas exchange and reach the final thickness. Therefore, in this embodiment, gas exchange is performed while substrate heating is stopped.

次(こ、赤外線ランプt6aを点灯し第1の酸化膜を還
元性ガス雰囲気中で加熱する(第1図の領域■)。この
工程によれば、第1の酸化膜の表層部のwIe化、第1
の酸化膜の不純物除去や欠陥除去等が図れる。この実施
例ではこの加熱を以下のように行なう。
Next, the infrared lamp t6a is turned on and the first oxide film is heated in a reducing gas atmosphere (region ■ in Figure 1). , 1st
It is possible to remove impurities and defects from the oxide film. In this embodiment, this heating is performed as follows.

基板18の表面温度を温度測定手段26で測定しながら
例えば基板18の表面温度を50℃/秒〜200℃/秒
の闇の適当な割合で好ましくは約り00℃/秒で上昇さ
せて、約i ooo℃となったら約10〜30秒間10
00℃の状態を保持するように基板18の加熱を制御す
る。
While measuring the surface temperature of the substrate 18 with the temperature measuring means 26, for example, the surface temperature of the substrate 18 is increased at an appropriate rate of 50° C./sec to 200° C./sec, preferably about 00° C./sec, When it reaches about i ooo℃, press 10 for about 10 to 30 seconds.
The heating of the substrate 18 is controlled so as to maintain the temperature at 00°C.

次に、加熱部16による基板18の加熱を停止すると共
に、バルブ46を閉じて還元性ガスの供給を停止し、そ
して、基板18の温度が室温例えば約25℃となるまで
基板18が冷却するのを待つ。なお、この冷却は、自然
冷却で行なっても強制冷却で行なってもどちらでも良い
Next, the heating of the substrate 18 by the heating unit 16 is stopped, and the valve 46 is closed to stop the supply of reducing gas, and the substrate 18 is cooled until the temperature of the substrate 18 reaches room temperature, for example, about 25° C. wait for. Note that this cooling may be performed by natural cooling or forced cooling.

次に、バルブ38.36a@閉じバルブ36b、36e
 IE開けて、反応炉10内を例えばlXl0−’To
rrの高真空(こ排気し反応炉10内を清浄化する。
Next, valve 38.36a @ closed valve 36b, 36e
Open the IE and check the inside of the reactor 10, for example, lXl0-'To
The inside of the reactor 10 is cleaned by evacuating the high vacuum of rr.

次に、酸化膜の形成を再び開始する。この形成は第1の
酸化膜の形成手順と同様な手順で行なえ具体的には以下
のように行なう。
Next, the formation of the oxide film is started again. This formation can be performed in the same manner as the first oxide film formation procedure, and specifically, as follows.

バルブ36b、36e ’Pa閉し、バルブ38.36
a、 48b、 46cを開き酸素ガスを反応炉10内
に供給する(第1図の領域V : 02フロー)。この
とき、酸化膜形成時の反応性生成物を反応炉10外に排
気するため、反応炉10内を例えば100〜10−2T
o r rの低真空の減圧状態に維持する。
Valve 36b, 36e 'Pa close, valve 38.36
a, 48b, and 46c are opened to supply oxygen gas into the reactor 10 (area V in FIG. 1: 02 flow). At this time, in order to exhaust the reactive products during oxide film formation to the outside of the reactor 10, the inside of the reactor 10 is
Maintain a low vacuum of o r r.

次に、加熱部16による加熱処理によって基板18を加
熱して第1の酸化膜上に引き続いて酸化膜を形成する。
Next, the substrate 18 is heated by heat treatment by the heating unit 16 to form an oxide film on the first oxide film.

ここで基板18の加熱は、第1の酸化膜形成時の条件と
同様に出来る。即ち、基板1日の表面温度を温度測定手
段26で測定しながら、基板18の温度を例えば50℃
/秒〜200℃/妙の間の適当な割合で、好ましくは昇
温速度的100℃/秒で上昇させた後、約20秒間、1
000℃に保持するように行なう(第1図の領域■)。
Here, the substrate 18 can be heated under the same conditions as when forming the first oxide film. That is, while measuring the surface temperature of the substrate 1 day with the temperature measuring means 26, the temperature of the substrate 18 is adjusted to 50° C., for example.
After increasing the temperature at an appropriate rate between 100°C/sec and 200°C/sec, preferably at a rate of 100°C/sec,
The temperature was maintained at 000°C (area ■ in Figure 1).

このような条件で基板を加熱することによって膜厚的5
OAの酸化S(以下、説明の都合上第2の酸化膜と称す
る。)を形成出来る。なお第2の酸化膜の膜厚制御は、
第1の酸化膜の場合と同様、例えば、酸化温度、酸化時
間及び酸化ガスの流量を調整することによって行なえる
By heating the substrate under these conditions, the film thickness increases by 5.
Oxidation S of OA (hereinafter referred to as a second oxide film for convenience of explanation) can be formed. The thickness control of the second oxide film is as follows:
As in the case of the first oxide film, this can be done, for example, by adjusting the oxidation temperature, oxidation time, and flow rate of the oxidizing gas.

所望の膜厚の第2の酸化膜の形成が終了したら次に基板
18の加熱を停止する。
After the formation of the second oxide film with the desired thickness is completed, heating of the substrate 18 is then stopped.

加熱の停止と共に或は加熱停止の後(こ、バルブ46c
を閉じて酸化性ガスの供給を停止し、また、酸化膜が必
要以上に成長するのを防止するためにバルブ46d ?
開いて反応炉10内の酸素ガスを不活性ガスに置換する
At the same time or after the heating stops (this valve 46c
The valve 46d is closed to stop the supply of oxidizing gas and also to prevent the oxide film from growing more than necessary.
It is opened to replace the oxygen gas in the reactor 10 with inert gas.

次に基板18ヲ室温例えば25℃まで冷却する。Next, the substrate 18 is cooled to room temperature, for example, 25°C.

基板18が室温まで下がったら反応炉10から基板18
を取り出す。
Once the substrate 18 has cooled down to room temperature, the substrate 18 is removed from the reactor 10.
Take out.

上述の実施例の手順によれば、酸化膜形成途中において
反応炉内雰囲気を還元性ガス雰囲気に変えて酸化膜形戊
申の基板を加熱処理する工程を1回含む方法で所望の膜
厚の(この例ではおおよそ100大の)酸化膜が得られ
る。
According to the procedure of the above-mentioned example, the desired film thickness can be achieved by a method that includes the step of changing the atmosphere in the reactor to a reducing gas atmosphere and heat-treating the substrate for oxide film formation once during the formation of the oxide film. An oxide film (approximately 100 in size in this example) is obtained.

鯉10し果 第4図(A)は、上述の実施例の絶縁膜形成方法(こよ
り形成した絶縁膜の評価結果の一例を示した図である。
Fig. 4(A) is a diagram showing an example of the evaluation results of the insulating film formed by the insulating film forming method of the above-mentioned example.

具体的には、実施例の手順で膜厚10oλの酸化si有
する試料を多数作製しこれら試料に印加する電界強度(
MV/cm)を変えた時の絶線破壊発生頻度(%)を測
定した結果を示したものである。また、第4図(B)は
、絶縁膜形成途中において反応炉内雰囲気を還元性ガス
雰囲気に変えることは行なわず酸化性ガス雰囲気で連続
的(こ膜厚1oO人の酸化Sを形成した比較例の試料で
の電界強度−総締破壊発生頻度の測定結果を示した図で
ある。なお、いずれの図も、縦軸に絶縁破壊発生III
度を、横軸に電界強度をとって示しである。
Specifically, a large number of samples having Si oxide with a film thickness of 10oλ were prepared according to the procedure of the example, and the electric field strength (
MV/cm) is shown to show the results of measuring the frequency (%) of occurrence of wire breakage when changing the MV/cm. In addition, Fig. 4 (B) shows a comparison in which the insulating film was formed continuously in an oxidizing gas atmosphere without changing the atmosphere in the reactor to a reducing gas atmosphere (this film thickness was 100 mm). It is a diagram showing the measurement results of electric field strength vs. total clamping breakdown occurrence frequency for the example sample.In addition, in both diagrams, the vertical axis indicates dielectric breakdown occurrence III.
The electric field strength is shown on the horizontal axis.

第4図(A)及びCB)を比較することで明らかなよう
に、実施例の場合は耐圧が向上していることが分る。
As is clear from comparing FIG. 4(A) and CB), it can be seen that the breakdown voltage is improved in the case of the example.

上述において(よ、この発明の絶縁膜形成方法の実施例
につき説明したが、この発明はこの実施例のみ(こ限ら
れるものではなく、以下に説明するような種々の変更又
は変形を加えることが出来る。
Although the embodiment of the insulating film forming method of the present invention has been described above, the present invention is not limited to this embodiment, and various changes and modifications as described below can be made. I can do it.

上述の実施例では、各加熱処理を赤外線ランプにより行
なっているが、この加熱処理はアークランプやレーザビ
ーム、ざらにはヒーター等で行なっても良い。
In the above embodiments, each heat treatment is performed using an infrared lamp, but this heat treatment may also be performed using an arc lamp, a laser beam, or even a heater.

また、この発明の絶縁膜形成方法は、低温酸化法に適用
した場合、或いは稀釈酸化法に適用した場合にも、絶縁
膜の膜質向上が図れることは明らかである。
Further, it is clear that the insulating film forming method of the present invention can improve the quality of the insulating film even when applied to a low-temperature oxidation method or a diluted oxidation method.

また、実施例では絶縁膜の形成前に還元ガス雰囲気中及
び反応性ガス雰囲気中央々での加熱処理を行なって下地
の清浄化をしているが、設計によってはこの処理は省い
ても勿論良い。
In addition, in the example, before forming the insulating film, heat treatment is performed in a reducing gas atmosphere and a reactive gas atmosphere to clean the base, but this treatment may of course be omitted depending on the design. .

また、上述の実施例では、絶縁膜形成途中において反応
炉内雰囲気を還元性ガス雰囲気に変えて絶縁膜形成中の
基板を加熱処理する工程@1回のみとしていたが、この
回数はこれに限られるものではなく、2回以上としても
勿論良い。
Furthermore, in the above embodiment, the atmosphere in the reactor was changed to a reducing gas atmosphere during the formation of the insulating film, and the substrate on which the insulating film was being formed was heat-treated only once, but this number of times was limited to this. Of course, it is okay to do it more than once.

また、必要に応じでは、絶縁膜の形成終了後にも還元性
ガス雰囲気での加熱処理を行なうことか出来る。
Further, if necessary, heat treatment in a reducing gas atmosphere can be performed even after the formation of the insulating film is completed.

(発明の効果) 上述した説明からも明らかなように、この発明の絶縁膜
形成方法によれば、絶縁膜形成途中において反応炉内雰
囲気を還元性ガス雰囲気に変えて絶縁膜形成中の基板を
加熱処理する工程を少なくとも1回含むので、形成途中
の絶縁膜に対し還元性ガス雰囲気での加熱処理が適宜な
される。この結果、還元性ガス雰囲気での加熱処理を行
なう前までに成長じた絶縁膜部分の緻密化、欠陥除去、
表面の汚染物の除去、さらに、この絶縁膜部分に含まれ
るシリコン原子の不対結合や歪んだSi−〇−Si結合
の低減が図れる。このため、絶縁膜の膜質の改善が図れ
、特性の優れた絶縁膜が得られる。
(Effects of the Invention) As is clear from the above description, according to the insulating film forming method of the present invention, the atmosphere in the reactor is changed to a reducing gas atmosphere during the insulating film formation, and the substrate on which the insulating film is being formed is heated. Since the step of heat treatment is included at least once, the insulating film that is being formed is appropriately heat treated in a reducing gas atmosphere. As a result, the insulating film portion that had grown before the heat treatment in the reducing gas atmosphere was densified, defects removed, and
It is possible to remove surface contaminants and further reduce unpaired bonds of silicon atoms and distorted Si--Si bonds contained in this insulating film portion. Therefore, the film quality of the insulating film can be improved, and an insulating film with excellent characteristics can be obtained.

また、酸化性ガス雰囲気での加熱処理を赤外線ランプ照
射により行なった場合、基板の加熱及び冷却を応答性良
く行なえる。従って、絶縁膜の成長及びその停止を制御
性良く行なえる。このため、所望の膜厚の絶縁膜が得ら
れることは勿論のこと、絶縁膜形成途中において反応炉
内雰囲気を還元性ガス雰囲気に変える際の絶縁膜の成長
停止を容易に行なえる。
Furthermore, when the heat treatment in an oxidizing gas atmosphere is performed by irradiation with an infrared lamp, the substrate can be heated and cooled with good responsiveness. Therefore, the growth and termination of the insulating film can be performed with good controllability. Therefore, not only can an insulating film with a desired thickness be obtained, but also the growth of the insulating film can be easily stopped when the atmosphere in the reactor is changed to a reducing gas atmosphere during the formation of the insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例の絶縁膜形成方法の説明に供する図で
あり、加熱サイクルを示した図、第2図は、この発明の
詳細な説明図であり、絶縁膜形成方法の実施に好適な装
置の要部を示す断面図、 第3図は、この発明の詳細な説明図であり、絶縁膜形成
方法の実施に好適な装置の全体構成を示す図、 第4図(A)及び(B)は、実施例及び比較例の方法で
形成した絶縁膜それぞれの評価結果を示した図である。 0・・・反応炉、     IOa・・・本体Ob・・
・蓋部材、    IOc・・・昇降部材2・・・排気
手段、    12a・・・ターボ分子ポンプ2b・・
・ロータリーポンプ 4・・・ガス供給部、   14a −還元性ガス源4
b・・・反応性ガス源、 14c・・・酸化性ガス源4
d・・・不活性ガス源、 16・・・加熱部6a =赤
外線ランプ、 +6b・・・支持部材8・・・基板、 
     20・・・支持体22・・・昇降装置、  
  24・・・気密保持部材26・・・温度測定手段、
  28・・・ガス供給管30・・・排気管、    
 32a〜32d −・・真空計34.36a 〜36
f、38,40,44.46a 〜46d、48a、4
8b −・・バルブ 42・・・ガス供給系 50a、50b・・・ガス流量コントローラ。
FIG. 1 is a diagram for explaining an insulating film forming method according to an embodiment, and is a diagram showing a heating cycle, and FIG. 2 is a detailed explanatory diagram of the present invention, which is suitable for implementing the insulating film forming method. 3 is a detailed explanatory diagram of the present invention, and is a diagram showing the overall configuration of an apparatus suitable for implementing the insulating film forming method. B) is a diagram showing the evaluation results of the insulating films formed by the methods of Examples and Comparative Examples. 0... Reactor, IOa... Main body Ob...
- Lid member, IOc...Elevating member 2...Exhaust means, 12a...Turbo molecular pump 2b...
- Rotary pump 4... gas supply section, 14a - reducing gas source 4
b... Reactive gas source, 14c... Oxidizing gas source 4
d... Inert gas source, 16... Heating section 6a = infrared lamp, +6b... Supporting member 8... Substrate,
20... Support body 22... Lifting device,
24...Airtight maintenance member 26...Temperature measuring means,
28... Gas supply pipe 30... Exhaust pipe,
32a to 32d - Vacuum gauge 34.36a to 36
f, 38, 40, 44.46a ~ 46d, 48a, 4
8b--Valve 42...Gas supply system 50a, 50b...Gas flow rate controller.

Claims (5)

【特許請求の範囲】[Claims] (1)反応炉内で基板に対し酸化性ガス雰囲気中での加
熱処理を行なって該基板に絶縁膜を形成する方法におい
て、 絶縁膜形成途中において反応炉内雰囲気を還元性ガス雰
囲気に変えて絶縁膜形成中の基板を加熱処理する工程を
少なくとも1回含むこと を特徴とする絶縁膜形成方法。
(1) In a method of forming an insulating film on a substrate by performing heat treatment on the substrate in an oxidizing gas atmosphere in a reactor, the atmosphere in the reactor is changed to a reducing gas atmosphere during the formation of the insulating film. A method for forming an insulating film, the method comprising the step of heat-treating a substrate during the formation of the insulating film at least once.
(2)絶縁膜の形成前に前記基板に対し還元性ガス雰囲
気中での加熱処理と反応性ガス雰囲気中での加熱処理と
を順次に行なうことを特徴とする請求項1に記載の絶縁
膜形成方法。
(2) The insulating film according to claim 1, wherein the substrate is sequentially subjected to heat treatment in a reducing gas atmosphere and heat treatment in a reactive gas atmosphere before forming the insulating film. Formation method.
(3)前記絶縁膜を酸化膜としたことを特徴とする請求
項1に記載の絶縁膜形成方法。
(3) The insulating film forming method according to claim 1, wherein the insulating film is an oxide film.
(4)前記還元性ガスを水素ガスとしたことを特徴とす
る請求項1または2に記載の絶縁膜形成方法。
(4) The insulating film forming method according to claim 1 or 2, wherein the reducing gas is hydrogen gas.
(5)前記酸化性ガス雰囲気、還元性ガス雰囲気及び反
応性ガス雰囲気夫々での加熱処理を赤外線照射により行
なうことを特徴とする請求項1または2に記載の絶縁膜
形成方法。
(5) The insulating film forming method according to claim 1 or 2, wherein the heat treatment in each of the oxidizing gas atmosphere, reducing gas atmosphere, and reactive gas atmosphere is performed by infrared irradiation.
JP34406589A 1989-12-28 1989-12-28 Insulation film forming method Pending JPH03203236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34406589A JPH03203236A (en) 1989-12-28 1989-12-28 Insulation film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34406589A JPH03203236A (en) 1989-12-28 1989-12-28 Insulation film forming method

Publications (1)

Publication Number Publication Date
JPH03203236A true JPH03203236A (en) 1991-09-04

Family

ID=18366386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34406589A Pending JPH03203236A (en) 1989-12-28 1989-12-28 Insulation film forming method

Country Status (1)

Country Link
JP (1) JPH03203236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997789A (en) * 1995-09-29 1997-04-08 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997789A (en) * 1995-09-29 1997-04-08 Nec Corp Manufacture of semiconductor device
CN1088259C (en) * 1995-09-29 2002-07-24 日本电气株式会社 Method for mfg. semiconductor device having oxide film of high quality on semiconductor substrate

Similar Documents

Publication Publication Date Title
US5198392A (en) Method of forming a nitrided silicon dioxide (SiOx Ny) film
US4871416A (en) Method and device for cleaning substrates
US5009926A (en) Method of forming an insulating film
EP0430030A2 (en) Method of forming an insulating film
JPH03203236A (en) Insulation film forming method
JPH0669195A (en) Method of forming insulating film
JPH03244125A (en) Formation of insulating film
JPH03131027A (en) High speed heat treating method and device therefor
JPH04257226A (en) Forming method for insulating film
JP2763587B2 (en) Insulating film formation method
JPH03219632A (en) Method for formation of insulating film
JPH03134153A (en) Method and device for forming oxide film
JPH042127A (en) Formation of insulating film
JP3794816B2 (en) Vacuum heat treatment method
JPH02150029A (en) Method and apparatus for forming insulating film
JPH11186257A (en) Manufacture of semiconductor device
TWI463538B (en) Method of treating semiconductor substrate and method of treating silicon surface and system
JPH0418728A (en) Insulating film formation process
JPH04245631A (en) Oxide film forming method
JPH04257225A (en) Forming method for insulating film
JPH03154340A (en) Formation of insulating film
JPH04245636A (en) Insulating film forming method
JPH04268730A (en) Formation of insulating film
JPH04262532A (en) Formation of insulating film
JPH09235189A (en) Production of semiconductor single crystal thin film