JPH03154340A - Formation of insulating film - Google Patents

Formation of insulating film

Info

Publication number
JPH03154340A
JPH03154340A JP29367089A JP29367089A JPH03154340A JP H03154340 A JPH03154340 A JP H03154340A JP 29367089 A JP29367089 A JP 29367089A JP 29367089 A JP29367089 A JP 29367089A JP H03154340 A JPH03154340 A JP H03154340A
Authority
JP
Japan
Prior art keywords
heat treatment
insulating film
substrate
reactor
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29367089A
Other languages
Japanese (ja)
Inventor
Tomiyuki Arakawa
富行 荒川
Hisashi Fukuda
永 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP29367089A priority Critical patent/JPH03154340A/en
Publication of JPH03154340A publication Critical patent/JPH03154340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an insulating film that is superior in film quality by forming the insulating film which has specific film thickness at a base after performing heat treatment in an atmosphere of an oxidizing gas and after that, in a state that a certain heat treatment temperature is maintained, by performing heat treatment continuously in an atmosphere of an inactive gas. CONSTITUTION:An oxidizing gas, e.g. an oxygen gas is supplied in a reaction furnace 10 in order to form an insulating film having a film thickness of less than about 100Angstrom on a substrate 18 by performing heat treatment in an atmo sphere of the oxidizing gas and an oxide film is formed on the surface of the substrate after heating the substrate 18 by giving heat treatment to a heating part 16. Then, an inactive gas, e.g. an Ar gas is supplied in the reaction furnace 10 in a state that a certain heat treatment temperature in the case of forming the oxide film is maintained for the substrate 18 on which the oxide film is formed and heat treatment is carried out for hours desired. As a result, after insulating films are formed, the insulating films which are not bonded yet and have weak bonding are lessened by heat treatment in an atmosphere of the inactive gas. Each insulating film which has the film thickness of less than about 100Angstrom and is superior in film quality is thus formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は絶縁膜形成方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for forming an insulating film.

(従来の技術) 最先端技術により形成されるシリコン集積回路、特にM
OS(Metal 0xide Sem1conduc
tor)集積回路では、膜厚が極めて薄い酸化膜がゲー
ト絶縁膜に用いられる。とりわけ1.0um以下のゲー
ト長を有するサブミクロンMOSデバイスでは膜厚が例
えば100Å以下となる酸化膜が用いられ、このように
膜厚ヲ薄くすることによって利得の向上が図られている
(Conventional technology) Silicon integrated circuits formed using cutting-edge technology, especially M
OS (Metal Oxide Sem1conduc
(tor) In integrated circuits, an extremely thin oxide film is used as a gate insulating film. In particular, in submicron MOS devices having a gate length of 1.0 um or less, an oxide film having a film thickness of, for example, 100 Å or less is used, and by reducing the film thickness in this way, the gain is improved.

酸化膜の従来の形成方法の一例としては、例えば文献:
 rMO3LsI製造技術、徳山  轟、橋本 哲−編
著、日経マグロウヒル社、P、64(+985)Jに開
示されているものがあった。
As an example of a conventional method for forming an oxide film, for example, see the literature:
There was one disclosed in rMO3LsI production technology, edited by Todoroki Tokuyama and Satoshi Hashimoto, published by Nikkei McGraw-Hill, P, 64 (+985) J.

この文献に開示されている方法では、まず、電気炉によ
って800〜1200”C:に加熱した石英管内に、清
浄化した基板が配万される。その浚、酸化膜形成のため
の酸化ガスが石英管内jこ導入される。酸化ガスとして
は例えば、乾燥した酸素ガス、或は酸素及び水素の混合
ガス、或は塩酸を霧状にして酸素ガスと混合したガスが
用いられる。このような石英管内に基板を一定時間、一
定温度で放置しておくことによって基板表面に均な膜厚
の酸化膜が形成される。
In the method disclosed in this document, first, a cleaned substrate is placed in a quartz tube heated to 800 to 1200"C in an electric furnace. During its dredging, an oxidizing gas for forming an oxide film is released. The oxidizing gas used is, for example, dry oxygen gas, a mixed gas of oxygen and hydrogen, or a gas made by atomizing hydrochloric acid and mixing it with oxygen gas. By leaving the substrate in the tube for a certain period of time at a certain temperature, an oxide film of uniform thickness is formed on the surface of the substrate.

また、上述の電気炉を用いた方法1こおいて、膜厚が1
00A程度以下の薄い酸化膜を膜厚の制御性良く形成し
たい場合は、石英管の加熱温度を800℃以下の低温度
にする方法(以下、低温酸化法と称することもある。)
、または、窒素で酸素を稀釈して酸化速度の低下を図る
方法(以下、稀釈酸化法と称することもある。)がとら
れていた。
In addition, in method 1 using the electric furnace described above, the film thickness was 1
If you want to form a thin oxide film of about 00A or less with good controllability of film thickness, a method is to heat the quartz tube to a low temperature of 800°C or less (hereinafter sometimes referred to as low-temperature oxidation method).
Alternatively, a method has been used in which oxygen is diluted with nitrogen to reduce the oxidation rate (hereinafter sometimes referred to as dilution oxidation method).

また、膜厚が100A程度以下の薄い酸化膜を制御性良
く形成出来る別の方法として、例えば文献(電子材料別
冊製造装百編、工業調査金利、P。
In addition, as another method that can form a thin oxide film with a film thickness of about 100 A or less with good controllability, for example, the literature (Electronic Materials Seisakusho 100 Edition, Industrial Research Institute, p.

65、(1987) ’)に開示されているR T O
(RapidThermal 0xidation)技
術が知られでいた。この日To技術によれば、基板がタ
ングステン−ハロゲンランプ、アークランプ、レーザビ
ーム等のような好適な急速加熱源からのエネルギーによ
って数秒間で1000″C以上の温度になるまで加熱さ
れこの基板に酸化膜が形成される。
65, (1987)')
(Rapid Thermal Oxidation) technology has been known. According to today's To technology, a substrate is heated to a temperature of over 1000"C in a few seconds by energy from a suitable rapid heating source such as a tungsten-halogen lamp, an arc lamp, a laser beam, etc. An oxide film is formed.

(発明が解決しようとする課題) しかしながら、膜厚が100A程度以下の酸化膜を上述
の低温酸化法1こより形成した場合はシリコン/シリコ
ン酸化膜界面が荒れ、また、稀釈酸化法により形成した
場合は窒素がシリコン/シリコン酸化膜界面に偏析する
ため、いずれの場合も新たに界面準位が発生する等の問
題点があった。
(Problem to be Solved by the Invention) However, when an oxide film with a thickness of about 100A or less is formed using the above-mentioned low-temperature oxidation method 1, the silicon/silicon oxide film interface becomes rough, and when it is formed using the dilution oxidation method, the silicon/silicon oxide film interface becomes rough. Since nitrogen segregates at the silicon/silicon oxide film interface, there are problems such as the generation of new interface states in both cases.

また、低温酸化法又は稀釈酸化法により形成した酸化膜
はw1密ではなく、シリコン/シリコン酸化膜界面に、
例えばシリコン原子の不対結合ヤあるいは歪んだ5i−
0−8i結合が多く存在するため、そもそも界面準位が
高くなる傾向があった。
In addition, the oxide film formed by low-temperature oxidation method or dilution oxidation method is not w1-dense, and the silicon/silicon oxide film interface has
For example, a dangling bond in a silicon atom or a distorted 5i-
Since there are many 0-8i bonds, there is a tendency for the interface state to become high in the first place.

従ってこのような酸化膜を、MO8型電界効果トランジ
スタのゲート電極として使用する場合、上述の現象に起
因する種々の問題が生じてしまう0例えばゲート長1.
0um以下の微細MO8型電界効果トランジスタにおい
では、チャネル領域で発生したホットエレクトロンがこ
の酸化膜に侵入した場合、電子はこの酸化膜中のシリコ
ン原子の不対結合や、歪んだ5i−0結合にトラップさ
れ、新たな界面準位を発生させ、そのためMO8型トラ
ンジスタにおける閾値電圧の変動や伝達コンダクタンス
の低下を引き起すという問題点が生じる。
Therefore, when such an oxide film is used as a gate electrode of an MO8 type field effect transistor, various problems arise due to the above-mentioned phenomena.For example, gate length 1.
In a micro MO8 field effect transistor with a thickness of 0 um or less, when hot electrons generated in the channel region enter this oxide film, the electrons are transferred to unpaired bonds or distorted 5i-0 bonds of silicon atoms in this oxide film. A problem arises in that it is trapped and generates a new interface state, which causes a fluctuation in the threshold voltage and a decrease in the transfer conductance in the MO8 type transistor.

一方、RTO技術により形成した酸化膜は、上述の低温
酸化法又は稀釈酸化法で形成した酸化膜よりは、酸化温
度が高い分また窒素を含ませる必要がない分、膜品質は
優れるものの、シリコン原子の不対結合や、歪んだ5i
−0結合等の影響がまだあり改善が望まれでいた。
On the other hand, the oxide film formed by RTO technology has better film quality than the oxide film formed by the above-mentioned low-temperature oxidation method or diluted oxidation method, since the oxidation temperature is higher and there is no need to include nitrogen, but silicon Unpaired bonds of atoms and distorted 5i
There were still effects such as -0 coupling, and improvements were desired.

この発明はこのような点に鑑みなされたものであり、従
ってこの発明の目的は、膜厚が100λ程度以下の絶縁
膜であって然も膜質が優れる絶縁膜を形成出来る方法を
提供することにある。
The present invention was made in view of the above points, and therefore, an object of the present invention is to provide a method for forming an insulating film having a thickness of approximately 100λ or less and having excellent film quality. be.

(課題を解決するための手段) この目的の達成を図るため、この発明の絶縁膜形成方法
によれば、下地を反応炉内に設置し酸化牲ガス雰囲気中
で加熱処理を行なって前述の下地に100λ程度以下の
膜厚の絶縁膜を形成する工程と、 絶縁膜形成済みの下地に対し絶縁膜形成時の加熱処理温
度を保持した状態で連続して不活性ガス雰囲気中で熱処
理する工程と を含むことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the insulating film forming method of the present invention, the base is placed in a reaction furnace and heat-treated in an oxidizing gas atmosphere. a step of forming an insulating film with a thickness of about 100λ or less, and a step of continuously heat-treating the base on which the insulating film has been formed in an inert gas atmosphere while maintaining the heat treatment temperature used for forming the insulating film. It is characterized by including.

なお、ここで云う下地とは例えばシリコン基板等のよう
な基板、シリコン基板上に工とタキシャルシリコン層を
具えるようなもの、ざらにはこれらに半導体素子等が作
り込まれた中間物等のことである。
Note that the base mentioned here includes, for example, a substrate such as a silicon substrate, a silicon substrate with a silicon substrate and a taxial silicon layer, and an intermediate material in which a semiconductor element or the like is built into these substrates. That's true.

また、ここで云う100λ程度以下の酸化膜を形成する
工程とは、例えば既に説明した低温酸化法、稀釈酸化法
、又はRTO技術等を用いた工程等のことであり、10
0λ程度以下の酸化膜形成に当たり膜厚の制御が容易に
行なえる技術を用いた工程である。なお、100λ程度
の膜厚とは、例えばゲート長1.0um以下の微細MO
3型電界効果トラシジスタのゲート酸化膜等に用い得る
ような膜厚の意味であり100大に限定されるものでな
いことは理解されたい。
Furthermore, the process of forming an oxide film with a thickness of about 100λ or less referred to here refers to a process using, for example, the already explained low-temperature oxidation method, dilution oxidation method, or RTO technology, etc.
This is a process that uses technology that allows easy control of film thickness in forming an oxide film with a thickness of approximately 0λ or less. Note that a film thickness of about 100λ means, for example, a fine MO with a gate length of 1.0um or less.
It should be understood that this refers to a film thickness that can be used for a gate oxide film of a type 3 field effect transistor, and is not limited to 100 mm.

なお、この発明の実施に当たり、絶縁膜形成時の熱処理
及び絶縁膜形成後に加熱処理温度を保持することを赤外
線照射(こよって行なうのが好適である。
In carrying out the present invention, it is preferable to carry out the heat treatment during the formation of the insulating film and to maintain the heat treatment temperature after forming the insulating film by infrared irradiation.

また、この発明の実施に当たり、絶縁膜形成前の下地に
対し、還元ガス雰囲気中での加熱処理と反応性ガス雰囲
気中での加熱処理とを順次行ない下地の清浄化を図るの
が好適である。そしてこの清浄化の際の各加熱処理も、
赤外線照射によって行なうのが好適である。
Further, in carrying out the present invention, it is preferable to sequentially perform heat treatment in a reducing gas atmosphere and heat treatment in a reactive gas atmosphere on the base before forming the insulating film to clean the base. . And each heat treatment during this cleaning,
Preferably, this is carried out by infrared irradiation.

(作用) この発明の絶縁膜形成方法によれば、絶縁膜を形成した
後に連続的にこの絶縁膜に対して不活性ガス雰囲気中で
の熱処理がなされる。このため、絶縁膜形成後の絶縁膜
が、下地と酸化膜との界面及び又は酸化膜中に未結合或
いは弱い5i−8i結合、5i−0結合、〇−〇結合を
数多く含む構造となっていても、不活゛注ガス雰囲気中
での加熱処理によって未結合や弱い結合が減少するよう
になる。従って、後述する実験結果からも明らかなよう
に酸化膜の電気的特性の向上が図れる。
(Function) According to the insulating film forming method of the present invention, after the insulating film is formed, the insulating film is continuously subjected to heat treatment in an inert gas atmosphere. Therefore, after the insulating film is formed, the insulating film has a structure containing many unbonded or weak 5i-8i bonds, 5i-0 bonds, and 〇-〇 bonds at the interface between the base and the oxide film and/or in the oxide film. However, unbonded and weak bonds can be reduced by heat treatment in an inert gas atmosphere. Therefore, as is clear from the experimental results described later, the electrical characteristics of the oxide film can be improved.

また、絶縁膜形成後の熱処理の雰囲気が不活性ガス雰囲
気であるため、絶縁膜はその成長が実質的に停止された
状態でかつ不用な反応等が主しることのない状態でアニ
ール処理される。ざらに絶縁膜形成後同一反応炉内で連
続的に熱処理がなされるので絶縁膜が汚染されることも
ない。
In addition, since the atmosphere for heat treatment after forming the insulating film is an inert gas atmosphere, the insulating film is annealed in a state in which growth is substantially stopped and unnecessary reactions do not occur. Ru. Since heat treatment is performed continuously in the same reactor after forming the insulating film, the insulating film is not contaminated.

また、各加熱処理を赤外線の照射により行なうと、急速
加熱及び急速冷却が可能になるので、反応の開始停止の
制御が容易でありひいては!l!縁膜の膜厚制御も容易
になる。
Furthermore, if each heat treatment is performed by irradiation with infrared rays, rapid heating and rapid cooling becomes possible, which makes it easy to control the start and stop of the reaction. l! It also becomes easier to control the thickness of the membrane.

(実施例) 以下、図面を参照してこの発明の絶縁膜形成方法の実施
例につき説明する。なお、図面はこれら発明が理解出来
る程度に、各構成成分の寸法、形状及び配設位1を概略
的に示しているにすぎない。従って各構成成分の寸法、
形状及び耐重間係は図示例に限定されるものではない。
(Example) Hereinafter, an example of the insulating film forming method of the present invention will be described with reference to the drawings. Note that the drawings only schematically show the dimensions, shapes, and arrangement positions 1 of each component to the extent that these inventions can be understood. Therefore, the dimensions of each component,
The shape and weight capacity are not limited to the illustrated example.

また、以下の説明では、特定の材料及び特定の数値的条
件を挙げで説明するが、これら材料及び条件は単なる好
適例にすぎず、従ってこれら発明がこれらの材料及び条
件に限定されるものではないことは理解されたい。
Further, in the following description, specific materials and specific numerical conditions will be listed and explained, but these materials and conditions are merely preferred examples, and therefore, the invention is not limited to these materials and conditions. Please understand that there is no such thing.

まず、この発明の絶縁膜形成方法の実施に好適な絶!!
@形成装雷の構成につき説明する。
First, we will start with an absolute material suitable for carrying out the insulating film forming method of the present invention. !
I will explain the configuration of the @formation mine.

第2図はこのw!緯模膜形成装置主要部(主として反応
炉及び加熱部の構成)を概略的に示す断面図である。な
お、第2図では反応炉内に下地どりての例えばシリコン
基板(以下、基板と略称することもある。)を設置した
状態を示す。
The second figure is this lol! FIG. 2 is a cross-sectional view schematically showing the main parts of the lattice pattern forming apparatus (mainly the configuration of a reactor and a heating section). In addition, FIG. 2 shows a state in which, for example, a silicon substrate (hereinafter sometimes abbreviated as a substrate) with a base layer is placed in the reactor.

また第3図は、w!縛模膜形成装置全体構成を概略的に
示す図である。
Also, Figure 3 shows w! FIG. 1 is a diagram schematically showing the overall configuration of a binding film forming apparatus.

第3図にも示すように、この絶縁膜形成後雷は、基板が
設置される反応炉10と、反応炉10内の真空排気を行
なうための排気手段12と、反応炉1゜に接続されるガ
ス供給部14と、基板を急速加熱処理するための加熱部
16とを備えで成る。以下、この実施例の装置の詳細な
構造の説明を行なう。
As shown in FIG. 3, the lightning after forming the insulating film is connected to the reactor 10 in which the substrate is installed, the exhaust means 12 for evacuating the inside of the reactor 10, and the reactor 1°. The heating section 16 includes a gas supply section 14 for rapidly heating the substrate. The detailed structure of the apparatus of this embodiment will be explained below.

第2図にも示すようにこの実施例では、反応炉(チャン
バー)10を例えば本体10a 、 M部材10b及び
昇降部材10cから構成する。本体10a及び昇降部材
10cの形成材料としては例えば、ステンレスを、また
蓋部材10b及び後述の支持体2Qの形成材料としては
、例えば石英を用いる。
As shown in FIG. 2, in this embodiment, the reactor (chamber) 10 is composed of, for example, a main body 10a, an M member 10b, and an elevating member 10c. For example, stainless steel is used as the material for forming the main body 10a and the lifting member 10c, and quartz, for example, is used as the material for forming the lid member 10b and the support body 2Q, which will be described later.

本体10a及び昇降部材10cは分離可能に一体となっ
て凹部aを形成するものであり、昇降部材10cの凹部
aの側に基板18を載せるための支持体20を設けて昇
降部材10cの昇降によって支持体20をのせた基板1
8を反応炉10内へ入れ或は反応炉1゜外へ取り出せる
ようにする0図示例では昇降部材10cを例えば機械的
に昇降させるための昇降装置22と連結させている。
The main body 10a and the elevating member 10c are integrally separable to form a recess a, and a support 20 for placing the substrate 18 on the recess a of the elevating member 10c is provided so that the elevating member 10c can be moved up and down. Substrate 1 with support 20 placed on it
8 into the reactor 10 or taken out from the reactor 10. In the illustrated example, a lifting member 10c is connected to a lifting device 22 for mechanically raising and lowering, for example.

また蓋部材10bを着脱自在に本体10aに取り付ける
0本体10aと蓋部材10b及び昇降部材10cとの間
には気密保持部材24例えばパイトンパツキンを設けて
おり、従って反応炉10内の真空引きを行なった際に気
密保持部材24を介し、気密状態が形成できる。
Furthermore, an airtight retaining member 24, for example, a piton packing, is provided between the main body 10a, which attaches and detaches the lid member 10b to the main body 10a, the lid member 10b, and the elevating member 10c, so that the inside of the reactor 10 is evacuated. When this happens, an airtight state can be created via the airtight maintenance member 24.

また凹部aの基板近傍位百に基板18の表面温度を測定
するための湿度測定手段26例えばオプティカルパイロ
メータを設ける。
Further, a humidity measuring means 26, such as an optical pyrometer, for measuring the surface temperature of the substrate 18 is provided in the concave portion a near the substrate.

ざらにこの実施例では加熱部161v任意好適な構成の
赤外線照射手段、例えば赤外線ランプ16aとこの手段
16aを支持するための支持部材+6bとを以って構成
する。赤外線ランプ16aとしてはクンゲステン−ハロ
ゲンランプその他の任意好適なランプを用いる。好まし
くは、複数個の赤外線ランプ16aを反応炉10内の加
熱を均一に行なえるように配フする。
Roughly speaking, in this embodiment, the heating section 161v is constituted by an infrared irradiation means of any suitable structure, for example, an infrared lamp 16a and a support member +6b for supporting this means 16a. The infrared lamp 16a may be a Kungesten-halogen lamp or any other suitable lamp. Preferably, a plurality of infrared lamps 16a are distributed so as to uniformly heat the interior of the reactor 10.

ざら(ここの実施例では赤外線ランプ16aを、反応炉
10外の蓋部材+obと対向する位買に配冒しでいる。
In this embodiment, an infrared lamp 16a is placed outside the reactor 10 in a position facing the lid member +ob.

赤外線ランプ16aを反応炉10外に設置することによ
り、赤外線ランプ16aを酸化ガス雰囲気、反応゛注ガ
ス雰囲気等から遮断できるので、ランプの長寿命化が図
れる。また、既に説明したように蓋部材10bは石英で
構成しであるので赤外線は蓋部材10bを容易に透過し
基板18に達する。
By installing the infrared lamp 16a outside the reactor 10, the infrared lamp 16a can be isolated from the oxidizing gas atmosphere, the reaction gas atmosphere, etc., thereby extending the life of the lamp. Further, as described above, since the lid member 10b is made of quartz, infrared rays easily pass through the lid member 10b and reach the substrate 18.

支持部材tabの配設位M8これ1こ限定するものでは
ないが、図示例では支持部材+6bを支持部材+6bと
本体10aとの間に蓋部材10b及び本体10aの当接
部を閉じ込めるように、本体10aに着脱自在に取り付
け、さらに支持部材+6bと本体10との間に気密保持
部材24ヲ設ける。このように支持部材+6bを設ける
ことによって反応炉10内の真空気累性の向上が図れる
The arrangement position M8 of the support member tab is not limited to one, but in the illustrated example, the support member +6b is set so that the abutting portions of the lid member 10b and the main body 10a are confined between the support member +6b and the main body 10a. The airtight member 24 is detachably attached to the main body 10a and is further provided between the support member +6b and the main body 10. By providing the support member +6b in this manner, the vacuum stability within the reactor 10 can be improved.

尚、第2図fこおいて符号28は反応炉10及びガス供
給部14の間に設けたガス供給管、また30は反応炉1
0及び排気手段12の間に設けた排気管を示す。
Note that in FIG.
0 and the exhaust pipe provided between the exhaust means 12.

次1こ第3図を参照してこの実施例の真空排気系及びガ
ス供給系につき説明する。尚、真空排気系及びガス供給
系を以下に述べる例に限定するものではない。
Next, the vacuum evacuation system and gas supply system of this embodiment will be explained with reference to FIGS. Note that the vacuum evacuation system and gas supply system are not limited to the examples described below.

まず真空排気系につき説明する。この実施例では排気手
段12ヲ例えばターボ分子ポンプ12aとこのポンプ1
2aと接続されたロータリーポンプ12bとを以って構
成する。排気手段12を例えば図示のように配設した排
気管30及びバルブを介して反応炉10と連通させて接
続する。
First, the vacuum evacuation system will be explained. In this embodiment, the exhaust means 12 includes, for example, a turbo molecular pump 12a and this pump 1.
2a and a connected rotary pump 12b. The exhaust means 12 is connected in communication with the reactor 10 via, for example, an exhaust pipe 30 and a valve arranged as shown.

第3図において32a〜32dは排気管30に連通させ
て設けた真空計(或は圧力ゲージ)であり、真空計32
a及び32d 1例えば1〜1O−3Torrの範囲の
圧力測定に用いるバラトロン真空計(或いはビラニー真
空計)とし、また真空計32b及び32c @例えば1
0−’ 〜10−’To r rの範囲の圧力測定に用
いるイオンゲージとする。真空計32bと排気管30と
の闇には真空計32b !保護するための自動開閉バル
ブ34を設け、真空計32bの動作時に真空計32bに
対して10−3To r r以上の圧力を負荷しないよ
う1こバルブ34の開閉を自動制御する。36a〜36
fは排気手段12及び反応炉10の間に設けられる自動
開閉バルブであり、これらバルブ36a〜36f %そ
れぞれ任意好適に開閉することによって、反応炉10内
の圧力を任意好適な圧力に制御し反応炉10内に低真空
排気状態及び高真空排気状態を形成する。
In FIG. 3, 32a to 32d are vacuum gauges (or pressure gauges) provided in communication with the exhaust pipe 30.
a and 32d 1 For example, Baratron vacuum gauge (or Villany vacuum gauge) used for pressure measurement in the range of 1 to 1 O-3 Torr, and vacuum gauges 32b and 32c @For example 1
The ion gauge is used for pressure measurement in the range of 0-' to 10-'Torr. In the darkness between the vacuum gauge 32b and the exhaust pipe 30 is the vacuum gauge 32b! An automatic opening/closing valve 34 is provided for protection, and the opening/closing of the single valve 34 is automatically controlled so as not to apply a pressure of 10<-3 >Torr or more to the vacuum gauge 32b during operation of the vacuum gauge 32b. 36a-36
f is an automatic opening/closing valve provided between the exhaust means 12 and the reactor 10, and by opening and closing these valves 36a to 36f as desired, the pressure inside the reactor 10 is controlled to an arbitrary desired pressure and the reaction is started. A low vacuum evacuation state and a high vacuum evacuation state are created in the furnace 10.

ざらに38は圧力調整用のニードルバルブ及び40はレ
リーフバルブであり、バルブ40は反応炉10内の圧力
が大気圧以上になった場合例えば780Torrを越え
た場合に自動的に開放し、バルブ40の開放によってガ
ス供給部14から反応炉10内へ供給されたガスを排気
する。
Roughly, 38 is a needle valve for pressure adjustment, and 40 is a relief valve, and the valve 40 automatically opens when the pressure inside the reactor 10 exceeds atmospheric pressure, for example, when it exceeds 780 Torr. By opening the gas supply section 14, the gas supplied into the reactor 10 is exhausted.

次にガス供給部につき説明する。この実施例ではガス供
給品14ヲ還元性ガス源14a、反応性ガス源14b、
酸化牲ガス源14c及び不活性ガス源+4dを以って構
成する。このガス供給部14を例えば図示のように配設
した供給管28及びバルブを介して反応炉10と連通さ
せで接続する。
Next, the gas supply section will be explained. In this embodiment, the gas supplies 14 include a reducing gas source 14a, a reactive gas source 14b,
It consists of an oxidizing gas source 14c and an inert gas source +4d. This gas supply section 14 is connected in communication with the reactor 10 via, for example, a supply pipe 28 and a valve arranged as shown in the figure.

第3図において42はガス供給系、44はバルブ、46
a、46b及び48a、 48bは自動開閉バルブ、5
0a。
In FIG. 3, 42 is a gas supply system, 44 is a valve, and 46
a, 46b and 48a, 48b are automatic opening/closing valves, 5
0a.

50bはガス供給部14から反応炉ガスへ導入されるガ
スに関する自動ガス流量コントローラである。
50b is an automatic gas flow controller for the gas introduced from the gas supply section 14 into the reactor gas.

バルブ44.48a 、 48b 、 46a、46b
をそれぞれ任意好適に開閉することによって、所望のガ
スをガス供給部14から反応炉10へ供給できる。
Valve 44.48a, 48b, 46a, 46b
A desired gas can be supplied from the gas supply section 14 to the reactor 10 by opening and closing each of them as desired.

なお、この実施例では加熱処理を赤外線照射により行な
う例としているため、加熱部16ヲ赤外線ランプ16a
 %具える構成としている。しかし、加熱部16の構成
及び配設位置は後述する加熱処理を行なえる任意好適な
構成及び配設(i2置として良く例えば、加熱部16を
ヒーターを以って構成し、このヒーターを反応炉10内
に設けるようにしても良い。
In this embodiment, since the heat treatment is performed by infrared irradiation, the heating section 16 is equipped with an infrared lamp 16a.
%. However, the configuration and arrangement position of the heating section 16 may be any suitable configuration and arrangement (i2 position may be used) that can perform the heat treatment described later.For example, the heating section 16 may be configured with a heater, and this heater may be It may be arranged within 10.

法の   の 次に、第2図及び第3図を用いて説明した絶縁膜形成製
Mを用いた例(こよりこの発明の絶縁膜形成方法の実施
例につき説明する。なお、この実施例では絶縁膜をシリ
コン酸化膜とする。
Next, an example using the insulating film forming method described using FIGS. 2 and 3 will be described. The film is a silicon oxide film.

第1図は、この発明の説明に供する加熱サイクルを説明
するための図である。第1図の横軸は時間及び縦軸は温
度をプロットしで示しでいる。また、以下の説明では第
2図、第3図を適宜参照されたい。
FIG. 1 is a diagram for explaining a heating cycle used to explain the present invention. In FIG. 1, the horizontal axis plots time and the vertical axis plots temperature. Also, please refer to FIGS. 2 and 3 as appropriate in the following description.

この実施例では基板18としてシリコン基板を用意し、
先ずこの基板18の清浄化を行なってから、絶縁膜(シ
リコン酸化膜、以下酸化膜と略称することもある。)の
成膜及び成膜後の不活性ガス雰囲気中での熱処理を行な
う、以下、これにつき順次説明する。
In this embodiment, a silicon substrate is prepared as the substrate 18,
First, this substrate 18 is cleaned, and then an insulating film (silicon oxide film, hereinafter sometimes abbreviated as oxide film) is formed and a heat treatment is performed in an inert gas atmosphere after the film formation. , which will be explained in turn.

■・・・清浄化 絶縁膜の成膜前の基板の清浄化を以下に説明するように
行なう。
(2) Cleaning Cleaning of the substrate before forming an insulating film is performed as described below.

〈予備処理〉 まず、予備処理として、シリコン基板18に対し、従来
行なわれている如く化学薬品及び純水等を用いて酸化前
洗浄を先ず行なう。
<Pre-treatment> First, as a pre-treatment, the silicon substrate 18 is first subjected to pre-oxidation cleaning using chemicals, pure water, etc., as is conventionally done.

さらに予備処理としで、反応炉10内で基板18に自然
酸化膜が形成されるのを防止するため、バルブ46d、
 48b、44を開は不活性ガス源+4dから反応炉1
0内に不活性ガスとして例えばアルゴン(Ar)ガスを
予め導入しておく、還元性ガス、反応性ガス、酸化牲ガ
スはまだ導入しない。
Further, as a preliminary treatment, a valve 46d,
48b and 44 are opened from the inert gas source +4d to the reactor 1.
For example, argon (Ar) gas is introduced in advance as an inert gas into the 0.Reducing gas, reactive gas, and oxidizing gas are not introduced yet.

次に反応炉10内に基板1日を設置する。基板18は昇
降部材10cの支持体20上に固定する。
Next, a substrate is placed in the reactor 10 for one day. The substrate 18 is fixed on a support 20 of the elevating member 10c.

これらの予備処理後、基板18表面の清浄化処理を行な
う、この清浄化処理は、還元性ガス雰囲気中、続いて反
応性ガス雰囲気中で順次に加熱処理を行なって基板18
を反応炉10内で清浄化する。
After these preliminary treatments, the surface of the substrate 18 is cleaned by sequentially heating it in a reducing gas atmosphere and then in a reactive gas atmosphere.
is cleaned in the reactor 10.

以下、この基板の清浄化処理工程につき説明する。The cleaning process for this substrate will be explained below.

く自然酸化膜の除去〉 基板の清浄化に当たり、まずバルブ48b、46d ′
iFr閉して不活性ガス源+4dからのガス導入を停止
する。
Removal of natural oxide film> When cleaning the substrate, first remove the valves 48b and 46d'.
iFr is closed to stop gas introduction from the inert gas source +4d.

次に排気手段12によって反応炉10内を例えば1 x
 10−’To r rの高真空に真空排気し、反応炉
10内を清浄化する。この真空排気は、バルブ38.3
6a 、36f 、34.44ヲ閉じておイテバルブ3
8c 、36dを開きロータリーポンプ12bを作動さ
せ、反応炉10内の圧力を真空計32aでモニター(監
視)しながら真空排気を行なう、そして反応炉10内が
例えばlX70−”Torrの圧力となった復、バルブ
36c 、36d %閉じでバルブ36e 、34を開
き、真空計32bで反応炉10内の圧力をモニターしな
からlX10〜’Torrまで反応炉10内を排気する
ことで行なえる。
Next, the inside of the reactor 10 is pumped by the exhaust means 12, for example, 1 x
The inside of the reactor 10 is cleaned by evacuation to a high vacuum of 10-' Torr. This evacuation is performed by valve 38.3.
6a, 36f, 34. Close valve 3.
8c and 36d are opened, the rotary pump 12b is activated, and the pressure inside the reactor 10 is evacuated while being monitored with the vacuum gauge 32a, and the pressure inside the reactor 10 is, for example, 1X70-'' Torr. This can be done by closing the valves 36c and 36d %, opening the valves 36e and 34, and evacuating the inside of the reactor 10 to lX10 to 'Torr while monitoring the pressure inside the reactor 10 with the vacuum gauge 32b.

反応炉10内を上述のように高真空に排気したら、次に
バルブ36a、36b、36d、36eを閉じる。その
後、バルブ44,48a、 46aを開け、還元性ガス
源14aから還元性ガス例えば水素を供給する(第1図
のH270−)、この際バルブ36f 、34%開き、
真空計32bで反応炉10内の圧力をモニターしながら
、反応炉10内を例えば100〜1(12T。
After the reactor 10 is evacuated to a high vacuum as described above, the valves 36a, 36b, 36d, and 36e are then closed. Thereafter, the valves 44, 48a, and 46a are opened, and a reducing gas such as hydrogen is supplied from the reducing gas source 14a (H270- in FIG. 1). At this time, the valve 36f is opened by 34%.
While monitoring the pressure inside the reactor 10 with the vacuum gauge 32b, the inside of the reactor 10 was measured at a pressure of, for example, 100 to 1 (12T).

rrの低真空の減圧状態に維持する。Maintain a low vacuum of rr.

次に、加熱部16によって基板18の自然酸化膜の除去
のための加熱処理を行なうため、加熱部16の赤外線ラ
ンプ16aからの赤外線1こよって還元性ガス雰囲気中
で基板18を加熱し、基板18の自然酸化膜を還元しこ
の自然酸化膜を基板18から除去する0反応炉10内を
減圧状態に維持しながら加熱処理を行なうことによって
自然酸化膜の還元による反応生成物が反応炉10外へ排
気され、その結果、反応生成物によって基板18及び反
応炉10内が汚染される程度を低減出来る。
Next, in order to perform a heat treatment to remove the natural oxide film of the substrate 18 by the heating section 16, the substrate 18 is heated in a reducing gas atmosphere using infrared rays 1 from the infrared lamp 16a of the heating section 16, and the substrate 18 is heated in a reducing gas atmosphere. By reducing the natural oxide film of 18 and removing this natural oxide film from the substrate 18, the reaction products from the reduction of the natural oxide film are removed from the outside of the reactor 10 by performing heat treatment while maintaining the inside of the reactor 10 in a reduced pressure state. As a result, the degree of contamination of the substrate 18 and the inside of the reactor 10 by reaction products can be reduced.

この加熱処理では、基板1Bの表面温度を温度測定手段
26で測定しながら、例えば基板18の表面温度を50
℃/秒〜200℃/秒の間の適当な割合で、好ましくは
、約100”C/秒で上昇させて約1000’Cとなっ
たら約10〜30秒M1000℃の状態を保持するよう
に(第1図の領域工)基板1日の加熱を制御する。
In this heat treatment, while measuring the surface temperature of the substrate 1B with the temperature measuring means 26, for example, the surface temperature of the substrate 18 is
The temperature is increased at an appropriate rate between 100° C./second and 200° C./second, preferably about 100° C./second, and once the temperature reaches about 1000° C., the temperature is maintained at 1000° C. for about 10 to 30 seconds. (Area engineering in Figure 1) Controls the heating of the substrate for one day.

次に、加熱部16による基板18の加熱を停止すると共
にバルブ46aを閉じて還元性ガスの供給を停止し、そ
して基板18の表面温度が室温例えば25℃となるまで
基板18が冷却するのを待つ、この冷却は基板18が自
然に冷却するようにしても良いし、強制的に冷却するよ
うにしても良い0強制冷却は、例えばバルブ48a、4
6a @開けて不活性ガスを大量に反応炉10内に導入
することによって行なえる。
Next, the heating of the substrate 18 by the heating unit 16 is stopped, the valve 46a is closed, the supply of reducing gas is stopped, and the substrate 18 is cooled until the surface temperature of the substrate 18 reaches room temperature, for example, 25°C. Wait, this cooling may be done by allowing the board 18 to cool naturally or by forcing it.
6a This can be done by opening the reactor 10 and introducing a large amount of inert gas into the reactor 10.

次に、バルブ38.36at閉じてバルブ36b、 3
6eを開けて反応炉10内を例えば1 x 10−’T
o r rの高真空に排気し、反応炉10内を清浄化す
る。
Next, valves 38 and 36at are closed and valves 36b and 3 are closed.
6e and inside the reactor 10, for example, 1 x 10-'T.
The inside of the reactor 10 is cleaned by evacuating to a high vacuum of o r r.

〈基板表面の清浄化〉 次に、バルブ36b、36e IFr閉じてバルブ38
.36at開き及びバルブ48a、46bを開き、反応
性ガス例えば重量比で1%塩酸−99%水素ガスの比で
塩酸を霧状(こして水素ガスと混合したガスを反応炉1
0内に導入する(第1図のHCρフロー)0反応゛江ガ
スの導入に当たっては、次に行なう反応性ガス雰囲気中
での加熱処理において反応炉10内の減圧状態8維持す
るために、自然酸化膜除去の際の加熱処理と同様にして
反応炉10内を例えば100〜100−2Torrの低
真空の減圧状態に維持する。
<Cleaning of the substrate surface> Next, close the valves 36b and 36e and close the IFr valve 38.
.. 36at is opened and the valves 48a and 46b are opened, and a reactive gas such as 1% hydrochloric acid to 99% hydrogen gas (by weight ratio) is sprayed into the reactor 1.
When introducing the reactive gas into the reactor 10 (HCρ flow in Figure 1), a natural The interior of the reactor 10 is maintained at a low vacuum of, for example, 100 to 100<-2 >Torr in the same manner as the heat treatment for removing the oxide film.

次に加熱部16によって加熱処理を行なう、この処理に
よって熱的に活性化された反応性ガスが基板18に付着
している無機物等の不純物を除去する。反応性ガスの熱
的活性化はこの実施例の場合は反応性ガスに赤外線を照
射することにより行なう0反応炉10内を減圧状態に維
持しながら加熱処理を行なうので、基板18のエツチン
グによる揮発性の反応生成物が反応炉10外へ排気され
、その結果、反応生成物によって基板18及び反応炉1
0内が汚染される度合を低減出来る。
Next, heat treatment is performed by the heating unit 16, and a reactive gas thermally activated by this treatment removes impurities such as inorganic substances adhering to the substrate 18. In this embodiment, the thermal activation of the reactive gas is carried out by irradiating the reactive gas with infrared rays.Since the heat treatment is carried out while maintaining the inside of the reactor 10 in a reduced pressure state, volatilization due to etching of the substrate 18 is prevented. The reaction products are exhausted to the outside of the reactor 10, and as a result, the reaction products damage the substrate 18 and the reactor 1.
The degree of contamination within 0 can be reduced.

この基板表面の清浄化は、例えば、基板18の表面温度
を約1000℃に保持するように基板18を加熱しなが
ら(第1図の領域■)約20秒周、反応性ガスによる基
板18のエツチングを行なえば良い。
This cleaning of the substrate surface is carried out, for example, by heating the substrate 18 so as to maintain the surface temperature of the substrate 18 at approximately 1000° C. (region ■ in FIG. 1), and cleaning the substrate 18 with a reactive gas for approximately 20 seconds. Just do some etching.

次に、加熱部16による加熱処理を停止すると共にバル
ブ46bを閉じて反応性ガスの供給を停止し、基板18
が室温まで冷却するのを待つ。この冷却は基板18の自
然冷却としても良いし、強制冷却としても良い。
Next, the heating process by the heating section 16 is stopped, the valve 46b is closed, the supply of reactive gas is stopped, and the substrate 18 is stopped.
Wait for it to cool to room temperature. This cooling may be performed by natural cooling of the substrate 18 or by forced cooling.

次に、バルブ38.36a!閉じ、バルブ36b、36
eを開き反応炉10内を例えば1xlO−8Torrの
高真空に排気する。
Next, valve 38.36a! Closed, valves 36b, 36
e is opened and the inside of the reactor 10 is evacuated to a high vacuum of, for example, 1xlO-8 Torr.

■・・・酸化膜の成膜 次に、酸化牲ガス雰囲気中で加熱処理を行なって基板1
8に100λ程度以下の膜厚の絶縁層を形成するため、
バルブ36b、36eを閉じ、バルブ38゜36a、4
8b、46cを開き酸化牲ガス例えば酸素ガスを反応炉
10内に供給する(第1図の02フロー)。
■... Formation of oxide film Next, heat treatment is performed in an oxidizing gas atmosphere to form the substrate 1.
8 to form an insulating layer with a thickness of about 100λ or less,
Close the valves 36b and 36e, and close the valves 38° and 36a and 4.
8b and 46c are opened to supply an oxidizing gas such as oxygen gas into the reactor 10 (flow 02 in FIG. 1).

酸化膜形成は大気圧下でも行なえるが、酸化膜形成時の
反応性生成物@渋応炉10外に排気するため、反応炉1
0内を例えば100〜10−2To r rの低真空の
減圧状態に維持するのが好ましい。この状態で加熱部1
6による加熱処理によって基板18を加熱して基板表面
に酸化膜を形成する。
Although oxide film formation can be performed under atmospheric pressure, the reactive products at the time of oxide film formation are exhausted outside the reactor 10.
It is preferable to maintain the inside of the chamber at a low vacuum of, for example, 100 to 10<-2 >Torr. In this state, heating section 1
The substrate 18 is heated by the heat treatment according to No. 6 to form an oxide film on the surface of the substrate.

この基板18の加熱は加熱部16の赤外線ラシブ16a
によって行なう、この際に、基板18の表面温度を温度
測定手段26で測定しながら、基板18の温度が例えば
50℃/秒〜200”C/秒の間の適当な割合で、好ま
しくは昇温速度約り00℃/秒で、約20秒問、100
0℃に保持するように行なう(第1図の領域III)、
この場合、温度の上昇割合が一定となるように加熱を行
なうのが好適であるが、それは酸化膜の成長度合を一定
にして品質の良い酸化膜を形成するためである。このよ
うな条件で基板を加熱することによって膜厚約100人
の酸化膜を形成出来る。なお酸化膜の膜厚制御は例えば
、酸化温度、酸化時間及び酸化ガスの流ffiを調整す
ること1こよフて行なえる。
The substrate 18 is heated by the infrared radiation 16a of the heating section 16.
At this time, while measuring the surface temperature of the substrate 18 with the temperature measuring means 26, the temperature of the substrate 18 is preferably increased at an appropriate rate between, for example, 50"C/sec to 200"C/sec. At a speed of about 00℃/sec, about 20 seconds, 100
The temperature is maintained at 0°C (region III in Figure 1).
In this case, it is preferable to perform heating so that the rate of increase in temperature is constant, and this is in order to form a high-quality oxide film by keeping the growth rate of the oxide film constant. By heating the substrate under these conditions, an oxide film with a thickness of about 100 oxides can be formed. The thickness of the oxide film can be controlled, for example, by adjusting the oxidation temperature, oxidation time, and oxidation gas flow ffi.

所望の膜厚の酸化膜を形成したら、バルブ46cを閉じ
で酸化牲ガスガスの供給を停止する。以上の工程を経て
基板18に酸化膜を形成する。
After forming the oxide film with the desired thickness, the valve 46c is closed to stop the supply of the oxidizing gas. An oxide film is formed on the substrate 18 through the above steps.

次に、酸化膜形成済みの基板18に対し酸化膜形成時の
加熱処理温度1000°Cを保持した状態で直ちにバル
ブ48b;46dを開き、不活性ガス例えばアルゴン(
Ar)ガスを反応炉10内ζこ供給する(第1図のAr
フロー)、この時の反応炉10内は、これに限られるも
のではないが、酸化膜形成時と同様例えば100〜1O
−2Torrの低真空状態に維持する。
Next, while maintaining the heat treatment temperature of 1000° C. for forming the oxide film on the substrate 18 on which the oxide film has been formed, the valves 48b and 46d are immediately opened, and an inert gas such as argon (
Ar) gas is supplied into the reactor 10 (Ar
Although the inside of the reactor 10 at this time is not limited to this, for example, 100 to 10
Maintain a low vacuum of -2 Torr.

反応炉10内を不活性ガス雰囲気とし基板温度を100
0”Cに保持したままの加熱処理を所望の時間(第1図
の領域■)行なった凌、基板18の加熱を停止する。加
熱の停止と共に或は加熱停止の後に、バルブ46d W
閉じて不活性ガスの供給を停止する。
The inside of the reactor 10 is made into an inert gas atmosphere, and the substrate temperature is set at 100℃.
After heating the substrate 18 while maintaining the temperature at 0"C for a desired time (region ■ in FIG. 1), the heating of the substrate 18 is stopped. At the same time or after the heating is stopped, the valve 46d
Close to stop inert gas supply.

次に基板I8を室温例えば25℃まで冷却する。Next, the substrate I8 is cooled to room temperature, for example, 25°C.

基板18が室温まで下がったら反応炉10がら基板18
を取り出す。
Once the substrate 18 has cooled down to room temperature, remove the substrate 18 from the reactor 10.
Take out.

第4図は、上述の実施例の絶縁膜形成方法により形成し
た絶縁膜の評価結果の一例を示した図であり、形成した
絶縁膜の容量測定法により求めた界面準位2度による評
価結果を示した図である。
FIG. 4 is a diagram showing an example of the evaluation results of the insulating film formed by the insulating film forming method of the above-mentioned example, and is a diagram showing an example of the evaluation results based on the interface level 2 determined by the capacitance measurement method of the formed insulating film. FIG.

ここで界面準位密度は、価電子帯(Ev )から0.7
eVの位置のものである。また、第4図においで、横軸
は給R膜形成俊の不活性ガス雰囲気中での熱処理時間(
ボストアニール時間:(秒))であり、縦軸は界面準位
ざ度N。である。ざらに第4図において実線は各水準に
おける界面準位密度の平均値を結んだものであり、各水
準における両端のOは、当該水準における界面準位ヱ度
の最大値又は最小値である。また、第4図においで、ボ
ストアニール時間が0秒の絶RMの界面準位密度は、比
較例のデータに相当する。
Here, the interface state density is 0.7 from the valence band (Ev)
It is at the eV position. In addition, in Fig. 4, the horizontal axis represents the heat treatment time (
Bost annealing time: (seconds), and the vertical axis is the interface state degree N. It is. Roughly speaking, in FIG. 4, the solid line connects the average value of the interface state density at each level, and O at both ends of each level is the maximum or minimum value of the interface state density at that level. Further, in FIG. 4, the interface state density of absolute RM with a boss annealing time of 0 seconds corresponds to the data of the comparative example.

第4図から理解出来るように、この発明の絶縁膜形成方
法に従うボストアニール実施の試料は、ボストアニール
無しの比較例の試料に比し、界面準位密度が改善されて
いることが分る。なお、この実験データの詳細な解析は
まだ行なっていないが、この実験データにおいては、ボ
ストアニール時間が短い水準では界面準位と度にばらつ
きが見られ、ボストアニール時間が伸びるに従いばらつ
き及び平均値共に小さくなっていることが分る。
As can be understood from FIG. 4, the interface state density of the sample subjected to boss annealing according to the insulating film forming method of the present invention is improved compared to the comparative sample without boss annealing. Although a detailed analysis of this experimental data has not yet been conducted, in this experimental data, there are variations in the interface states and levels when the boss annealing time is short, and as the boss annealing time increases, the variation and the average value decrease. It can be seen that both are smaller.

上述においでは、この発明の絶縁膜形成方法の実施例に
つき説明したが、この発明はこの実施例のみに限られる
ものではなく、以下に説明するような種々の変更又は変
形を加えることが出来る。
Although the embodiment of the insulating film forming method of the present invention has been described above, the present invention is not limited to this embodiment, and various changes and modifications as described below can be made.

上述の実施例では、各加熱処理を赤外線ランプにより行
なっているが、この加熱処理はアークラ)ブやレーザビ
ーム、ざらにはヒーター等で行なっても良い。
In the above embodiments, each heat treatment is performed using an infrared lamp, but this heat treatment may also be performed using an arc club, a laser beam, a heater, or the like.

また、上述の実施例では、絶縁膜の成膜をいわゆるRT
O技術で行なっているが、低温酸化法、或いは稀釈酸化
法により行なっても良い。
Further, in the above embodiment, the insulating film is formed by so-called RT.
Although the oxidation process is carried out using O technology, it may also be carried out by a low temperature oxidation method or a diluted oxidation method.

また、実施例では絶縁膜の形成前に還元ガス雰囲気中及
び反応性ガス雰囲気中央々での加熱処理を行なって下地
の清浄化をしているが、設計によってはこの処理は省い
ても勿論良い。
In addition, in the example, before forming the insulating film, heat treatment is performed in a reducing gas atmosphere and a reactive gas atmosphere to clean the base, but this treatment may of course be omitted depending on the design. .

また、上述の実施例では、シリコン基板にシリコン酸化
膜を形成しているが、この発明の絶縁膜形成方法はシリ
コン以外の他の酸化膜の形成にも適用して好適である。
Further, in the above-described embodiments, a silicon oxide film is formed on a silicon substrate, but the method for forming an insulating film of the present invention can also be suitably applied to the formation of oxide films other than silicon.

(発明の効果) 上述した説明からも明らかなように、この発明の絶縁膜
形成方法によれば、酸化牲ガス雰囲気中で加熱処理を行
なって下地に膜厚が100人程度板下の絶縁膜を形成後
これに対し、絶縁膜形成時の加熱処理温度を保持した状
態で連続して不活・1ガス雰囲気中で熱処理する。従っ
て、下地と絶縁膜との界面及び又は絶縁膜中に含まれて
いた未結合や弱い結合が不活性ガス雰囲気中での熱処理
によって減少するため、絶縁膜の電気的特性が向上する
(Effects of the Invention) As is clear from the above description, according to the method for forming an insulating film of the present invention, heat treatment is performed in an oxidizing gas atmosphere to form an insulating film under the board to a thickness of about 100 mm. After forming the insulating film, heat treatment is continuously performed in an inert gas atmosphere while maintaining the heat treatment temperature used for forming the insulating film. Therefore, unbonded bonds and weak bonds contained in the interface between the base and the insulating film and/or in the insulating film are reduced by heat treatment in an inert gas atmosphere, so that the electrical characteristics of the insulating film are improved.

これかため、膜厚が100λ程度以下の絶縁膜であって
然も膜質が優れる絶縁膜を形成することが出来る。
Therefore, it is possible to form an insulating film having a thickness of about 100λ or less and having excellent film quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例の絶縁膜形成方法の説明に供する図、 第2図は、この発明の絶縁膜形成方法の実施に好適な製
雪の要部を示す断面図、 第3図は、この発明の絶縁膜形成方法の実施に好適な装
置の全体構成を示す図、 第4図は、実施例の絶縁膜形成方法の説明に供する図で
ある。 10・・・反応炉、 10b −・・蓋部材、 12・・・排気手段、 +2b・・・ロータリーポンプ 14・・・ガス供給部、 +4b −・・反応性ガス源、 +4d・・・不活性ガス源、 10a −本体 10c =昇降部材 12a・・・クーポ分子ポンプ 14a −還元性ガス源 14c ・・・酸化牲ガス源 16・・・加熱部 16a・・・赤外線ランプ、 +6b・・・支持部材1
8・・・基板、      20−・・支持体22・・
・昇降装置、    24−・・気密保持部材26−・
・温度測定手段、  28−・・ガス供給管30−・・
排気管、     32a 〜32d ・・・真空計3
4.36a 〜36f、38,40.44.46a 〜
46d、48a、48b −バルブ 42−・・ガス供給系 50a、 50b・・・ガス流量コントローラ。
FIG. 1 is a diagram for explaining the insulating film forming method of the embodiment, FIG. 2 is a cross-sectional view showing the main parts of a snowmaking machine suitable for carrying out the insulating film forming method of the present invention, and FIG. FIG. 4 is a diagram showing the overall configuration of an apparatus suitable for carrying out the insulating film forming method of the present invention. FIG. 4 is a diagram for explaining the insulating film forming method of the embodiment. DESCRIPTION OF SYMBOLS 10...Reactor, 10b--Lid member, 12...Exhaust means, +2b...Rotary pump 14...Gas supply section, +4b--Reactive gas source, +4d...Inert Gas source, 10a - Main body 10c = Lifting member 12a... Coupo molecular pump 14a - Reducing gas source 14c... Oxidizing gas source 16... Heating section 16a... Infrared lamp, +6b... Supporting member 1
8...Substrate, 20-...Support body 22...
・Elevating device, 24-・Airtight maintenance member 26-・
-Temperature measuring means, 28-...Gas supply pipe 30-...
Exhaust pipe, 32a to 32d...vacuum gauge 3
4.36a ~36f, 38,40.44.46a ~
46d, 48a, 48b - Valve 42 - Gas supply system 50a, 50b... Gas flow controller.

Claims (4)

【特許請求の範囲】[Claims] (1)下地を反応炉内に設置し酸化牲ガス雰囲気中で加
熱処理を行なって前記下地に100Å程度以下の膜厚の
絶縁膜を形成する工程と、 該絶縁膜形成済みの下地に対し絶縁膜形成時の加熱処理
温度を保持した状態で連続して不活性ガス雰囲気中で熱
処理する工程と を含むことを特徴とする絶縁膜形成方法。
(1) A step of placing a base in a reactor and performing heat treatment in an oxidizing gas atmosphere to form an insulating film with a thickness of about 100 Å or less on the base, and insulating the base on which the insulating film has been formed. A method for forming an insulating film, comprising the step of continuously performing heat treatment in an inert gas atmosphere while maintaining the heat treatment temperature during film formation.
(2)請求項1に記載の絶縁膜形成方法において、絶縁
膜形成時の前記加熱処理及び絶縁膜形成後の前記加熱処
理温度の保持を赤外線照射によって行なうこと を特徴とする絶縁膜形成方法。
(2) The insulating film forming method according to claim 1, wherein the heat treatment during the insulating film formation and the maintenance of the heat treatment temperature after the insulating film formation are performed by infrared irradiation.
(3)請求項1または2に記載の絶縁膜形成方法におい
て、絶縁膜形成前の下地に対し、還元ガス雰囲気中での
加熱処理と反応性ガス雰囲気中での加熱処理とを順次行
なうこと を特徴とする絶縁膜形成方法。
(3) In the method for forming an insulating film according to claim 1 or 2, a heat treatment in a reducing gas atmosphere and a heat treatment in a reactive gas atmosphere are sequentially performed on the base before forming the insulating film. Characteristic insulating film formation method.
(4)請求項3に記載の絶縁膜形成方法において、還元
ガス雰囲気中及び反応性ガス雰囲気中での前記各加熱処
理を赤外線照射によって行なうことを特徴とする絶縁膜
形成方法。
(4) The insulating film forming method according to claim 3, wherein each of the heat treatments in a reducing gas atmosphere and a reactive gas atmosphere is performed by infrared irradiation.
JP29367089A 1989-11-10 1989-11-10 Formation of insulating film Pending JPH03154340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29367089A JPH03154340A (en) 1989-11-10 1989-11-10 Formation of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29367089A JPH03154340A (en) 1989-11-10 1989-11-10 Formation of insulating film

Publications (1)

Publication Number Publication Date
JPH03154340A true JPH03154340A (en) 1991-07-02

Family

ID=17797723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29367089A Pending JPH03154340A (en) 1989-11-10 1989-11-10 Formation of insulating film

Country Status (1)

Country Link
JP (1) JPH03154340A (en)

Similar Documents

Publication Publication Date Title
US4871416A (en) Method and device for cleaning substrates
US5198392A (en) Method of forming a nitrided silicon dioxide (SiOx Ny) film
US5009926A (en) Method of forming an insulating film
WO2006049199A1 (en) Insulating film forming method and substrate processing method
JPS5861635A (en) Method of treating semiconductor
EP0430030A2 (en) Method of forming an insulating film
JPH03154340A (en) Formation of insulating film
JPH03131027A (en) High speed heat treating method and device therefor
JPH0669195A (en) Method of forming insulating film
US20050032337A1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
JPH0418728A (en) Insulating film formation process
JPH03134153A (en) Method and device for forming oxide film
JPH03244125A (en) Formation of insulating film
JP3250996B2 (en) Silicon substrate having insulating film on surface and method and apparatus for manufacturing the same
WO2000079580A1 (en) Method of manufacturing semiconductor device
JP2763587B2 (en) Insulating film formation method
JPH03203236A (en) Insulation film forming method
JPH01225127A (en) Method of purifying substrate and heater for substrate
JPH04257226A (en) Forming method for insulating film
JPH02150029A (en) Method and apparatus for forming insulating film
JPH03219632A (en) Method for formation of insulating film
JPH04245636A (en) Insulating film forming method
JPH04245631A (en) Oxide film forming method
JPH042127A (en) Formation of insulating film
JPH04257225A (en) Forming method for insulating film