JPH0320297B2 - - Google Patents

Info

Publication number
JPH0320297B2
JPH0320297B2 JP1437785A JP1437785A JPH0320297B2 JP H0320297 B2 JPH0320297 B2 JP H0320297B2 JP 1437785 A JP1437785 A JP 1437785A JP 1437785 A JP1437785 A JP 1437785A JP H0320297 B2 JPH0320297 B2 JP H0320297B2
Authority
JP
Japan
Prior art keywords
hot water
tundish
nozzle
plate
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1437785A
Other languages
Japanese (ja)
Other versions
JPS61176453A (en
Inventor
Taku Okazaki
Masakazu Koide
Takashi Asari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1437785A priority Critical patent/JPS61176453A/en
Publication of JPS61176453A publication Critical patent/JPS61176453A/en
Publication of JPH0320297B2 publication Critical patent/JPH0320297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(関連産業分野) この発明は無限軌道連続鋳造設備に於ける給湯
装置に関するものである。 (従来技術) 無限軌道連続鋳造機を用いて、溶融金属を流し
て連続鋳造を行なう場合、現在では第5図に示す
3段式の給湯法が操業的、或いは品質的にみて最
適な方法として用いられている。 この装置を第5図を参照して概略説明すると、
1は取鍋で、3は不活性ガスシールド2を介し接
続している一次タンデイツシユである。4は流量
制御ノズルで、該ノズルにて制御され浸漬ノズル
5から二次タンデイツシユ6に溶融金属8は供給
される。二次タンデイツシユ6内の溶融金属8は
給湯樋7から無限軌道連続鋳造機9に送られ、鋳
片10を鋳造するものである。 さて、このような3段給湯式連続鋳造機は次の
1)〜3)に示すような特徴をもつている。 1 取鍋からの溶融金属を一旦一次タンデイツシ
ユ3に滞留させ、溶融金属中の不純物を浮上さ
せて清浄度を上げることができる。 2 一次タンデイツシユ3内の溶融金属の上層部
は浮上した不純物で汚れているため、底部より
清浄度の高い溶融金属を排湯する必要がある。
このため一次タンデイツシユ3の底部に給湯の
流量制御ノズル4を設置することになるが、こ
の場合、ノズル位置には一次タンデイツシユ3
内の溶融金属の静圧が作用するので、ノズル穴
径は所要給湯流量に対し、静圧が大きい程穴径
は小さくする必要がある。 3 キヤスター内の給湯においては、鋳片の品質
上、給湯量は鋳片幅方向に対し、極力均一でな
めらかな層流であることが望ましい。そのため
には上記給湯制御ノズルからの溶融金属を直接
キヤスター内へ給湯するのは好ましくなく、二
次タンデイツシユ6で一度流速を落とし、樋部
より均一な流れでオーバーフローするようにす
る。 しかしこの3段給湯法では、取鍋1からキヤス
ター内へ給湯するまでの溶融金属の温度低下が大
きくなる欠点がある。例えば鋼を鋳込む場合を例
にとれば、転炉から取鍋1へ出鋼された溶鋼温度
θoは、二次タンデイツシユ内までに約100〜150
℃の温度低下となる。そのため出鋼温度が低すぎ
ると二次タンデイツシユ給湯樋7の部分におい
て、溶鋼の凝固温度近辺まで低下し、樋上面に地
金が付着し、湯流れが乱れて適正な給湯が困難と
なり、キヤスター内の溶鋼レベルの変動が激し
く、キヤスターから溶鋼がオーバーフローするこ
とがしばしば発生し、非常に危険である。一方こ
の温度低下を見込んであらかじめ溶鋼の出鋼温度
を高くとることは、転炉(電気炉)の耐火レンガ
の寿命を著しく短かくし、又それだけ余分なエネ
ルギーが必要となり、ランニングコストの上昇を
招くことになる。また無限軌道のモールド壁を溶
損することにもなりかねない。 次に溶融金属の二次酸化による介在物の発生
は、製品圧延時の欠陥となるため、不純物同様極
力防止しなければならないが、一次タンデイツシ
ユ3からの溶融金属を一度二次タンデイツシユへ
排出することはそれだけ空気中の酸素による二次
酸化を助長するので製品品質上好ましくない。 又、給湯流量の制御性も、一次タンデイツシユ
3の流量制御ノズル4では二次タンデイツシユで
の応答遅れがあり、キヤスター内溶融金属のレベ
ル制御を迅速且つ適正に行なうことは困難であ
る。そこで一般にはキヤスターの鋳込速度制御に
よりレベル制御を実施し、一次タンデイツシユ3
の流量制御ノズル4はその補助的なものにすぎな
いものとなる。そのためキヤスターの鋳込速度は
常に変動し、鋳片表面品質に好ましくない湯じわ
や2重肌の欠陥を生じる。 さらに鋳造速度を一定に保てないため、キヤス
ターの後方に配設される圧延機と直結した連続鋳
造−連続圧延の実施が困難であつた。 (発明の解決しようとする課題) 本発明は上記従来技術の欠点に鑑み、溶融金属
の温度低下を少くし、且つ溶融金属の二次酸化の
発生を抑え、一次タンデイツシユ3の流量制御ノ
ズル4のみで、無限軌道連続鋳造機による一定速
度での鋳込みを可能とすることにある。 (発明による解決手段) 取鍋に通ずる大容量室Aと給湯樋に通ずる小容
量室Bの2室にスキマーにて仕切られ、仕切られ
た各室の底部に夫々上ノズルを具えたタンデイツ
シユと、該タンデイツシユの底部に設けた前記上
ノズルと同心で前記上ノズルに夫々対応する孔を
有する上固定板と、該上固定板の下部にあつて長
孔を有するスライド板と、該スライド板の下部に
設けた非常排湯ノズルを有する下固定板とからな
り、前記スライド板はストローク制御装置によつ
て作動されてスライドし、前記上固定板に設けた
2つの孔を連通・非連通状態にすることができ、
かつ小容量室B側の孔と下固定板の非常排湯ノズ
ルを連通可能にしたことを特徴とする。 (発明の実施例) 第1図〜第3図を参照して本発明の実施例を説
明する。本発明は第5図の構成における二次タン
デイツシユ6を省略するため、流量制御ノズル4
及び一次タンデイツシユ3の形状を改良したもの
である。 11は本発明におけるただ1つのタンデイツシ
ユで、該タンデイツシユ11の底部に配設される
流量制御ノズル用のマスレンガ12(第3図)に
は2つの上ノズル13および14がセツトされて
いる。2つの上ノズル13と14の中間にはスキ
マー15が立設されており、タンデイツシユ11
はこのスキマー15により取鍋1からの溶融金属
を一旦溜め受け、不純物の浮上清浄化を行なう大
容量室Aとキヤスターへ給湯するための給湯樋1
6を有した小容量室Bとに仕切られている。 流量制御ノズル部は上固定板17、スライド板
18、下固定板19およびスライド板18を第3
図矢印方向にスライドさせるストローク制御装置
20と、非常排湯ノズル21とで構成される。上
固定板17にはマスレンガ12にセツトされた上
ノズル13,14のノズル穴と径が等しく又は若
干大きめな穴13a,14aが2個等ピツチかつ
同心に設けられている。スライド板18には、上
固定板17にあけられた穴13a,14a間にま
たがる長穴18aが設けられている。下固定板1
9は溶融金属8が各あわせ面より洩れないで、且
つストローク制御装置20によりスライド板18
が滑らかに摺動しうるよう適度な押し付け力をも
つてスライド板18を上固定板17との間にはさ
み込んでいる。 (作用) 以下第4図a〜dを参照して取鍋1からキヤス
ターへの給湯について説明する。 1 スライド板18が第4図aの位置にある場合
には、スキマー15の左側の大容量室A内にあ
る溶融金属8は上固定板17の孔13aを通り
スライド板18の長穴18aを経て上固定板1
7の孔14aより抜け出てスキマー15の右側
の小容量室Bに噴出する。 2 スライド板17が第4図b位置にストローク
制御装置20により矢印方向に移動させられる
と第4図bの如く孔13aの孔面積はスライド
板18の長孔18aの縁により絞り込まれ、そ
の結果スキマー15の右側へ通過する流量は減
少する。即ちこの孔13aの孔面積の絞り込み
量をストローク制御装置20により調整するこ
とにより流量が制御される。 3 さらに第4図cの位置までスライド板18が
移動すると、孔13aは完全に閉じられ給湯は
停止される。 4 鋳込終了時又は非常停止時等には、スライド
板18を第4図d位置までストロークさせると
スキマー15で仕切られたタンデイツシユ内右
側の小容量室B内の溶融金属8は孔14aより
スライド板18の長孔18aを経由して孔19
aより排出される。 この場合孔13aの所要面積Sは、スキマー1
5の左側の大容量室Aと右側の小容量室Bとの溶
融金属8のレベル差h(第3図)とすると、 v=C・√2 …(1) Q=S・v …(2) ここで、C:流出係数、v:流速、Q:流量 (1)式と(2)式から
(Related Industrial Field) The present invention relates to a water heater in a continuous track casting facility. (Prior art) When continuous casting is performed by flowing molten metal using a continuous track casting machine, the three-stage hot water supply method shown in Figure 5 is currently the optimal method from an operational and quality standpoint. It is used. This device will be briefly explained with reference to FIG.
1 is a ladle, and 3 is a primary tundish connected through an inert gas shield 2. Reference numeral 4 designates a flow rate control nozzle, and the molten metal 8 is supplied from the submerged nozzle 5 to the secondary tundish 6 under the control of this nozzle. The molten metal 8 in the secondary tundish 6 is sent from the hot water supply trough 7 to a continuous track casting machine 9, where a slab 10 is cast. Now, such a three-stage hot water supply type continuous casting machine has the following features 1) to 3). 1. The molten metal from the ladle is temporarily retained in the primary tundish 3, and impurities in the molten metal are floated to improve the cleanliness. 2. Since the upper layer of the molten metal in the primary tundish 3 is contaminated with floating impurities, it is necessary to drain the molten metal with higher purity than the bottom.
For this reason, a hot water flow control nozzle 4 is installed at the bottom of the primary tundish 3, but in this case, the nozzle position is located at the primary tundish 3.
Since the static pressure of the molten metal inside acts on the nozzle hole, the larger the static pressure, the smaller the nozzle hole diameter relative to the required flow rate of hot water supply. 3. When supplying hot water in the caster, it is desirable that the amount of hot water supplied be as uniform and smooth as possible in the width direction of the slab in view of the quality of the slab. For this purpose, it is not preferable to directly feed the molten metal from the hot water supply control nozzle into the caster, but the flow rate is once lowered in the secondary tundish 6 so that it overflows from the gutter in a uniform flow. However, this three-stage hot water supply method has the disadvantage that the temperature of the molten metal decreases significantly from the time when the hot water is supplied from the ladle 1 into the caster. For example, when casting steel, the temperature θo of the molten steel tapped from the converter into the ladle 1 is about 100 to 150 by the time it enters the secondary tandem.
The temperature will drop by ℃. Therefore, if the tapping temperature is too low, the temperature in the secondary tundish hot water supply gutter 7 will drop to near the solidification temperature of the molten steel, and metal will adhere to the top surface of the gutter, disrupting the flow of hot water and making it difficult to supply hot water properly. The level of molten steel fluctuates rapidly, and molten steel often overflows from the caster, which is extremely dangerous. On the other hand, setting the tapping temperature of molten steel high in advance in anticipation of this temperature drop will significantly shorten the life of the refractory bricks in the converter (electric furnace), and will also require extra energy, leading to an increase in running costs. It turns out. Furthermore, the mold wall of the endless track may be damaged by melting. Next, the generation of inclusions due to secondary oxidation of molten metal causes defects during rolling of the product, so like impurities, it must be prevented as much as possible. This promotes secondary oxidation due to oxygen in the air, which is unfavorable in terms of product quality. In addition, regarding the controllability of the flow rate of hot water, there is a delay in the response of the flow rate control nozzle 4 of the primary tundish 3 to the secondary tundish, making it difficult to quickly and properly control the level of molten metal in the caster. Therefore, level control is generally performed by controlling the casting speed of the caster, and the primary tundish 3
The flow rate control nozzle 4 is merely an auxiliary one. Therefore, the casting speed of the caster constantly fluctuates, resulting in unfavorable hot water wrinkles and double skin defects on the surface quality of the slab. Furthermore, since the casting speed cannot be kept constant, it has been difficult to carry out continuous casting and continuous rolling that is directly connected to a rolling mill located behind the caster. (Problems to be Solved by the Invention) In view of the above-mentioned drawbacks of the prior art, the present invention reduces the temperature drop of the molten metal, suppresses the occurrence of secondary oxidation of the molten metal, and uses only the flow rate control nozzle 4 of the primary tundish 3. The objective is to enable casting at a constant speed using a continuous track casting machine. (Solving Means by the Invention) A tundish dish that is partitioned by a skimmer into two chambers, a large-capacity chamber A leading to a ladle and a small-capacity chamber B leading to a hot water supply gutter, and each partitioned chamber is provided with an upper nozzle at the bottom, respectively; an upper fixing plate provided at the bottom of the tundish and having holes concentric with the upper nozzles and corresponding to the upper nozzles, a slide plate located at the lower part of the upper fixing plate and having elongated holes, and a lower part of the slide plate. and a lower fixed plate having an emergency hot water discharge nozzle provided in the upper fixed plate, and the sliding plate is operated by a stroke control device and slides to put the two holes provided in the upper fixed plate into a communicating/non-communicating state. It is possible,
It is also characterized in that the hole on the small capacity chamber B side and the emergency hot water discharge nozzle of the lower fixed plate can communicate with each other. (Embodiments of the invention) Examples of the invention will be described with reference to FIGS. 1 to 3. In the present invention, since the secondary tundish 6 in the configuration shown in FIG. 5 is omitted, the flow rate control nozzle 4 is
and the shape of the primary tundish 3 is improved. Numeral 11 is only one tundish in the present invention, and two upper nozzles 13 and 14 are set in a mass brick 12 (FIG. 3) for a flow rate control nozzle disposed at the bottom of the tundish 11. A skimmer 15 is installed upright between the two upper nozzles 13 and 14, and
The skimmer 15 temporarily stores the molten metal from the ladle 1 and cleans it by floating impurities in the large capacity chamber A, and the hot water supply gutter 1 for supplying hot water to the caster.
It is partitioned into a small capacity chamber B having 6. The flow rate control nozzle part has an upper fixing plate 17, a slide plate 18, a lower fixing plate 19, and a slide plate 18.
It is composed of a stroke control device 20 that slides in the direction of the arrow in the figure, and an emergency hot water discharge nozzle 21. The upper fixing plate 17 is provided with two equally spaced and concentric holes 13a and 14a, the diameter of which is equal to or slightly larger than the nozzle holes of the upper nozzles 13 and 14 set in the mass brick 12. The slide plate 18 is provided with a long hole 18a extending between the holes 13a and 14a formed in the upper fixed plate 17. Lower fixing plate 1
9 prevents the molten metal 8 from leaking from each mating surface, and the slide plate 18 is controlled by the stroke control device 20.
The slide plate 18 is sandwiched between the upper fixed plate 17 and the upper fixed plate 17 with an appropriate pressing force so that the upper fixed plate 17 can slide smoothly. (Function) The supply of hot water from the ladle 1 to the caster will be described below with reference to FIGS. 4a to 4d. 1. When the slide plate 18 is in the position shown in FIG. Upper fixing plate 1
7 and ejects into the small volume chamber B on the right side of the skimmer 15. 2. When the slide plate 17 is moved in the direction of the arrow by the stroke control device 20 to the position b in FIG. The flow rate passing to the right side of the skimmer 15 is reduced. That is, the flow rate is controlled by adjusting the amount by which the hole area of the hole 13a is narrowed by the stroke control device 20. 3. When the slide plate 18 further moves to the position shown in FIG. 4c, the hole 13a is completely closed and hot water supply is stopped. 4 At the end of casting or during an emergency stop, etc., when the slide plate 18 is stroked to the position d in Fig. 4, the molten metal 8 in the small volume chamber B on the right side of the tundish, which is partitioned by the skimmer 15, slides from the hole 14a. Hole 19 via long hole 18a of plate 18
It is discharged from a. In this case, the required area S of the hole 13a is
Assuming that the level difference h (Fig. 3) of the molten metal 8 between the large capacity chamber A on the left side and the small capacity chamber B on the right side of 5 is v=C・√2 …(1) Q=S・v …(2 ) Here, C: discharge coefficient, v: flow velocity, Q: flow rate From equations (1) and (2),

【式】となる。 この式からタンデイツシユ11内の溶融金属8
のレベル静圧Hが直接影響する従来の場合にくら
べて本発明では大容量室Aと小容量室Bとのレベ
ル差hで静圧が作用するためノズル面積Sを大巾
に大きくとることができるので、ノズルの詰りに
よる流量変化への影響は少なくなる。 (発明の効果) (1) 溶融金属の温度低化を軽減できるため、溶解
炉での温度を低くすることができ、省エネルギ
ーが可能であると共に、炉内耐火物の寿命を長
くすることができ、無限軌道モールド壁の溶損
も無くなり安全且つ製品のコストを大幅に軽減
できる。 (2) 溶融金属の温度低下が軽減すると、給湯途上
での凝固による地金付着がなくなり、均一な湯
流れが維持でき、安定した操業を可能とする。 (3) 溶融金属の給湯時における二次酸化を軽減で
き、製品品質が大幅に向上する。 (4) ノズル孔面積を大きくできるので、ノズル詰
まりが生じ難く、操業が安定する。 (5) 流量制御ノズルによる制御性が良くなり、キ
ヤスター内湯面レベル制御をキヤスター鋳込速
度の制御によらずにできるため、定速鋳込が可
能となり、鋳片表面品質が向上する。同時に圧
延機直結の連続操業が可能となる。 (6) キヤスター内湯面レベル制御のためのキヤス
ター鋳込速度制御装置が不要となり、且つ二次
タンデイツシユも不要のため設備コストが低減
できる。
[Formula] becomes. From this formula, the molten metal 8 in the tundish 11 is
Compared to the conventional case in which the static pressure H directly affects the nozzle area S, the nozzle area S can be made much larger in the present invention because the static pressure acts on the level difference h between the large capacity chamber A and the small capacity chamber B. This reduces the influence of nozzle clogging on flow rate changes. (Effects of the invention) (1) Since the temperature drop of the molten metal can be reduced, the temperature in the melting furnace can be lowered, energy saving is possible, and the life of the refractory in the furnace can be extended. , there is no melting damage to the endless track mold wall, making it safer and significantly reducing the cost of the product. (2) When the temperature drop of molten metal is reduced, base metal adhesion due to solidification during hot water supply is eliminated, a uniform flow of hot metal can be maintained, and stable operation is possible. (3) Secondary oxidation of molten metal during hot water supply can be reduced, greatly improving product quality. (4) Since the nozzle hole area can be made larger, nozzle clogging is less likely to occur and operation is stable. (5) Controllability with the flow rate control nozzle is improved, and the level of molten metal in the caster can be controlled without controlling the caster casting speed, making constant speed casting possible and improving the surface quality of the slab. At the same time, continuous operation directly connected to the rolling mill becomes possible. (6) A caster casting speed control device for controlling the level of hot water in the caster is not required, and a secondary tundish is also not required, so equipment costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る給湯装置。第2図はタン
デイツシユ給湯部の詳細断面図。第3図は同じく
給湯部の詳細図で、第2図の−矢視断面図。
第4図は給湯部の作用説明図。第5図は従来型給
湯装置(一部断面)。 図において;1……取鍋、2……不活性ガスシ
ールド、3……一次タンデイツシユ、4……流量
制御ノズル、5……浸漬ノズル、6……二次タン
デイツシユ、7……給湯樋、8……溶融金属、9
……無限軌道連続鋳造機、10……鋳片、11…
…タンデイツシユ、12……マスレンガ、13,
14……上ノズル、13a,14a……(上固定
板の)孔、15……スキマー、16……給湯樋、
17……上固定板、18……スライド板、18a
……(スライド板の)長孔、19……下固定板、
19a……下固定板の孔、20……ストローク制
御装置、21……非常排湯ノズル、22……非常
排湯ポツト。
FIG. 1 shows a water heater according to the present invention. Figure 2 is a detailed cross-sectional view of the tundish water supply section. FIG. 3 is a detailed view of the hot water supply section, and is a sectional view taken along the - arrow in FIG.
FIG. 4 is an explanatory diagram of the operation of the hot water supply section. Figure 5 shows a conventional water heater (partial cross section). In the figure: 1... Ladle, 2... Inert gas shield, 3... Primary tundish, 4... Flow rate control nozzle, 5... Immersion nozzle, 6... Secondary tundish, 7... Hot water supply gutter, 8 ...molten metal, 9
...Continuous track continuous casting machine, 10...Slab, 11...
...Tandaitsuyu, 12...Masurenga, 13,
14...Upper nozzle, 13a, 14a...(upper fixing plate) hole, 15...Skimmer, 16...Hot water gutter,
17... Upper fixing plate, 18... Slide plate, 18a
...Elongated hole (of the slide plate), 19...Lower fixing plate,
19a... Hole in lower fixing plate, 20... Stroke control device, 21... Emergency hot water discharge nozzle, 22... Emergency hot water drainage pot.

Claims (1)

【特許請求の範囲】[Claims] 1 取鍋に通ずる大容量室Aと給湯樋に通ずる小
容量室Bの2室にスキマーにて仕切られ、仕切ら
れた各室の底部に夫々上ノズルを具えたタンデイ
ツシユと、該タンデイツシユの底部に設けた前記
上ノズルと同心で前記上ノズルに夫々対応する孔
を有する上固定板と、該上固定板の下部にあつて
長孔を有するスライド板と、該スライド板の下部
に設けた非常排湯ノズルを有する下固定板とから
なり、前記スライド板はストローク制御装置によ
つて作動されてスライドし、前記上固定板に設け
た2つの孔を連通・非連通状態にすることがで
き、かつ小容量室B側の孔と下固定板の非常排湯
ノズルを連通可能になしうることを特徴とする無
限軌道連続鋳造設備に於ける給湯装置。
1. A tundish that is divided by a skimmer into two chambers, a large-capacity chamber A leading to the ladle and a small-capacity chamber B leading to the hot water gutter, and each of the partitioned chambers is equipped with an upper nozzle at the bottom, and a tundish can is installed at the bottom of the tundish an upper fixing plate that is concentric with the upper nozzles provided and has holes corresponding to the upper nozzles, a slide plate that is located at the bottom of the upper fixation plate and has elongated holes, and an emergency exhaust provided at the bottom of the slide plate. and a lower fixed plate having a hot water nozzle, and the slide plate is operated by a stroke control device to slide, and can put two holes provided in the upper fixed plate into a communicating state or a non-communicating state, and A hot water supply device for continuous track casting equipment, characterized in that a hole on the small capacity chamber B side can communicate with an emergency hot water discharge nozzle on a lower fixed plate.
JP1437785A 1985-01-30 1985-01-30 Pouring device in endless track continuous casting installation Granted JPS61176453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1437785A JPS61176453A (en) 1985-01-30 1985-01-30 Pouring device in endless track continuous casting installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1437785A JPS61176453A (en) 1985-01-30 1985-01-30 Pouring device in endless track continuous casting installation

Publications (2)

Publication Number Publication Date
JPS61176453A JPS61176453A (en) 1986-08-08
JPH0320297B2 true JPH0320297B2 (en) 1991-03-19

Family

ID=11859356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1437785A Granted JPS61176453A (en) 1985-01-30 1985-01-30 Pouring device in endless track continuous casting installation

Country Status (1)

Country Link
JP (1) JPS61176453A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185013B1 (en) * 2005-03-22 2012-09-26 주식회사 포스코 Launder for bypassing molten iron from a tundish to emergency way of continuous casting utility

Also Published As

Publication number Publication date
JPS61176453A (en) 1986-08-08

Similar Documents

Publication Publication Date Title
KR19990076770A (en) Formable steel manufacturing method and apparatus
US4986336A (en) Twin-roll type continuous casting machine
RU2111825C1 (en) Casting gear
JPS6068142A (en) Transfer method of molten metal by bubbling pump
JPH0320297B2 (en)
FI78250B (en) FARING EQUIPMENT FOR DIRECTIVE PROCESSING OF SMALL METAL.
FI78249C (en) FOERFARANDE OCH ANORDNING FOER DIREKTGJUTNING AV SMAELT METALL TILL ETT FORTLOEPANDE KRISTALLINT METALLBAND.
CN111014635B (en) Continuous casting channel type induction heating tundish and flow field control method thereof
JPH03138052A (en) Tundish with heating device
JPH0381049A (en) Method for mater-cooling continuous casting mold
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel
JPS61232047A (en) Method for controlling temperature of molten metal for continuous casting
JP2007054861A (en) Tundish for continuous casting and method for producing cast slab
JPS59150646A (en) Method and device for continuous casting of metallic plate
JPS5835050A (en) Tundish for continuous casting having heating function for molten metal
JPH035052A (en) Method for controlling drift of molten steel in mold for continuous casting
JPS6021166A (en) Tundish for continuous casting
JPH0354024B2 (en)
SU1528607A1 (en) Arrangement for feeding metal to mould
JPS6057935B2 (en) Continuous casting mold
JPS62252649A (en) Divagating flow control method in mold for molten steel continuous casting
JPH0428463B2 (en)
JPS6340667A (en) Pouring method for molten metal
JPH0211251A (en) Method for supplying molten metal into casting mold in continuous casting
JPH09122852A (en) Continuous casting method for high cleanness steel with using tundish arranged with gate capable of opening/ closing