JPH03202663A - Heat engine - Google Patents

Heat engine

Info

Publication number
JPH03202663A
JPH03202663A JP34035789A JP34035789A JPH03202663A JP H03202663 A JPH03202663 A JP H03202663A JP 34035789 A JP34035789 A JP 34035789A JP 34035789 A JP34035789 A JP 34035789A JP H03202663 A JPH03202663 A JP H03202663A
Authority
JP
Japan
Prior art keywords
expansion
manifold
compressor
discharge
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34035789A
Other languages
Japanese (ja)
Inventor
Shigenori Haramura
原村 成憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP34035789A priority Critical patent/JPH03202663A/en
Publication of JPH03202663A publication Critical patent/JPH03202663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To provide a non-pollution heat engine in simple configuration, which uses air, etc., as a working medium, by equipping it with an expansion engine and compressor in independent arrangement, and connecting the discharge port of the compressor to the suction port of the expansion engine through manifold furnished with a heat-exchanger. CONSTITUTION:The compressing space 16 of a compressor 10, in which a compression piston 12 is fitted in a compression cylinder 11, is connected with a suction manifold 13 through a suction valve 14 and also with a discharge manifold 31 through a discharge valve 15. This discharge manifold 31 is equipped with a combustor 42 obtaining high temperature and high pressure air through combustion in mixture with the fuel injected from a fuel injection nozzle 41. The expansion space 26 of an expansion engine 20, in which an expansion piston 22 is fitted in an expansion cylinder 21, is put in communication with the mentioned discharge manifold 31 through a suction valve 23 and a suction manifold 32, and is connected with an exhaust manifold 25 through a discharge valve 24. Connecting rods 5, 6 in connection with the pistons 12, 22 are coupled with a common crank shaft 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧縮機と膨脹エンジンを組合せた熱機関に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat engine that combines a compressor and an expansion engine.

(従来の技術) 圧縮された気体を加熱し、この高温・高圧の気体の持つ
エネルギーを変換して動力を取出す機構は、たとえば、
ガスタービンとして良く知られている。ガスタービンは
、気体を圧縮機で圧縮し、この圧縮された気体を燃焼器
で加熱させ、生した高温高圧の気体をタービン中で膨脹
させることで外部に出力を取り出している。このガスタ
ービンの有効出力は、タービンの発生動力と圧縮機の消
費動力の差が有効出力となる。この有効出力を高めるに
は、タービン人口温度と大気温度の比を大きくし且つ圧
縮機の圧力比を高めることが威される。
(Prior art) Mechanisms that heat compressed gas and convert the energy of this high-temperature, high-pressure gas to generate power include, for example,
It is better known as a gas turbine. A gas turbine compresses gas with a compressor, heats the compressed gas with a combustor, and expands the resulting high-temperature, high-pressure gas in the turbine to output output to the outside. The effective output of this gas turbine is the difference between the power generated by the turbine and the power consumed by the compressor. In order to increase this effective output, it is necessary to increase the ratio between the turbine population temperature and the atmospheric temperature and to increase the compressor pressure ratio.

このような構造のガスタービンは、発電機、プロペラ、
車両、機械の駆動に用いられる。
A gas turbine with this structure has a generator, propeller,
Used to drive vehicles and machinery.

(本発明が解決しようとする課題) ガスタービンは、タービンの回転を数万rpmへと高く
することでその効率を向上させている。このため、ガス
タービンは、高周波騒音が大きい欠点を有し、又、低速
回転(1000〜6000rpm)する負荷に対しては
大きい速度比の減速歯車を使うことから、変速機騒音も
大きくなるという欠点を有す。さらに、変速比を大きく
することがら、変速機が大型にして重量が大となる。
(Problems to be Solved by the Present Invention) The efficiency of gas turbines is improved by increasing the rotation speed of the turbine to tens of thousands of rpm. For this reason, gas turbines have the disadvantage of large high-frequency noise, and because a reduction gear with a large speed ratio is used for loads rotating at low speeds (1000 to 6000 rpm), transmission noise is also large. has. Furthermore, since the gear ratio is increased, the transmission becomes large and heavy.

よって、このガスタービンは、長期間安定した低出力を
出す機関として好ましくないので、本発明は、長期間安
定した低出力を、静かに取り出し可能な機関を提供する
ことを解決すべき課題とする。
Therefore, this gas turbine is not preferable as an engine that outputs stable low output for a long period of time.The present invention aims to provide an engine that can quietly generate stable low output for a long period of time. .

(課題を解決するための手段) 本発明は、前述した課題を解決するために、基本的には
、独立した形の圧縮機と、膨脹エンジンとを有し、その
間に噴射ノズルを有する燃焼器を備える構成となってい
る。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention basically includes a combustor having an independent compressor and an expansion engine, and having an injection nozzle between them. It is configured to include.

より具体的には、本発明は、圧縮シリンダ、クランクシ
ャフトに連結され且つ圧縮シリンダ内を往復動する圧縮
ピストン、圧縮シリンダ内の圧縮空間への連通を制御す
る吸気バルブと吐出バルブを有する圧縮機と;膨脹シリ
ンダ、クランクシャフトに連結され且つ膨脹シリンダ内
を往復動する膨脹ピストン、膨脹シリンダ内の膨脹空間
への連通を制御する吸入バルブと排気バルブとを有する
膨脹エンジンと;吐出バルブと吸入バルブに両端で接続
するマニホルドと;マニホルドに組込まれた燃料噴射ノ
ズルを有する燃焼器とを備える熱機関を提供する。
More specifically, the present invention provides a compressor having a compression cylinder, a compression piston connected to a crankshaft and reciprocating within the compression cylinder, and an intake valve and a discharge valve that control communication to a compression space within the compression cylinder. an expansion engine having an expansion cylinder, an expansion piston connected to a crankshaft and reciprocating within the expansion cylinder, and an intake valve and an exhaust valve that control communication to an expansion space within the expansion cylinder; a discharge valve and an intake valve; a combustor having a fuel injection nozzle integrated into the manifold;

(作用) 圧縮機の圧縮ピストンの上昇により圧縮空間内の媒体を
圧縮し、圧縮媒体をマニホルドに送り燃焼器にて高温・
高圧の媒体として膨脹空間に送り、膨脹ピストンを押し
下げて出力を得る。膨脹ピストンの上昇は、膨脹空間内
の低温・低圧となった作動媒体を大気側へ排出させる。
(Function) As the compression piston of the compressor rises, the medium in the compression space is compressed, and the compressed medium is sent to the manifold and heated to high temperature in the combustor.
It is sent as a high-pressure medium to the expansion space and pushes down the expansion piston to obtain output. The upward movement of the expansion piston causes the low-temperature, low-pressure working medium in the expansion space to be discharged to the atmosphere.

圧縮機による圧縮仕事と、膨脹エンジンによる膨張仕事
の差が出力として取出される。
The difference between the compression work by the compressor and the expansion work by the expansion engine is extracted as output.

尚、前述した作用は、図示例とは異るヘーン型やバンケ
ル型のロータリ機構でも得られる。
Note that the above-mentioned effect can also be obtained with a Hoehn type or Wankel type rotary mechanism different from the illustrated example.

(実施例) 第1図を参照する。圧縮機10は、圧縮シリンダ11と
圧縮ピストン12とにより、圧縮空間16を作る。この
空間16は、吸気バルブ14を介して吸入マニホルド1
3に通し且つ吐出バルブ15を介して吐出マニホルド3
1に通しる。圧縮ピストン12はコンロノド5を介して
クランクシャフト7乙こ連結させる。
(Example) Refer to FIG. 1. The compressor 10 creates a compression space 16 by a compression cylinder 11 and a compression piston 12. This space 16 is connected to the intake manifold 1 via the intake valve 14.
3 and through the discharge valve 15 to the discharge manifold 3
Pass 1. The compression piston 12 is connected to the crankshaft 7 via the stove throat 5.

吐出マニホルド31は、燃料噴射ノズル41を有する燃
焼機42に連結される。燃焼器42は加圧作動媒体を高
温とする。
The discharge manifold 31 is connected to a combustor 42 having fuel injection nozzles 41 . The combustor 42 brings the pressurized working medium to a high temperature.

膨脹エンジン20は、圧縮機10とは独立して配され、
膨脹シリンダ21内に膨脹ピストン22により画定され
た膨脹空間26を有す。膨脹ピストン22をコンロッド
6を用いてクランクシャフト7に連結させる。膨脹空間
26は、吸入バルブ23を介して、燃焼器42に連結し
た吸入マニホルド32に連通自在となっており且つ排気
バルブ24を介して排気マニホルド25に連通自在とな
っている。
The expansion engine 20 is arranged independently of the compressor 10,
The expansion cylinder 21 has an expansion space 26 defined by an expansion piston 22 . The expansion piston 22 is connected to the crankshaft 7 using a connecting rod 6. The expansion space 26 can be freely communicated with an intake manifold 32 connected to the combustor 42 via an intake valve 23, and can also be communicated with an exhaust manifold 25 via an exhaust valve 24.

第2−7図を参照して、第1図に示す熱機関の作用を説
明する。第2図に示す状態では、圧縮ピストン12が上
死点に位置し、第6図の■の状態となっている。クラン
クシャフト7により圧縮ピストン12を下降させると、
第3図に示す如く、吸気バルブ14を開とさせ、吸気マ
ニホルド13から大気を圧縮空間16へ供給する。これ
は第6図の■の状態である。第4図は圧縮ピストン12
が下死点にきた状態で、吸気バルブ14を閉じ、空間1
6に吸入された空気を圧縮し始める第6図の■の位置を
示す。第5図は圧縮ピストン12が上昇し、空間16内
の空気を圧縮させ且つ吐出バルブ15を開け、圧縮空気
を吐出マニホルド31内へ吐出させる。これは、第6図
の■で表される。
The operation of the heat engine shown in FIG. 1 will be explained with reference to FIGS. 2-7. In the state shown in FIG. 2, the compression piston 12 is located at the top dead center, which is the state shown in FIG. 6. When the compression piston 12 is lowered by the crankshaft 7,
As shown in FIG. 3, the intake valve 14 is opened and atmospheric air is supplied from the intake manifold 13 to the compression space 16. This is the state indicated by ■ in FIG. Figure 4 shows the compression piston 12
is at the bottom dead center, close the intake valve 14, and open the space 1.
6 shows the position of ■ in FIG. 6 where the air taken in is started to be compressed. In FIG. 5, the compression piston 12 is raised, compressing the air in the space 16 and opening the discharge valve 15, discharging the compressed air into the discharge manifold 31. This is represented by ■ in FIG.

吐出マニホルド31内へ入った高圧空気は、燃焼器42
内で燃料噴射ノズル41より噴射された燃料と混合して
燃焼して高温・高圧の空気となる。
The high pressure air that entered the discharge manifold 31 is transferred to the combustor 42.
The air mixes with the fuel injected from the fuel injection nozzle 41 and burns to become high-temperature, high-pressure air.

次に、膨脹ピストン22の働きを説明する。第3−5図
に示す行程で、圧縮ピストン12と60度の位相の膨脹
ピストン22の動きに同期させて吸入バルブ23を開き
、燃焼器42中の高温・高圧の空気が膨脹空間26に吸
入され、更にピストン下降行程の適宜な位置で吸入バル
ブを閉し1.膨脹ピストン22を押下げ、クランクシャ
フト7を回転させる。第3−5図の状態は、第7図の■
−■で表される。第5図、第2−3図において、排気バ
ルブ24が開となり、空気を排気バルブ24、排気マニ
ホルド25を介して膨脹空間26内の空気を排気させる
。これは、第7図の■−の一■の状態である。
Next, the function of the expansion piston 22 will be explained. In the stroke shown in FIG. 3-5, the intake valve 23 is opened in synchronization with the movement of the expansion piston 22 that is 60 degrees out of phase with the compression piston 12, and the high temperature and high pressure air in the combustor 42 is sucked into the expansion space 26. Then, close the intake valve at an appropriate position in the piston's downward stroke.1. The expansion piston 22 is pushed down and the crankshaft 7 is rotated. The state in Figure 3-5 is shown in Figure 7.
-Represented by ■. In FIG. 5 and FIGS. 2-3, the exhaust valve 24 is opened, and the air in the expansion space 26 is exhausted through the exhaust valve 24 and the exhaust manifold 25. This is the state shown in FIG. 7 (■-1).

第6図と第7図を参照する。圧縮機10の最大圧力Pc
tと膨脹エンジン20の最大圧力PEIは、高圧空気の
加熱により、Pct>>PH1となり、膨脹仕事Q、は
、圧縮仕事Qcより大となり、動力を発生する。
Please refer to FIGS. 6 and 7. Maximum pressure Pc of compressor 10
t and the maximum pressure PEI of the expansion engine 20 become Pct>>PH1 due to heating of the high-pressure air, and the expansion work Q becomes larger than the compression work Qc, generating power.

第8図に示す例は、排気熱の損失を少くするためのもの
で、排気マニホルド25を吐出マニホルド31と平行さ
せ、熱交換器26にて、燃焼器42内に入る前の高圧空
気を予熱させる。これは燃焼器42の負荷を小さくし、
機関効率を向上させ得る。
The example shown in FIG. 8 is for reducing the loss of exhaust heat. The exhaust manifold 25 is arranged parallel to the discharge manifold 31, and the high-pressure air is preheated by the heat exchanger 26 before entering the combustor 42. let This reduces the load on the combustor 42,
Engine efficiency can be improved.

(効果) 作動媒体として大気を利用できるので、オープンサイク
ルにして無公害にして小型の熱機関となる。熱エネルギ
ー変換は、熱交換器を利用して作動媒体を加熱するのみ
であるから、低騒音、低振動であり、連続運転を可能に
する。通常の圧縮機やエンジン部品を流用できるので、
製作費が安価となる。加えて、本発明は低速での出力取
出しが可能であるから変速機を不要とし、低騒音である
(Effects) Since the atmosphere can be used as a working medium, it becomes an open cycle, non-polluting, and compact heat engine. Thermal energy conversion only uses a heat exchanger to heat the working medium, so it produces low noise and vibration, and enables continuous operation. Because normal compressors and engine parts can be used,
Production costs are low. In addition, the present invention allows output to be taken out at low speeds, eliminating the need for a transmission and resulting in low noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図から第5図はピ
ストンの動きを示す説明図、第6図は圧縮機のp−v線
図、第7図は膨脹エンジンのPV線図、第8図は別の例
の説明図である。 図中ニア・・・クランクシャフト、10・・・圧縮機、
11・・・圧縮シリンダ、   12・・・圧縮ピスト
ン、20・・・膨脹エンジン、   21・・・膨脹シ
リンダ、焼 22・・・膨脹ピストン、   42・・・熱突碩器。
Fig. 1 is a detailed explanatory diagram of the present invention, Figs. 2 to 5 are explanatory diagrams showing the movement of the piston, Fig. 6 is a p-v diagram of the compressor, and Fig. 7 is a PV diagram of the expansion engine. FIG. 8 is an explanatory diagram of another example. Near in the diagram: crankshaft, 10: compressor,
DESCRIPTION OF SYMBOLS 11... Compression cylinder, 12... Compression piston, 20... Expansion engine, 21... Expansion cylinder, ignition 22... Expansion piston, 42... Heat pump.

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮シリンダ、クランクシャフトに連結され且つ
圧縮シリンダ内を往復動する圧縮ピストン、圧縮シリン
ダ内の圧縮空間への連通を制御する吸気バルブと吐出バ
ルブを有する圧縮機と;膨脹シリンダ、クランクシャフ
トに連結され且つ膨脹シリンダ内を往復動する膨脹ピス
トン、膨脹シリンダ内の膨脹空間への連通を制御する吸
入バルブと排気バルブとを有する膨脹エンジンと;吐出
バルブと吸入バルブに両端で接続するマニホルドと;マ
ニホルドに組込まれた燃料噴射ノズルを有する燃焼器と
を備える熱機関。
(1) A compressor having a compression cylinder, a compression piston connected to the crankshaft and reciprocating within the compression cylinder, and an intake valve and a discharge valve that control communication to the compression space within the compression cylinder; an expansion cylinder, the crankshaft an expansion engine having an expansion piston connected to the expansion cylinder and reciprocating within the expansion cylinder, an intake valve and an exhaust valve controlling communication to an expansion space within the expansion cylinder; a manifold connected at both ends to the discharge valve and the intake valve; a combustor having fuel injection nozzles integrated into the manifold;
JP34035789A 1989-12-28 1989-12-28 Heat engine Pending JPH03202663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34035789A JPH03202663A (en) 1989-12-28 1989-12-28 Heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34035789A JPH03202663A (en) 1989-12-28 1989-12-28 Heat engine

Publications (1)

Publication Number Publication Date
JPH03202663A true JPH03202663A (en) 1991-09-04

Family

ID=18336164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34035789A Pending JPH03202663A (en) 1989-12-28 1989-12-28 Heat engine

Country Status (1)

Country Link
JP (1) JPH03202663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397579B1 (en) * 1996-04-15 2002-06-04 Guy Negre Internal combustion engine with constant-volume independent combustion chamber
CN100347422C (en) * 2005-09-12 2007-11-07 李岳 Continuous combustion constant power engine
CN102748159A (en) * 2011-06-20 2012-10-24 摩尔动力(北京)技术股份有限公司 Scavenging double-working-medium continuous combustion chamber piston thermal power system
CN104975981A (en) * 2014-07-30 2015-10-14 摩尔动力(北京)技术股份有限公司 Volume type dynamic compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397579B1 (en) * 1996-04-15 2002-06-04 Guy Negre Internal combustion engine with constant-volume independent combustion chamber
CN100347422C (en) * 2005-09-12 2007-11-07 李岳 Continuous combustion constant power engine
CN102748159A (en) * 2011-06-20 2012-10-24 摩尔动力(北京)技术股份有限公司 Scavenging double-working-medium continuous combustion chamber piston thermal power system
CN102748159B (en) * 2011-06-20 2015-05-20 摩尔动力(北京)技术股份有限公司 Scavenging double-working-medium continuous combustion chamber piston thermal power system
CN104975981A (en) * 2014-07-30 2015-10-14 摩尔动力(北京)技术股份有限公司 Volume type dynamic compressor

Similar Documents

Publication Publication Date Title
JP2524139B2 (en) Internal combustion engine and operating method thereof
US6035637A (en) Free-piston internal combustion engine
US7028476B2 (en) Afterburning, recuperated, positive displacement engine
JPH0674749B2 (en) Combined turbine engine
WO1987001414A1 (en) Shaft power generator
JPS63502202A (en) Operating cycle of turbo compound two-stroke piston engine
WO2015149447A1 (en) Thermodynamic cycle method and system for semi-closed constant pressure internal combustion in prime motor
US7004115B2 (en) Internal combustion engine with regenerator, hot air ignition, and supercharger-based engine control
US5199262A (en) Compound four stroke internal combustion engine with crossover overcharging
JPH03202663A (en) Heat engine
US6434939B1 (en) Rotary piston charger
CN101608569A (en) Changeable-stroke engine with cylinder outside compression
JPH11107856A (en) Single stage and multistage expansion stirling engine expander and stirling cooler
US6481206B1 (en) Compound cycle internal combustion engine
US3574997A (en) High pressure hot gas generator for turbines
CN211524958U (en) Novel engine without crankshaft
WO2015149446A1 (en) Thermodynamic cycle method for prime motor based on timing constant volume combustion mode
JPH0338410Y2 (en)
FI114113B (en) Ulkopalamismoottori
JPH03202662A (en) Heat engine
JPS6131619A (en) Internal-combustion engine equipped with supercharger
PL145453B2 (en) Turbine combustion engine in particular for powering vehicles
JP2003020971A (en) Diesel engine generator, engine, and method of driving diesel engine
KR20020081838A (en) Engine using vane rotor
RU2075613C1 (en) Piston internal combustion engine and method of its operation