JPH03202610A - Exhaust gas processing device for internal combustion engine - Google Patents

Exhaust gas processing device for internal combustion engine

Info

Publication number
JPH03202610A
JPH03202610A JP1340748A JP34074889A JPH03202610A JP H03202610 A JPH03202610 A JP H03202610A JP 1340748 A JP1340748 A JP 1340748A JP 34074889 A JP34074889 A JP 34074889A JP H03202610 A JPH03202610 A JP H03202610A
Authority
JP
Japan
Prior art keywords
exhaust
trap
failure
regeneration
exhaust trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1340748A
Other languages
Japanese (ja)
Inventor
Yoshiki Sekiya
関谷 芳樹
Nobukazu Kanesaki
兼先 伸和
Motohiro Niizawa
元啓 新沢
Shunichi Aoyama
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1340748A priority Critical patent/JPH03202610A/en
Publication of JPH03202610A publication Critical patent/JPH03202610A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To prevent clog and burnous by stopping the exhaust trap collecting and regenerating operations in the event of failure in an operating condition sensing means, which is used to presume the particulate deposit condition on the exhaust trap. CONSTITUTION:An exhaust trap 101 to collect exhaust particulate is installed on the exhaust passage 100 of an internal combustion engine. The operating condition of the engine is sensed by a means 105, and the regeneration timing of exhaust trap 101 is judged by a means 106 on the basis of the result from sensing. A regeneration control means 107 controls a means 104 to regenerate the exhaust trap by combustion the collected exhaust particulate when judgement is in the regenerative timing. At this time, a failure diagnostic means 108 makes diagnosis of eventual failure of a means 105. In the event of failure, a trouble countermeasure means 109 takes countermeasure for the trouble so that a bypass valve 103 on a bypass 102 for the exhaust trap 101 is opened and that the regenerating operation is stopped. At the same time, an alarm is given from an alarm device 110.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃機関の排気微粒子を排気トラップで捕集し
て処理する装置に間する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an apparatus for collecting and treating exhaust particulates from an internal combustion engine using an exhaust trap.

(従来の技術) ディーゼル機関の排気中に含まれるカーボン等の微粒子
(パーティキュレイト)を捕集するために、排気通路に
排気トラップを設置することはよく知られている(特開
昭58−51235号公報等〉。
(Prior Art) It is well known that an exhaust trap is installed in the exhaust passage in order to collect particulates such as carbon contained in the exhaust gas of a diesel engine (Japanese Patent Application Laid-Open No. 58-1988-1). Publication No. 51235, etc.

排気トラップに捕集されたパーティキュレイトは、機関
の運転状態によって、たとえば排気温度が高くなる高負
荷時などには自動的に燃焼するが、通常の運転領域では
次第に堆積していき、これが排気抵抗となって排気圧力
(排圧〉の上昇を招き、機関性能に悪影響を及ぼす要因
となる。
The particulates collected in the exhaust trap are automatically combusted depending on the operating conditions of the engine, such as during high load when the exhaust temperature rises, but in normal operating ranges, they gradually accumulate and become part of the exhaust gas. This creates resistance and causes an increase in exhaust pressure (exhaust pressure), which is a factor that adversely affects engine performance.

そこで、捕集したパーティキュレイトを定期的に燃焼さ
せて排気トラップの再生を行うのであるが、このために
、上記した公報では、吸気通路に吸気絞弁を設けておき
、再生時にこの吸気絞弁を閉じて吸入空気量を減らすこ
とにより、燃焼に関与しない余剰空気を減少させ、排気
温度を上昇させてパーティキュレイトを着火、燃焼させ
るようにしている。
Therefore, the collected particulates are periodically burned to regenerate the exhaust trap.For this purpose, in the above-mentioned publication, an intake throttle valve is provided in the intake passage, and this intake throttle valve is installed during regeneration. By closing the valve and reducing the amount of intake air, excess air that is not involved in combustion is reduced, and the exhaust temperature is increased to ignite and burn particulates.

(発明が解決しようとする課題〉 ところで、このような排気処理装置においては、運転時
間や走行距離等に基づいてパーティキュレイトの捕集具
合を把握しながら定期的に再生を行うことになるが、こ
の再生時期を正しく判断するのに運転状態や排気温度、
排気圧力等を検出する各種センサが必要となる。
(Problems to be Solved by the Invention) Incidentally, in such an exhaust treatment device, regeneration is performed periodically while monitoring the degree of particulate collection based on operating hours, mileage, etc. In order to correctly determine the timing of this regeneration, operating conditions, exhaust temperature,
Various sensors are required to detect exhaust pressure, etc.

ところがこの場合、これらセンサが常に正常に作動して
いることが必須の条件であって、もし故障したならば正
確な再生時期が判断できず、排気トラップが目詰まりに
より排圧が過度に上昇して運転性能を著しく損なったり
、あるいは多量に捕集堆積したパーティキュレイトが一
気に燃焼すれば、異常高温化によりトラップが焼損する
危険性もある。
However, in this case, it is essential that these sensors are always operating normally, and if they fail, it will not be possible to determine the correct regeneration time, and the exhaust pressure will rise excessively due to the exhaust trap becoming clogged. If a large amount of collected particulates is burned all at once, there is a risk that the trap will burn out due to abnormally high temperatures.

本発明はこのような問題を解決することを目的とする。The present invention aims to solve such problems.

(課題を解決するための手段〉 そこで本発明は、第1図に示すように、排気通路100
に介装した排気微粒子を捕集する排気トラップ101と
、この排気トラップ101をバイパスして排気を流すバ
イパス通路102に介装したバイパス弁103と、排気
温度を上昇させて排気トラップの堆積微粒子を燃焼させ
る再生手段104と、少なくとも運転状態を検出する手
段105と、運転状態に基づいて微粒子の捕集堆積量を
推定して排気トラップ101の再生時期を判断する手段
106と、再生時期がきたら前記再生手段104を作動
させて排気トラップ101の再生を行う制御手段107
と、前記検出手段105が正常に機能しているかどうか
を判断する故障診断手段108と、故障が発生している
と判断したときに前記バイパス弁103を開くと共に再
生操作を停止する故障対策手段109と、同じく故障の
発生を警告する故障警告手段110とを備える。
(Means for Solving the Problems) Therefore, the present invention provides an exhaust passage 100 as shown in FIG.
An exhaust trap 101 installed in the exhaust trap 101 to collect exhaust particulates, a bypass valve 103 installed in the bypass passage 102 to bypass this exhaust trap 101 and let the exhaust flow, and a bypass valve 103 installed in the bypass passage 102 to raise the exhaust temperature to remove the accumulated particulates in the exhaust trap. A regeneration means 104 for combusting, a means 105 for detecting at least the operating state, a means 106 for estimating the amount of captured and deposited particulates based on the operating state and determining the regeneration time of the exhaust trap 101, and a means 106 for determining the regeneration time of the exhaust trap 101 when the regeneration time comes Control means 107 for operating the regeneration means 104 to regenerate the exhaust trap 101
a failure diagnosis means 108 that determines whether the detection means 105 is functioning normally; and a failure countermeasure means 109 that opens the bypass valve 103 and stops the regeneration operation when it is determined that a failure has occurred. and a failure warning means 110 that also warns of the occurrence of a failure.

(作用) したがって、運転状態を検出する手段の出力等に異常が
認められ、故障であると判断されると、直ちにバイパス
弁が開かれて排気をバイパス通路に流し、排気トラップ
におけるパーティキュレイトの捕集を停止し、また、再
生動作を行っているときは、再生手段の作動を停止させ
て排気温度を低下させる。
(Function) Therefore, when an abnormality is detected in the output of the means for detecting the operating condition and it is determined that there is a malfunction, the bypass valve is immediately opened to flow the exhaust gas into the bypass passage and remove the particulates in the exhaust trap. When the collection is stopped and the regeneration operation is being performed, the operation of the regeneration means is stopped to lower the exhaust gas temperature.

このため、排気トラップに過度にパーティキュレイトが
捕集されて、排圧上昇による運転性の悪化や排気トラッ
プの異常燃焼を未然に回避することができる。
Therefore, it is possible to prevent excessive particulates from being collected in the exhaust trap, resulting in deterioration in drivability due to an increase in exhaust pressure and abnormal combustion in the exhaust trap.

また同時に運転者に故障を警告して、点検整備を促すこ
ともできる。
At the same time, it is also possible to warn the driver of a malfunction and encourage inspection and maintenance.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図において、1はディーゼル機関本体、2は吸気通
路、3は排気通路を示す、排気通路3には排気中のパー
ティキュレイトを捕集するための排気トラップ4が設け
られる。なお、排気トラップ4には排気中の未燃焼成分
を酸化させる触媒が通気性のあるセラミック担体の表面
にコーティングされている。
In FIG. 2, 1 is a diesel engine body, 2 is an intake passage, and 3 is an exhaust passage. The exhaust passage 3 is provided with an exhaust trap 4 for collecting particulates in the exhaust gas. In the exhaust trap 4, a catalyst that oxidizes unburned components in the exhaust gas is coated on the surface of an air-permeable ceramic carrier.

排気トラップ4に捕集堆積したパーティキュレイトを定
期的に燃焼させるために排気温度を上昇させて再生を行
う手段として、まず、前記吸気通路2には吸気絞り弁5
が設けられており、負圧アクチュエータ(ダイヤプラム
装置)6によって開度が絞り込まれると、燃焼に関与し
ない余剰空気が減少して排気温度が上昇する。負圧アク
チュエータ6にはソレノイド弁(三方電磁弁)SOL3
を介して図示しないバキュームポンプ等からの負圧が導
入される。
First, an intake throttle valve 5 is installed in the intake passage 2 as a means for raising the exhaust temperature and regenerating the particulates collected and deposited in the exhaust trap 4 in order to periodically burn them.
is provided, and when the opening degree is narrowed down by the negative pressure actuator (diaphragm device) 6, surplus air that does not participate in combustion decreases and the exhaust temperature increases. The negative pressure actuator 6 is equipped with a solenoid valve (three-way solenoid valve) SOL3.
Negative pressure from a vacuum pump (not shown) or the like is introduced through the pump.

排気通路3には排気絞り弁7が設けられ、同じく負圧ア
クチュエータ8を介して開度が絞られると、排圧の上昇
による機関負荷の上昇で、燃料噴射ポンプ10から供給
される燃料噴射量が増加して排気温度を上昇させられる
。この負圧アクチエエータ8に対する負圧は、ソレノイ
ド弁5OLIにより制御される。
The exhaust passage 3 is provided with an exhaust throttle valve 7, and when the opening is throttled via the negative pressure actuator 8, the amount of fuel injected from the fuel injection pump 10 is reduced due to the increase in engine load due to the increase in exhaust pressure. increases, raising the exhaust temperature. The negative pressure applied to the negative pressure actuator 8 is controlled by a solenoid valve 5OLI.

さらに、排気トラップ4の直前には電気ヒータ11が設
置され、これへの通電によりトラップ前面温度を上昇さ
せることができる。
Furthermore, an electric heater 11 is installed just before the exhaust trap 4, and by energizing it, the temperature in front of the trap can be raised.

排気トラップ4と並列に排気バイパス通路12が設けら
れ、このバイパス通路12には負圧アクチュエータ14
を介して開閉するバイパス弁13が介装され、排気温度
の低い機関減速時などにバイパス弁13を開くことによ
り、排気トラップ4をバイパスして低温の排気を流し、
排気トラップ4の温度低下を防ぐ、なお負圧アクチュエ
ータ】。
An exhaust bypass passage 12 is provided in parallel with the exhaust trap 4, and a negative pressure actuator 14 is provided in this bypass passage 12.
A bypass valve 13 that opens and closes via the exhaust trap 4 is installed, and by opening the bypass valve 13 during deceleration of the engine when the exhaust temperature is low, the exhaust trap 4 is bypassed and low-temperature exhaust flows.
A negative pressure actuator that prevents the temperature of the exhaust trap 4 from decreasing].

4にはソレノイド弁5QL2を介して負圧の導入が制御
される。
4, the introduction of negative pressure is controlled via a solenoid valve 5QL2.

次にコントロールユニット20は、これらソレノイド弁
5QL1〜3や電気ヒータ11の作動を制御して排気ト
ラップ4の再生を行い、また、後述するように各種セン
サの異常発生時には再生動作を停止し、あるいは排気ト
ラップ4のパーティキュレイトによる目詰まりを防ぐよ
うになっている。
Next, the control unit 20 controls the operation of the solenoid valves 5QL1 to 5QL3 and the electric heater 11 to regenerate the exhaust trap 4, and also stops the regeneration operation when an abnormality occurs in various sensors as described later, or This prevents the exhaust trap 4 from being clogged with particulates.

すなわち、コントロールユニット20は機関運転状態を
検出する手段としての、機関回転数センサ21m、燃料
噴射量センサ21b、機関冷却温度センサ21c等から
の各検出信号Ne、Q、T@cこもとづき機関の運転条
件をみながら、かつ、排気トラップ4の上流と下流の圧
力差ΔPを検出する圧力センサ22の出力に基づいて、
排気トラップ4に捕集されるパーティキュレイトの堆積
量を推定してその再生時期を判断し、また、そのときの
運転条件と排気温度センサ23a、23bが検出する排
気トラップ4の上流と下流の排気温度に基づいて、前記
各再生手段を選択的に作動させて効率よく排気トラップ
4の再生操作を行い、さらに、これら各種センサ類に異
常が発生したときには、再生動作を停止する共に排気ト
ラップ4の目詰まり回避動作や、警告灯WLI、WL2
を点灯させての警告を行うようになっている。
That is, the control unit 20 receives detection signals Ne, Q, T@c from the engine speed sensor 21m, fuel injection amount sensor 21b, engine cooling temperature sensor 21c, etc. as means for detecting the engine operating state. While observing the operating conditions, and based on the output of the pressure sensor 22 that detects the pressure difference ΔP between the upstream and downstream sides of the exhaust trap 4,
The amount of accumulated particulates collected in the exhaust trap 4 is estimated to determine the regeneration timing, and the operating conditions at that time and the upstream and downstream temperatures of the exhaust trap 4 detected by the exhaust temperature sensors 23a and 23b are Based on the exhaust gas temperature, each of the regeneration means is selectively operated to efficiently regenerate the exhaust trap 4.Furthermore, when an abnormality occurs in these various sensors, the regeneration operation is stopped and the exhaust trap 4 is regenerated. clogging avoidance operation and warning lights WLI and WL2.
A warning is given by lighting up.

コントロールユニット20をマイクロコンピュータで構
成したときの上記した制御動作を、第3図〜第10図に
よって具体的に説明する。
The above-mentioned control operation when the control unit 20 is configured with a microcomputer will be specifically explained with reference to FIGS. 3 to 10.

第3図は制御動作のメインフローを示すもので、まず機
関回転数Neを読込み、機関が完全に自立運転している
かどうかを回転数Neから判断する(ステップ1.2 
ただし以下の表示では単に「Sl、2」のようにあられ
す〉。
Figure 3 shows the main flow of the control operation. First, the engine rotation speed Ne is read, and it is determined from the rotation speed Ne whether the engine is operating completely independently (step 1.2).
However, in the following display, it is simply written as "Sl, 2".

完爆していないときは、S3で、吸気、排気絞り弁5.
7を開くと共にバイパス弁13を開き、かつ電気ヒータ
11をオフにする。また警告灯WLl、WL2をオフに
する。
If complete explosion has not occurred, use S3 to close the intake and exhaust throttle valves5.
7 is opened, the bypass valve 13 is also opened, and the electric heater 11 is turned off. Also, turn off the warning lights WLl and WL2.

これに対して完爆したものと判断したときは、S4で燃
料噴射量Q、排気トラップ4の入口と出口温度TINと
T OUT、同じく上流と下流の圧力差ΔPを読込み、
S5の各種センサ類の故障診断ルーチンに移行する。
On the other hand, when it is determined that a complete explosion has occurred, the fuel injection amount Q, the inlet and outlet temperatures TIN and TOUT of the exhaust trap 4, and the pressure difference ΔP between upstream and downstream are read in S4.
The process moves to S5, a failure diagnosis routine for various sensors.

その具体的な内容は第4図に示す通りで、この故障診断
はいずれも、各種センサの出力が正常な出力範囲にある
かどうかにより行うもので、821〜S26において、
それぞれ燃料噴射量Q、冷却水温Tw、機関回転数Ne
、排気トラップ入口温度TIN、トラップ出口温度T 
OUT、トラップ前後差圧ΔPが所定範囲にあれば、S
27で故障判定フラグをオフし、またいずれかひとつで
もそうでなければS28で故障と判定してフラグをオン
にする。
The specific details are as shown in Fig. 4, and this fault diagnosis is performed based on whether the outputs of various sensors are within the normal output range.
Respectively fuel injection amount Q, cooling water temperature Tw, engine speed Ne
, exhaust trap inlet temperature TIN, trap outlet temperature T
OUT, if the differential pressure ΔP across the trap is within the specified range, S
The failure determination flag is turned off in step S27, and if any one of them is not present, it is determined that there is a failure and the flag is turned on in step S28.

次いで第3図に戻り、この診断結果にもとづきS6で判
定フラグより故障かどうかをみて、故障でなければ、S
7で警告灯WL2をオフにしてから、後述する排気トラ
ップ4の再生時期にきているかどうかを再生時期フラグ
から判定する(S8)。
Next, returning to FIG. 3, based on this diagnosis result, check whether there is a failure from the judgment flag in S6, and if it is not a failure, the S
After turning off the warning light WL2 at step 7, it is determined from a regeneration time flag whether or not it is time to regenerate the exhaust trap 4, which will be described later (S8).

再生時期にあるときは警告灯WLIを点灯し、再生操作
に入る(S9,10)。
When it is time for regeneration, the warning light WLI is turned on and regeneration operation begins (S9, 10).

再生操作の具体的な内容は第7図に示すが1機関の運転
状態によって再生条件が大きく変動するため、運転性を
損なうことなく効率のよい再生を行うための要点を、第
9図、第10図を参照しながら説明する。
The specific details of the regeneration operation are shown in Figure 7, but since the regeneration conditions vary greatly depending on the operating status of an engine, the key points for efficient regeneration without impairing drivability are shown in Figures 9 and 9. This will be explained with reference to FIG.

エンジンの負荷Qと回転数Neから定まる運転領域を、
第9図で示したようにAからDの4つの領域に区分けし
て、下記(i)〜(iv)のように、区分けされた運転
領域A−Dに応じて制御内容を相違させる。
The operating range determined from the engine load Q and rotational speed Ne is
As shown in FIG. 9, the driving range is divided into four regions A to D, and the control contents are varied according to the divided operating regions A to D, as shown in (i) to (iv) below.

(i)A領域;この領域では第10図で示すように、排
気温度が再生温度(400℃程度)TREによりも高い
ので、何もしなくとも排気トラップ4を再生することが
でき、したがってとくに再生手段を作動させない。
(i) Region A: In this region, as shown in Fig. 10, the exhaust temperature is higher than the regeneration temperature (approximately 400°C) TRE, so the exhaust trap 4 can be regenerated without doing anything. Do not activate the means.

なお、第10図は回転数一定条件下でのエンジン負荷に
対する排気温度特性を示す。
Note that FIG. 10 shows the exhaust gas temperature characteristics with respect to engine load under a constant rotation speed condition.

(ii)B領域;この領域では、多少排気温度を上昇さ
せないと、再生温度T REGに達しない。このため、
吸気絞り弁5で吸気を絞るか、排気絞り弁7で排気を絞
る必要がある。
(ii) Region B: In this region, the regeneration temperature TREG is not reached unless the exhaust gas temperature is increased to some extent. For this reason,
It is necessary to throttle the intake air with the intake throttle valve 5 or to throttle the exhaust air with the exhaust throttle valve 7.

この場合、このB領域は負荷が比較的高く空気過剰率が
小さく、吸気を絞ったのではパーティキュレート(スモ
ーク〉が激増するので得策でないため、この領域では排
気だけを絞りかつ電気ヒータ11をONにする。
In this case, in this region B, the load is relatively high and the excess air ratio is small, and it is not a good idea to restrict the intake air because particulates (smoke) will increase dramatically. Therefore, in this region, only the exhaust gas is restricted and the electric heater 11 is turned on. Make it.

(iii)C領域:この領域では排気温度が低く、相当
昇温させないと、再生温度T REGに達しない。
(iii) Region C: In this region, the exhaust gas temperature is low and will not reach the regeneration temperature TREG unless the temperature is raised considerably.

なお、この領域では、空気過剰率が大きいため吸気を絞
ってもパーティキュレートが増加することはない、そこ
で、吸気と排気を共に絞り、かつ電気ヒータ11をON
にする。
Note that in this region, the excess air ratio is large, so even if the intake air is throttled, particulates will not increase.Therefore, both the intake air and the exhaust air are throttled, and the electric heater 11 is turned on.
Make it.

(iv〉D領域;この領域での定常運転状態では、吸気
と排気をともに絞りかつ電気ヒータ11をONにしても
、再生温度TREにに達することはない。
(iv>D region: In a steady state of operation in this region, even if both the intake air and the exhaust gas are throttled and the electric heater 11 is turned on, the regeneration temperature TRE will not be reached.

しかしながら、高負荷高回転域から過渡的にこの領域に
移行してきたような場合は、排気トラップ4の余熱が高
いので、これを利用すれば再生を継続して行うことがで
きる。そこで、この領域ではさらに排気トラップ入口温
度TINと出口温度TOυTに応じて、3つの領域(T
IN≧T1の領域DT IN< T 、かつT OUT
≧T2の領域り、 、TIN<TかつTOUT < T
 2の領域D3)に区分けし、次のように、排気余熱を
利用することができるときはこれを積極的に利用する。
However, in the case where there is a transitional transition from the high-load, high-speed range to this range, the residual heat in the exhaust trap 4 is high, so if this is used, regeneration can be continued. Therefore, in this region, three regions (T
Area DT where IN≧T1 IN<T and T OUT
If the area is ≧T2, , TIN<T and TOUT<T
The residual heat of the exhaust gas is divided into two regions D3), and when it is possible to utilize the exhaust residual heat, it is actively utilized as described below.

ただし、T1は再生温度TREGに等しい400℃、T
2は300℃である。
However, T1 is 400°C, which is equal to the regeneration temperature TREG;
2 is 300°C.

領域D1;この領域では排気温度が高いので、そのまま
でも再生が継続されるが、電気ヒータ11をONにして
補助させる。
Region D1: Since the exhaust gas temperature is high in this region, regeneration continues as it is, but the electric heater 11 is turned on to assist.

領域D2:排気トラップ4の出口温度T OUTが入口
温度TINより低いことから、排気トラップ4が排気に
より冷やされていることがわかるので、排気トラップ4
をバイパスして流してやると、トラップ自体の温度が高
く保たれ再生温度を維持できる。
Region D2: Since the outlet temperature T OUT of the exhaust trap 4 is lower than the inlet temperature TIN, it can be seen that the exhaust trap 4 is cooled by the exhaust gas, so the exhaust trap 4
By bypassing the flow, the temperature of the trap itself is kept high and the regeneration temperature can be maintained.

そこで、この領域ではバイパス弁13を開き、かつ電気
ヒータ11をONとする。
Therefore, in this region, the bypass valve 13 is opened and the electric heater 11 is turned on.

領域り、;このような低温域ではどのようにしても再生
温度T REににまで上昇させることができない、ただ
し、このような低温域ではパーティキュレートの発生が
少ないので、排気をバイパスして流しても問題なく、バ
イパスすることにより排気圧力を下げることができる。
In such a low temperature range, no matter what you do, it is impossible to raise the regeneration temperature to the regeneration temperature TRE.However, since there are few particulates generated in such a low temperature range, the exhaust gas may be bypassed and flowed. There is no problem even if it is bypassed, and the exhaust pressure can be lowered by bypassing it.

そこで、この領域ではバイパス弁13を開く、なお、電
気ヒータ11はOFFである。
Therefore, in this region, the bypass valve 13 is opened, and the electric heater 11 is OFF.

第7図は上記(i)〜(iv)で示した動作を行なわせ
るための具体的ルーチンである。
FIG. 7 shows a specific routine for performing the operations shown in (i) to (iv) above.

S51では冷却水温Twが所定値(たとえば50℃)以
上であるかどうかみて、所定値以上であれば、S52に
進む。
In S51, it is checked whether the cooling water temperature Tw is equal to or higher than a predetermined value (for example, 50° C.), and if it is equal to or higher than the predetermined value, the process proceeds to S52.

まず、853〜S55ではエンジン負荷Qと回転数Ne
から定まるそのときの運転条件が、第3図で示したいず
れの運転領域A−Dに属するかを判定する。この場合、
第9図の領域特性は予めマツプにしてROMに記憶させ
ておく。
First, in 853 to S55, engine load Q and rotation speed Ne
It is determined to which operating range A to D shown in FIG. 3 the operating conditions at that time determined from the above belong. in this case,
The area characteristics shown in FIG. 9 are mapped and stored in the ROM in advance.

判定結果に応じ、領域AであればS58.領域Bであれ
ばS59.領域CであればS60.領域りであればS5
6にそれぞれ進む。
Depending on the determination result, if it is area A, step S58. If it is area B, S59. If it is area C, S60. S5 if it is in the area
Proceed to step 6.

また、S 56 、S 57では3つの温度域D1〜D
、のいずれに属するかを判定し、領域D1であればS6
1.領域D2であればS62.領域り、であれば863
に進む。
In addition, in S 56 and S 57, three temperature ranges D1 to D
, and if it is area D1, S6
1. If it is area D2, S62. If the area is 863
Proceed to.

S58は前述した領域Aでの操作内容にしたがって再生
を行い、またS59では領域Bの、S60では領域Cの
再生を行う、さらに、S61では領域D1の、またS6
2では領域D2の操作内容にしたがった再生を行い、3
63では領域り、の内容にしたがって排気をバイパスさ
せる。
In S58, reproduction is performed according to the operation contents in area A described above, in S59, area B is reproduced, in S60, area C is reproduced, and furthermore, in S61, area D1 is reproduced, and in S6
In step 2, playback is performed according to the operation details in area D2, and in step 3
At 63, the exhaust gas is bypassed according to the contents of the area.

364〜S67では再生時間をカウントし、その後S6
8に進み、カウントした再生時間を所定時間(たとえば
10分)と比較し、所定時間経過すれば、再生を終了し
たと判断してS69に進む。
364 to S67 count the playback time, and then S6
The process proceeds to S69, where the counted playback time is compared with a predetermined time (for example, 10 minutes), and when the predetermined time has elapsed, it is determined that the playback has ended, and the process proceeds to S69.

369では、排気と吸気の各絞り弁5,7、バイパス弁
13、電気ヒータ11を元の状態に戻し、再生時期フラ
グをオフにすると共にPCT量積箪値をリセットする。
At step 369, the exhaust and intake throttle valves 5 and 7, the bypass valve 13, and the electric heater 11 are returned to their original states, the regeneration timing flag is turned off, and the PCT quantity product value is reset.

一方、S51で冷却水温Twが所定値未満であれば、S
70において排気トラップの入口温度TINがT、以上
かどうかみて、TIN≧T1であれば、排気トラップ4
で再生されるので358に移行するが、そうでない場合
はS71,72に進み、再生動作は行わない。
On the other hand, if the cooling water temperature Tw is less than the predetermined value in S51, S
At 70, it is checked whether the inlet temperature TIN of the exhaust trap is T or more, and if TIN≧T1, the exhaust trap 4 is
Since the data will be played back, the process moves to 358, but if not, the process moves to S71 and S72, and no playback operation is performed.

このようにして再生時期に達すると、再生手段を操作し
て排気トラップ4に堆積したパーティキュレイトを再燃
焼させるのであるが、そうでないときは、第3図におい
て、Sllのバイパス弁操作ルーチンに移行する。
In this way, when the regeneration period is reached, the regeneration means is operated to re-burn the particulates accumulated in the exhaust trap 4, but if this is not the case, the bypass valve operation routine of the Sll is performed as shown in FIG. Transition.

ここでは第5図に示すように、運転状態をマツプ検索し
て減速状態にあるかどうかを判断しくS31.532)
、減速時には排気出口温度T OUTが所定値よりも高
いときは、バイパス弁13を閉じるが、そうでないとき
はバイパス弁13を開いて、排気トラップ4をバイパス
して排気を流し、排気トラップ4が比較的低温の排気(
減速時は排気温度が低い〉により過冷却されるのを防ぐ
(833〜535)。
Here, as shown in Fig. 5, the driving state is searched on a map to determine whether it is in a deceleration state or not (S31.532).
During deceleration, if the exhaust outlet temperature T OUT is higher than a predetermined value, the bypass valve 13 is closed; otherwise, the bypass valve 13 is opened and the exhaust gas bypasses the exhaust trap 4, allowing the exhaust trap 4 to flow. Relatively low temperature exhaust (
During deceleration, the exhaust gas temperature is low to prevent overcooling (833-535).

出口温度が設定値よりも高いときに排気トラップ4をバ
イパスして排気を流すと、排気トラップ4に適度な空気
(酸素)が残存して、これにより捕集されていたパーテ
ィキュレイトがいつきに燃焼して排気トラップ4を焼損
したりするので、この場合には排気トラップ4に積極的
に排気を流すことにより、温度を下げ、焼損防止を図る
のである。
When the outlet temperature is higher than the set value, if the exhaust air is bypassed and flows through the exhaust trap 4, a moderate amount of air (oxygen) remains in the exhaust trap 4, which causes the collected particulates to disappear. Since the exhaust trap 4 may be burnt out due to combustion, in this case, the exhaust gas is actively flowed into the exhaust trap 4 to lower the temperature and prevent burnout.

次ぎに第3図に戻り、Si2で再生時期の判断、つまり
排気トラップ4に所定量のパーティキュレイトが堆積し
ているかどうかをみる。具体的な内容は第6図に示す通
りで、運転状態検出手段の出力に基づいてパーティキュ
レイト堆積量(P CT量〉を積算し、積算値が所定値
に達したかどうかを判定する(841〜343)、そし
て所定の堆積量に達した推定したときは、再生時期フラ
グをオンにして前述した再生操作を行わせるが、そうで
ないときはS44に移行して排気トラップ4の前後差圧
ΔPを所定値ΔP waxと比較し、これよりも大きい
ときは再生時期フラグをオンし、またそうでないときは
再生時期フラグをオフにしておく(845,346)。
Next, returning to FIG. 3, the regeneration timing is determined using Si2, that is, it is determined whether a predetermined amount of particulates have accumulated in the exhaust trap 4. The specific content is as shown in Fig. 6, in which the particulate accumulation amount (PCT amount) is integrated based on the output of the operating state detection means, and it is determined whether the integrated value has reached a predetermined value ( 841 to 343), and when it is estimated that a predetermined amount of accumulation has been reached, the regeneration timing flag is turned on to perform the regeneration operation described above, but if not, the process moves to S44 and the differential pressure across the exhaust trap 4 is ΔP is compared with a predetermined value ΔP wax, and if it is larger than this, the reproduction time flag is turned on, and if it is not, the reproduction time flag is turned off (845, 346).

なお、再生時期の判定を行う場合、PCT量の積算は運
転条件によってパーティキュレイトの発生量が異なるの
で、機関負荷や回転数あるいは、排気トラップ4の前後
差圧等に基づいて、予め想定されるパーティキュレイト
の発生特性から演算して求めることになる。
In addition, when determining the regeneration timing, the amount of PCT generated varies depending on the operating conditions, so the amount of PCT is estimated in advance based on the engine load, rotation speed, differential pressure across the exhaust trap 4, etc. It is calculated from the generation characteristics of particulates.

ところで、このような運転状態を検出する手段(各種セ
ンサ)が適正に作動しているかどうかを監視していない
と、排気トラップ4に堆積しているパーティキュレイト
を正しく把握できず、排気トラップ4に過剰なパーティ
キュレイトが堆積すると、目詰まりを起こして排圧が過
度に上昇したり、運転条件によってはこれがいつきに燃
焼し、排気トラップ4が異常高温化して焼損する危険も
ある。
By the way, if the means (various sensors) for detecting the operating state are not monitored to see if they are operating properly, the particulates accumulated in the exhaust trap 4 will not be correctly grasped, and the exhaust trap 4 will not be properly detected. If excessive particulates accumulate in the exhaust trap 4, they may become clogged and the exhaust pressure may rise excessively, or depending on the operating conditions, they may burn out, causing the exhaust trap 4 to become abnormally hot and burn out.

そこで、第3図の86において、運転状態検出手段等に
故障が判断されると313の故障時操作ルーチンに移行
して、第8図に示すように、吸気、排気絞り弁5.6を
開くと共にバイパス弁13を開き、電気ヒータ11をオ
フにする。そして警告灯WL1はオフにするが、WL2
を点滅して故障の発生を運転者に警告する(S 80 
)。
Therefore, when a failure is determined in the operating state detection means etc. at 86 in FIG. 3, the process moves to the failure operation routine at 313, and as shown in FIG. 8, the intake and exhaust throttle valves 5.6 are opened. At the same time, the bypass valve 13 is opened and the electric heater 11 is turned off. Warning light WL1 is then turned off, but WL2
flashes to warn the driver of the occurrence of a malfunction (S80
).

吸気、排気絞り弁5.7を開くと共に電気ヒータ11を
オフすると、排気温度は上昇せず、排気トラップ4での
再生は停止され、また、同時に排気トラップ4をバイパ
スして排気を流して、この間にさらにパーティキュレイ
トが捕集されることのないようにする。これらの結果、
排気トラップ4の目詰まりを未然に防いで運転性の悪化
や異常燃焼による焼損の危険を回避することができる。
When the intake and exhaust throttle valves 5.7 are opened and the electric heater 11 is turned off, the exhaust temperature does not rise, regeneration in the exhaust trap 4 is stopped, and at the same time, the exhaust trap 4 is bypassed and the exhaust is allowed to flow. During this time, prevent further collection of particulates. These results
By preventing the exhaust trap 4 from clogging, it is possible to avoid deterioration in drivability and the risk of burnout due to abnormal combustion.

なお、この故障判定時に、再生時期に達していない場合
、第6図の342で演算されたPCT量の積算値は、故
障時にはS42のフローを通らないため、故障前の状態
が記憶される。
Note that if the regeneration time has not been reached at the time of this failure determination, the integrated value of the PCT amount calculated at 342 in FIG. 6 does not pass through the flow of S42 at the time of failure, so the state before the failure is stored.

また、再生時期に達している場合は、S45で再生時期
フラグをオンにした状態となり、故障判定時にはS43
〜S46のフローを通らないため、再生時期フラグがオ
ンのまま記憶さ九る。
In addition, if the regeneration time has been reached, the regeneration time flag is turned on in S45, and when a failure is determined, the regeneration time flag is turned on.
Since the flow from to S46 is not passed, the playback timing flag is stored with it turned on.

これらの結果、故障状態が解消されたときには、この記
憶結果に基づいて次の操作が継続されることになり、し
たがって故障回復後の制御が正確に行なわれ、運転性の
悪化を防ぐと共に、排気トラップ4の適切な保護が図れ
る。
As a result, when the fault condition is resolved, the next operation will be continued based on this memorized result. Therefore, control after fault recovery is performed accurately, prevents deterioration of drivability, and improves exhaust gas. The trap 4 can be appropriately protected.

(発明の効果〉 以上のように本発明によれば、排気トラップのパーティ
キュレイトの堆積状態を推定するために用いられる運転
状態の検出手段の出力に異常が発生していないかどうか
を常に監視し、異常時には排気トラップのパーティキュ
レイト捕集動作を中止すると共に、再生動作も停止する
ようにしたので、排気トラップの目詰まりを防いで、運
転性の悪化を未然に回避すると共に、過剰に捕集された
パーティキュレイトがいつきに燃焼してトラップを焼損
させる危険も回避することができる。
(Effects of the Invention) As described above, according to the present invention, it is constantly monitored whether or not an abnormality has occurred in the output of the operating state detection means used to estimate the particulate accumulation state in the exhaust trap. However, in the event of an abnormality, the particulate collection operation of the exhaust trap is stopped, and the regeneration operation is also stopped. This prevents the exhaust trap from clogging and deterioration of drivability. It is also possible to avoid the danger of the trapped particulates burning out and damaging the trap.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す構成図、第2図は本発明の
実施例の概略構成図、第3図から第8図はそれぞれ制御
動作を示すフローチャート、第9図は機関負荷と回転数
にもとに再生操作時の制御領域を示す説明図、第10図
は機関負荷と排気温度をもとに同じく制御領域を示す説
明図である。 l・・・機関本体、2・・・吸気通路、3・・・排気通
路、4・・・排気トラップ、5・・・吸気絞り弁、7・
・・排気絞り弁、11・・・電気ヒータ、12・・・排
気バイパス通路、13・・・バイパス弁、20・・・コ
ントロールユニット、21m・・・回転数センサ、21
b・・・燃料噴射量センサ、21c・・・冷却水温セン
サ、22・・・圧力センサ、23a、23b=−排気温
度センサ、WLl、WL2・・・警告灯。 第 4 図 第 図 第 図 第 図 第 9 図 第 0 図
Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 is a schematic block diagram of an embodiment of the present invention, Figs. 3 to 8 are flowcharts showing control operations, and Fig. 9 shows engine load and rotation. FIG. 10 is an explanatory diagram showing the control range during regeneration operation based on numbers, and FIG. 10 is an explanatory diagram showing the same control range based on engine load and exhaust temperature. l... Engine body, 2... Intake passage, 3... Exhaust passage, 4... Exhaust trap, 5... Intake throttle valve, 7...
...Exhaust throttle valve, 11...Electric heater, 12...Exhaust bypass passage, 13...Bypass valve, 20...Control unit, 21m...Rotational speed sensor, 21
b...Fuel injection amount sensor, 21c...Cooling water temperature sensor, 22...Pressure sensor, 23a, 23b=-exhaust temperature sensor, WLl, WL2...Warning light. Figure 4 Figure Figure 9 Figure 0

Claims (1)

【特許請求の範囲】[Claims] 排気通路に介装した排気微粒子を捕集する排気トラップ
と、この排気トラップをバイパスして排気を流すバイパ
ス通路に介装したバイパス弁と、排気温度を上昇させて
排気トラップの堆積微粒子を燃焼させる再生手段と、少
なくとも運転状態を検出する手段と、運転状態に基づい
て微粒子の捕集堆積量を推定して排気トラップの再生時
期を判断する手段と、再生時期がきたら前記再生手段を
作動させて排気トラップの再生を行う制御手段と、前記
検出手段が正常に機能しているかどうかを判断する故障
診断手段と、故障が発生していると判断したときに前記
バイパス弁を開くと共に再生操作を停止する故障対策手
段と、同じく故障の発生を警告する故障警告手段とを備
えることを特徴とする内燃機関の排気処理装置。
An exhaust trap installed in the exhaust passage to collect exhaust particulates, a bypass valve installed in the bypass passage to bypass this exhaust trap and allow the exhaust to flow, and increase the exhaust temperature to burn the accumulated particulates in the exhaust trap. a regeneration means; a means for detecting at least an operating state; a means for estimating the amount of captured and deposited particulates based on the operating state to determine when to regenerate the exhaust trap; and when the regeneration time comes, the regeneration means is operated. a control means for regenerating the exhaust trap; a failure diagnosis means for determining whether the detection means is functioning normally; and when it is determined that a failure has occurred, the bypass valve is opened and the regeneration operation is stopped. 1. An exhaust gas treatment device for an internal combustion engine, comprising a failure countermeasure means for warning of the occurrence of a failure, and a failure warning means for warning of the occurrence of a failure.
JP1340748A 1989-12-28 1989-12-28 Exhaust gas processing device for internal combustion engine Pending JPH03202610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340748A JPH03202610A (en) 1989-12-28 1989-12-28 Exhaust gas processing device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340748A JPH03202610A (en) 1989-12-28 1989-12-28 Exhaust gas processing device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03202610A true JPH03202610A (en) 1991-09-04

Family

ID=18339926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340748A Pending JPH03202610A (en) 1989-12-28 1989-12-28 Exhaust gas processing device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03202610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291036A (en) * 2004-03-31 2005-10-20 Denso Corp Regeneration processing device for particulate filter
WO2006021377A1 (en) * 2004-08-26 2006-03-02 Daimlerchrysler Ag Method for diagnosing an exhaust gas purification element of an internal combustion engine
CN104594981A (en) * 2014-11-29 2015-05-06 中国煤炭科工集团太原研究院有限公司 Efficient tail gas particle purification system of mining rubber-tyred vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291036A (en) * 2004-03-31 2005-10-20 Denso Corp Regeneration processing device for particulate filter
WO2006021377A1 (en) * 2004-08-26 2006-03-02 Daimlerchrysler Ag Method for diagnosing an exhaust gas purification element of an internal combustion engine
CN104594981A (en) * 2014-11-29 2015-05-06 中国煤炭科工集团太原研究院有限公司 Efficient tail gas particle purification system of mining rubber-tyred vehicle
CN104594981B (en) * 2014-11-29 2017-01-11 中国煤炭科工集团太原研究院有限公司 Efficient tail gas particle purification system of mining rubber-tyred vehicle

Similar Documents

Publication Publication Date Title
US8281576B2 (en) Diesel particulate filter control
CN100549372C (en) The controlling method of waste gas cleaning system and waste gas cleaning system
US8001774B2 (en) Control method of exhaust gas purification system and exhaust gas purification system
US8572952B2 (en) Diesel particulate filter control
EP1978219B1 (en) Exhaust gas purification method and exhaust gas purification system
JPH0621551B2 (en) Particulate trap regeneration device
JP2003083035A (en) Exhaust emission control device of engine
JPH0431613A (en) Exhaust treatment system for internal combustion engine
JPH03202610A (en) Exhaust gas processing device for internal combustion engine
JP4241465B2 (en) Particulate filter regeneration processing device inspection system
JPS62162762A (en) Exhaust gas purifier for diesel engine
KR20070062309A (en) Diesel catalyze particulate filter diagnosis system of diesel vehicle and method thereof
KR100774757B1 (en) Regeneration apparatus and the method of diesel&#39;s filter system
JPH03202611A (en) Exhaust gas processing device for internal combustion engine
JP3593962B2 (en) Exhaust gas purification device for internal combustion engine
JP2005016395A (en) Emission control system for internal combustion engine
JP3186516B2 (en) Particulate trap device
JP3116549B2 (en) Engine exhaust purification device
JPH0517372Y2 (en)
JP2842128B2 (en) Exhaust gas leak detection device of exhaust gas aftertreatment device
JP2005163652A (en) Emission control device
JPH03233125A (en) Exhaust gas treatment device of internal combustion engine
JPH02271022A (en) Processor for exhaust fine particles of internal combustion engine
JPH0618029Y2 (en) Diesel exhaust particulate removal device
JPH03199615A (en) Exhaust gas cleaner for engine