JPH03202462A - Production of electrode foil for electrolytic capacitor - Google Patents

Production of electrode foil for electrolytic capacitor

Info

Publication number
JPH03202462A
JPH03202462A JP34115689A JP34115689A JPH03202462A JP H03202462 A JPH03202462 A JP H03202462A JP 34115689 A JP34115689 A JP 34115689A JP 34115689 A JP34115689 A JP 34115689A JP H03202462 A JPH03202462 A JP H03202462A
Authority
JP
Japan
Prior art keywords
vapor
substrate
base material
electrolytic capacitor
electrode foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34115689A
Other languages
Japanese (ja)
Inventor
Takayoshi Akamatsu
孝義 赤松
Haruki Nonaka
晴支 野中
Tetsuo Oka
哲雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Metallizing Co Ltd
Toray Industries Inc
Original Assignee
Toyo Metallizing Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Metallizing Co Ltd, Toray Industries Inc filed Critical Toyo Metallizing Co Ltd
Priority to JP34115689A priority Critical patent/JPH03202462A/en
Publication of JPH03202462A publication Critical patent/JPH03202462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably produce a foil material having large electrostatic capacity by specifying the initial incident angle of a metallic vapor with respect to a base material and turning an inert gas on the incident region of the vapor upon the base material from the downstream side in the traveling direction of the base material. CONSTITUTION:A vapor composed of at least one metal selected from Al, Ti, Zr, Ta, Nb, and Hf or alloy thereof is turned on a base material traveling along a cylindrical drum 1, by which an electrode foil for electrolytic capacitor is formed. At this time, the initial incident angle of the vapor with respect to the base material is set up in the range of 45-90 deg.. It is preferable that the incident region of the vapor upon the base material has a practically hermetically sealed structure, excluding an opening between the lateral end 6 which is positioned on the downstream side in the traveling direction of the base material of a mask 3 and the end 10 which is positioned on the upstream size in the traveling direction of the base material of a mask 4. An inert gas is supplied into the above-mentioned practically hermetically sealed region by means of a nozzle, from the downstream side in the traveling direction of the base material toward the incident region of the vapor upon the base material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電解コンデンサ用電極の製造法に関する。更
に詳しくは、電解コンデンサの小型大容量化に寄与する
電極の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an electrode for an electrolytic capacitor. More specifically, the present invention relates to a method of manufacturing an electrode that contributes to making electrolytic capacitors smaller and larger in capacity.

[従来の技術] 電解コンデンサ用電極としては、一般にアルミニウム箔
にエツチングを施して表面積を拡大したものが用いられ
ている。電極の表面積を拡大することは、コンデンサの
静電容量を増加させるために必須であり、小型大容量化
への要求から更に電極の表面積を拡大することが求めら
れている。しかしエツチングによるアルミニウム箔の表
面積拡大は、アルミニウム箔の強度の低下などから限界
に近付いている。
[Prior Art] As electrodes for electrolytic capacitors, aluminum foil is generally etched to enlarge its surface area. Increasing the surface area of the electrode is essential for increasing the capacitance of a capacitor, and the demand for smaller size and larger capacity demands further expansion of the surface area of the electrode. However, increasing the surface area of aluminum foil by etching is approaching its limit due to factors such as a decrease in the strength of the aluminum foil.

これに対して特開昭56−29669号公報では、30
度以上、好ましくは80〜85度の入射角で基体にアル
ミニウムやタンタルなどの弁金属の蒸気を入射させて多
孔質金属膜を作成し、表面積が拡大した電解コンデンサ
電極箔を得ることが提案されでいる。また特開昭59−
167009号公報では、アルミニウム箔などの基体上
にアルミニラム、タンタル、チタン、ニオブ、ジルコニ
ウムなどの弁金属を不活性ガス中で蒸着して多孔質膜を
形威し、電極の表面積を拡大すると共に誘電率を増加さ
せることが提案されている。
On the other hand, in Japanese Patent Application Laid-Open No. 56-29669, 30
It has been proposed to create an electrolytic capacitor electrode foil with an expanded surface area by creating a porous metal film by injecting the vapor of a valve metal such as aluminum or tantalum onto the substrate at an incident angle of 80 to 85 degrees or more, preferably 80 to 85 degrees. I'm here. Also, JP-A-59-
In Japanese Patent No. 167009, valve metals such as aluminum, tantalum, titanium, niobium, and zirconium are deposited on a substrate such as aluminum foil in an inert gas to form a porous film, which expands the surface area of the electrode and improves dielectric properties. It is proposed to increase the rate.

これらの技術は電解コンデンサの見掛けの単位面積当た
りの静電容量の増加に大きな効果がある。
These techniques have a great effect on increasing the apparent capacitance per unit area of electrolytic capacitors.

[発明が解決しようとする課題] しかしながら、これらの技術には未だ以下のような課題
があった。
[Problems to be Solved by the Invention] However, these techniques still have the following problems.

(1)充分な表面積拡大効果を得るためには該弁金属膜
の厚みを1〜20μmと大きくする必要があり、生産性
の点で問題があったほか、アルミニウム以外の弁金属は
高融点材料であるため上記のような比較的厚い膜を形成
しようとすると、蒸着時に基体が熱ダメージを受けて平
坦性が損なわれやすい。
(1) In order to obtain a sufficient surface area expansion effect, it is necessary to increase the thickness of the valve metal film to 1 to 20 μm, which poses a problem in terms of productivity, and the valve metal other than aluminum must be made of a high melting point material. Therefore, when attempting to form a relatively thick film as described above, the substrate is likely to be thermally damaged during vapor deposition, resulting in loss of flatness.

(2)弁金属を不活性ガス中で蒸着する方法では真空槽
内の圧力を高くしたほうが同じ膜厚でも大きな表面積す
なわち大きな静電容量が得られるが、一方、真空槽内の
圧力を高くすると膜付着速度が減少していく問題がある
。特に直進型電子ビームガンを使うような大型生産機に
おいては蒸発源と基体とをあまり近くできないので、真
空槽内の圧力上昇に伴う膜付着速度の減少は著しく、大
幅な生産性の低下をきたす。
(2) In the method of vapor-depositing valve metal in an inert gas, increasing the pressure in the vacuum chamber yields a larger surface area, that is, a larger capacitance, even with the same film thickness.On the other hand, increasing the pressure in the vacuum chamber There is a problem that the film deposition rate decreases. Particularly in large production machines that use straight electron beam guns, the evaporation source and the substrate cannot be placed very close to each other, so the film deposition rate decreases significantly as the pressure inside the vacuum chamber increases, resulting in a significant drop in productivity.

本発明は上記ごとき従来技術の諸欠点に鑑み創案された
もので、その目的とするところは、静電容量の増加に効
果が大きくかつ製造時の熱ダメージの恐れがなく生産性
に優れた電解コンデンサ用電極箔材料を提供することに
ある。
The present invention was devised in view of the drawbacks of the prior art as described above, and its purpose is to provide an electrolytic solution that is highly effective in increasing capacitance, has no fear of heat damage during manufacturing, and has excellent productivity. An object of the present invention is to provide an electrode foil material for capacitors.

[課題を解決するための手段〕 本発明の目的は以下の製造方法により達成される。[Means for solving problems] The object of the present invention is achieved by the following manufacturing method.

円筒状ドラム表面に沿って走行する基体の少なくとも片
面にアルミニウム、チタン、ジルコニウム、タンタル、
ニオブおよびハフニウムの群から選ばれた少なくとも一
つの金属またはこれらの合金からなる蒸気を差し向け、
薄膜を形成する電解コンデンサ用電極箔の製造方法であ
って、該蒸気の前記基体への初期入射角が45〜90度
の範囲にありかつ該蒸気の基体への入射領域に対して基
体走行方向下流側より不活性ガスを差し向けることを特
徴とする電解コンデンサ用電極箔の製造方法。
Aluminum, titanium, zirconium, tantalum,
directing a vapor consisting of at least one metal selected from the group of niobium and hafnium or an alloy thereof;
A method for manufacturing an electrode foil for an electrolytic capacitor forming a thin film, wherein the initial angle of incidence of the vapor on the substrate is in the range of 45 to 90 degrees, and the direction of the substrate travel with respect to the area of incidence of the vapor on the substrate. A method for manufacturing an electrode foil for an electrolytic capacitor, characterized by directing an inert gas from the downstream side.

本発明で言う円筒状ドラムとは、長尺基体を走行させる
走行系の一部であって、該基体上に蒸着にて薄膜を形成
する際に該基体を裏面から支持、冷却するためのホルダ
ーである。基体は円筒状ドラムの周面に沿って該ドラム
と共に移動する。該ドラムは薄膜形成時、冷媒で冷却さ
れる。
The cylindrical drum referred to in the present invention is a part of a traveling system that runs a long substrate, and is a holder that supports and cools the substrate from the back side when forming a thin film on the substrate by vapor deposition. It is. The substrate moves with the cylindrical drum along its circumferential surface. The drum is cooled with a refrigerant during thin film formation.

以下、添付図面を参照して本発明を説明する。The present invention will be described below with reference to the accompanying drawings.

第1図は本発明の製造方法における蒸気の基体への入射
角の説明図であり、図において1は円筒状ドラム、2は
蒸発源、3および4は蒸発源からの蒸気流が所定の入射
角で基体に入射するよう制限するためのマスクである。
FIG. 1 is an explanatory diagram of the incident angle of vapor to the substrate in the manufacturing method of the present invention. In the figure, 1 is a cylindrical drum, 2 is an evaporation source, and 3 and 4 are vapor flows from the evaporation source at a predetermined incident angle. This is a mask to limit the incidence to the substrate at the corners.

また第1図は基体走行方向に平行でかつ円筒状ドラムの
曲面に垂直な断面を模式的に表したものである。ドラム
は矢視のごとくマスク3からマスク4の方向に回転する
Further, FIG. 1 schematically shows a cross section parallel to the traveling direction of the substrate and perpendicular to the curved surface of the cylindrical drum. The drum rotates from mask 3 to mask 4 as shown by the arrow.

蒸発源の中心5とマスク3の基体走行方向下流側端部6
を結ぶ直線7がドラム(基体)に入射する点8でドラム
面に法線9を立てる。法線8と直線7がなす角αが初期
入射角である。角度は該法線に対し基体走行方向上流側
を負値とし、基体走行方向下流側を正値とする。初期入
射角は、本発明の電解コンデンサ用電極箔の静電容量を
大きくするために、45〜90度の範囲であることが重
要である。初期入射角が大きすぎると、基体と薄膜の接
着性の低下をきたすので、初期入射角は60〜85度の
範囲であることが更に好ましい。
The center 5 of the evaporation source and the downstream end 6 of the mask 3 in the substrate traveling direction
A normal line 9 is set on the drum surface at a point 8 where a straight line 7 connecting these lines enters the drum (substrate). The angle α between the normal line 8 and the straight line 7 is the initial angle of incidence. The angle has a negative value on the upstream side in the substrate running direction with respect to the normal line, and a positive value on the downstream side in the substrate running direction. It is important that the initial incident angle is in the range of 45 to 90 degrees in order to increase the capacitance of the electrode foil for an electrolytic capacitor of the present invention. If the initial incident angle is too large, the adhesion between the substrate and the thin film will deteriorate, so it is more preferable that the initial incident angle is in the range of 60 to 85 degrees.

蒸発源の中心5とマスク4の基体走行方向上流側端部1
0を結ぶ直線11がドラムに入射する点12でドラム面
に法線13を立てる。法線13と直線11がなす角βが
最終入射角である。マスク4、ドラム1および蒸発源2
の位置関係によって、最終入射角はドラム面に立てた法
線に対して基体走行方向の上流側である場合と下流側で
ある場合がある。すなわち負値である場合と正値である
場合とがある。本発明の電解コンデンサ用電極箔の静電
容量を大きくするためには、該最終入射角は正値で大き
いことが望ましい。一方、蒸気の入射領域を広くして膜
付着速度を上げ、かつ材料使用効率を上げるためには、
該最終入射角は正値で小さいか更には負値で絶対値が大
きいことが望ましい。したがって、最終入射角は一30
〜30度の範囲にあることが好ましい。
The center 5 of the evaporation source and the upstream end 1 of the mask 4 in the substrate traveling direction
A normal line 13 is set on the drum surface at a point 12 where a straight line 11 connecting 0 is incident on the drum. The angle β between the normal line 13 and the straight line 11 is the final angle of incidence. Mask 4, drum 1 and evaporation source 2
Depending on the positional relationship, the final incident angle may be on the upstream side or downstream of the normal to the drum surface in the substrate running direction. That is, there are cases where it is a negative value and cases where it is a positive value. In order to increase the capacitance of the electrode foil for an electrolytic capacitor of the present invention, it is desirable that the final incident angle be a positive value and large. On the other hand, in order to widen the vapor incidence area, increase the film deposition rate, and increase material usage efficiency,
It is desirable that the final incident angle be a positive value and small, or more preferably a negative value and a large absolute value. Therefore, the final angle of incidence is -30
It is preferably in the range of ~30 degrees.

本発明において蒸気の基体への入射領域とは、第1図に
おいてマスク3とマスク4に制限された蒸発源からの蒸
気流が基体へ入射するドラム上の範囲を言う。
In the present invention, the region of incidence of vapor onto the substrate refers to the area on the drum where the vapor flow from the evaporation source confined by masks 3 and 4 in FIG. 1 is incident on the substrate.

マスク3および4とドラム1との距離は、蒸気流のマス
ク後方への回り込みによる初期入射角と最終入射角の不
明瞭化、基体と薄膜の接着性の低下および薄膜の表面構
造の不明瞭化等を防ぐためには短いほうが良く、蒸気の
基体^、の入射領域に差し向ける不活性ガスを滞留させ
るためには長いほうが良いので、マスク端部6および1
0とドラムの距離は5m、mから100mmの範囲であ
ることが好ましく、10mmから60mmの範囲である
ことが更に好ましい。
The distance between the masks 3 and 4 and the drum 1 is such that the vapor flow wraps around behind the mask, obscuring the initial and final incident angles, reducing the adhesion between the substrate and the thin film, and obscuring the surface structure of the thin film. The mask ends 6 and 1 are shorter because it is better to be short in order to prevent such problems, and longer in order to retain the inert gas that is directed to the incident area of the vapor base.
The distance between the drum and the drum is preferably 5 m, preferably in the range from m to 100 mm, and more preferably in the range from 10 mm to 60 mm.

本発明では蒸気の基体への入射領域に対して基体走行方
向下流側から不活性ガスを差し向けることが重要である
。蒸気の基体への入射領域は、差し向けられる不活性ガ
スを有効に滞留させるために、マスク3の基体走行方向
下流側端部6とマスク4の基体走行方向上流側端部10
の間の開口部を除いて略密閉構造であることが好ましい
。すなわち蒸気の基体への入射領域は、マスク3および
4で下方が遮断され、ドラム1で上方が遮断され、更に
第1図には示されていないマスクとドラムの間を塞ぐ隔
壁で側面が遮断されていることが好ましい。不活性ガス
は該略密閉構造部分へノズルで基体走行方向下流側から
蒸気の基体への入射領域に向けて供給される。
In the present invention, it is important to direct the inert gas from the downstream side in the direction of movement of the substrate to the region where the vapor enters the substrate. In order to effectively retain the directed inert gas, the region where the vapor enters the substrate is defined by the downstream end 6 of the mask 3 in the substrate traveling direction and the upstream end 10 of the mask 4 in the substrate traveling direction.
It is preferable that the structure is substantially sealed except for the opening between the two. In other words, the region where the vapor enters the substrate is blocked from below by masks 3 and 4, from above by drum 1, and further from the side by a partition wall (not shown in FIG. 1) that closes between the mask and drum. It is preferable that the The inert gas is supplied to the substantially sealed structure portion through a nozzle from the downstream side in the traveling direction of the substrate toward the region where the vapor enters the substrate.

該ノズルは、噴出する不活性ガスにある程度の方向性を
持たせて、蒸気の基体への入射領域に差し向けるために
、ノズル長さがノズル径の3倍以上であることが好まし
い。また該ノズルはドラム幅方向に複数個設けられるこ
とが形成される薄膜の幅方向の均一性を向上させるため
に好ましい。
The length of the nozzle is preferably three times or more the diameter of the nozzle in order to give the ejected inert gas a certain degree of directionality and direct it to the region where the vapor enters the substrate. Further, it is preferable that a plurality of nozzles be provided in the width direction of the drum in order to improve the uniformity of the formed thin film in the width direction.

本発明で用いられる不活性ガスとしては、アルゴン、ネ
オン、クリプトン、ヘリウムなどの希ガスのほか、窒素
や水素も使用することができる。
As the inert gas used in the present invention, in addition to rare gases such as argon, neon, krypton, and helium, nitrogen and hydrogen can also be used.

中でもアルゴン、窒素の採用が取り扱いやすさと安価な
点で好ましい。また不活性ガスに少量の酸素を添加する
ことは、薄膜の微細構造の粒径を細かくして、静電容量
を増加させる効果があるので好ましい。
Among them, argon and nitrogen are preferable because they are easy to handle and inexpensive. Further, it is preferable to add a small amount of oxygen to the inert gas because this has the effect of reducing the particle size of the fine structure of the thin film and increasing the capacitance.

本発明の電解コンデンサ用電極箔の製造方法の一例を以
下に示すがこれに限定されるものではない。
An example of the method for manufacturing the electrode foil for electrolytic capacitors of the present invention is shown below, but the method is not limited thereto.

第2図は、長尺基体走行系を備えた真空蒸着装置の概略
図である。真空槽14内に巻出し軸15、円筒状の冷却
ドラム16、巻取り軸17から成る長尺基体走行系が設
置されている。該基体走行系に所定厚みのアルミニウム
箔基体18を設置する。
FIG. 2 is a schematic diagram of a vacuum evaporation apparatus equipped with a long substrate traveling system. A long substrate traveling system consisting of an unwinding shaft 15, a cylindrical cooling drum 16, and a winding shaft 17 is installed in the vacuum chamber 14. An aluminum foil base 18 having a predetermined thickness is installed on the base traveling system.

真空槽14は、巻出し軸、巻取り軸が収められた上槽1
9と蒸発源21が収められた下槽20とに隔壁22.2
3およびマスク24.25で分離されており、排気口2
6および27よりそれぞれ真空排気される。基体走行方
向上流側のマスク24は、蒸発源からの蒸気の基体への
初期入射角が、45〜90度の範囲の所定の角度になる
ように設置される。基体走行方向上流側のマスク25は
蒸発源からの蒸気の基体への最終入射角が、好ましくは
、−30〜30度の範囲の所定の角度になるよう設置さ
れる。下槽内を5X10−’Torr以下に排気し、パ
ルプ28を開きノズル29を通して隔壁22.23、マ
スク24.25および冷却ドラム16に囲まれた蒸気入
射領域へ基体走行方向下流側からアルゴンガスを差し向
け、下槽内圧力をI X 10−’〜I X 10−2
To r rの範囲の所定の圧力に調整する。蒸発源は
電子ビーム加熱器で、チタンのインゴット30が充填さ
れている。
The vacuum tank 14 includes an upper tank 1 in which an unwinding shaft and a winding shaft are housed.
9 and the lower tank 20 in which the evaporation source 21 is housed, there is a partition wall 22.2.
3 and mask 24.25, and the exhaust port 2
6 and 27, respectively. The mask 24 on the upstream side in the substrate running direction is installed so that the initial angle of incidence of vapor from the evaporation source onto the substrate is a predetermined angle in the range of 45 to 90 degrees. The mask 25 on the upstream side in the traveling direction of the substrate is installed so that the final angle of incidence of vapor from the evaporation source onto the substrate is preferably a predetermined angle in the range of -30 to 30 degrees. The inside of the lower tank is evacuated to 5 x 10-'Torr or less, the pulp 28 is opened, and argon gas is introduced from the downstream side in the direction of substrate travel through the nozzle 29 and into the steam incidence area surrounded by the partition wall 22, 23, the mask 24, 25, and the cooling drum 16. Directly, the pressure in the lower tank should be I x 10-' to I x 10-2.
Adjust to a predetermined pressure in the range of Torr. The evaporation source is an electron beam heater filled with titanium ingots 30.

基体を走行させ、チタンのインゴットを溶融蒸発させて
、基体上に所定の付着速度で所定の厚さのチタン膜を付
着させる。かくして電解コンデンサ用電極箔を得る。
The substrate is moved to melt and evaporate the titanium ingot, thereby depositing a titanium film of a predetermined thickness on the substrate at a predetermined deposition rate. In this way, an electrode foil for an electrolytic capacitor is obtained.

アルミニウム、チタン、ジルコニウム、タンタル、ニオ
ブおよびハフニウムの蒸発源としては誘導油熱器、抵抗
加熱器、レーザー加熱器なども採用できるが、高速に高
融点金属を蒸発させるために電子ビーム加熱器を採用す
ることが好ましい。
Although induction oil heaters, resistance heaters, laser heaters, etc. can be used as evaporation sources for aluminum, titanium, zirconium, tantalum, niobium, and hafnium, electron beam heaters are used to evaporate high-melting point metals at high speed. It is preferable to do so.

これらの蒸発源と基体の間に高周波電力を放射するなど
してイオンブレーティングを行うことは適宜許される。
It is permissible to perform ion blating by emitting high frequency power between these evaporation sources and the substrate as appropriate.

またこれらの蒸発源はドラムの真下にある必要はなく、
材料使用効率などの点から好適な位置を適宜選んで良い
Also, these evaporation sources do not need to be directly below the drum;
A suitable position may be selected as appropriate from the viewpoint of material usage efficiency.

本発明で使用される基体としては、アルミニウム箔ノ他
、アルミニウム合金箔やアルミニウム以外の金属箔、プ
ラスチックフィルム、紙なども用いることができるが、
漏れ電流が小さい点や機械的強度が高い点から、アルミ
ニウム省、アルミニウム合金箔またはプラスチックフィ
ルムの採用が好ましい。これらの金属箔には、表面積を
増やす点ではエツチングやサンドブラストなどにより粗
面化処理が施されていることが好ましく、工程を省略し
て生産性を上げる点では製造された状態の平坦なままで
あることが好ましい。該金属箔の厚さは、機械的強度と
占有体積の関係から10−100μmの範囲が好ましい
As the substrate used in the present invention, in addition to aluminum foil, aluminum alloy foil, metal foil other than aluminum, plastic film, paper, etc. can also be used.
From the viewpoints of low leakage current and high mechanical strength, it is preferable to use aluminum-saving material, aluminum alloy foil, or plastic film. It is preferable for these metal foils to be roughened by etching or sandblasting to increase the surface area, but to increase productivity by omitting processes, it is preferable to leave them flat in the manufactured state. It is preferable that there be. The thickness of the metal foil is preferably in the range of 10 to 100 μm in view of the relationship between mechanical strength and occupied volume.

該プラスチックフィルムのプラスチックとしてはポリエ
チレンテレフタレートなどのポリエステル類、ポリプロ
ピレンなどのポリオレフィン類、ポリフェニレンスルフ
ィドなどのポリエーテル類、芳香族ポリアミド類、ポリ
カーボネート類、ポリエーテルケトン類などが挙げられ
るが、電気的特性や価格の点でポリエチレンテレフタレ
ートまたはポリプロピレンが好ましい。機械的安定性や
強度の点で、これらのプラスチックは二軸延伸されてフ
ィルム化されていることが好ましい。該プラスチックフ
ィルムの厚さは、機械的強度と占有体積の関係から2〜
50μmの範囲が好ましい。
Plastics for the plastic film include polyesters such as polyethylene terephthalate, polyolefins such as polypropylene, polyethers such as polyphenylene sulfide, aromatic polyamides, polycarbonates, polyether ketones, etc. Polyethylene terephthalate or polypropylene is preferred from the viewpoint of cost. In terms of mechanical stability and strength, these plastics are preferably biaxially stretched to form a film. The thickness of the plastic film is determined from the relationship between mechanical strength and occupied volume.
A range of 50 μm is preferred.

アルミニウム、チタン、ジルコニウム、タンタル、ニオ
ブおよびハフニウムの群から選ばれた少なくとも一つの
金属またはこれらの合金からなる薄膜が、プラスチック
フィルムなどの非導電性基体の片面にだけ形成される場
合は、これらの膜が形成される方とは反対の面が金属化
されている必要がある。プラスチックフィルムの金属化
は蒸着やスパッタによる金属膜の形成でなされる。該金
属膜は導電性が高いはど誘電損失が小さくなり好ましい
ので、アルミニウム膜または亜鉛膜であることが好まし
い。また該金属膜の厚さは、厚いほど導電性が良好にな
り一方薄いほどセルフヒーリングしやすいので、0.0
3〜0.15μmの範囲が好ましい。該非導電性基体は
金属化に先立ち、易接着化処理などの前処理が行われて
も良い。チタン、ジルコニウム、タンタル、ニオブおよ
びハフニウムは導電性が高くないので、これらの金属ま
たは合金膜が非導電性基体上に形成される場合は、それ
に先立って該非導電性基体が金属化されていることが誘
電損失を小さくできる点で好ましい。 アルミニウム、
チタン、ジルコニウム、タンタル、ニオブおよびハフニ
ウムの群から選ばれた少なくとも一つの金属または合金
薄膜の膜の純度は漏れ電流を小さくするために99.8
%以上、さらに好ましくは99.9%以上であることが
望ましい。基体の熱ダメージを抑制するためと低コスト
化を図るために、これらの膜の膜厚は薄い方が良く、一
方、静電容量を増大させるためには膜厚が厚い方が良い
ので、0.03〜0.4μmの範囲から選ばれることが
好ましいく、0.05〜0.35μmの範囲から選ばれ
ることがさらに好ましい。
When a thin film consisting of at least one metal selected from the group of aluminum, titanium, zirconium, tantalum, niobium and hafnium or an alloy thereof is formed on only one side of a non-conductive substrate such as a plastic film, The side opposite to that on which the membrane is formed must be metallized. Metallization of plastic films is performed by forming a metal film by vapor deposition or sputtering. The metal film is preferably an aluminum film or a zinc film because it has high conductivity and a small dielectric loss. The thickness of the metal film is 0.00, because the thicker the metal film, the better the conductivity, and the thinner the metal film, the easier it is to self-heal.
A range of 3 to 0.15 μm is preferred. The non-conductive substrate may be subjected to pre-treatment such as adhesion-facilitating treatment prior to metallization. Since titanium, zirconium, tantalum, niobium and hafnium are not highly conductive, if a film of these metals or alloys is to be formed on a non-conductive substrate, the non-conductive substrate must be metallized beforehand. is preferable because dielectric loss can be reduced. aluminum,
The purity of at least one metal or alloy thin film selected from the group of titanium, zirconium, tantalum, niobium and hafnium is 99.8 to reduce leakage current.
% or more, more preferably 99.9% or more. In order to suppress thermal damage to the substrate and to reduce costs, it is better to make these films thinner.On the other hand, in order to increase capacitance, it is better to have a thicker film. It is preferably selected from the range of .03 to 0.4 μm, and more preferably selected from the range of 0.05 to 0.35 μm.

[発明の効果] 本発明は、アルミニウム、チタンおよびタンタルなどの
弁金属薄膜作成において、特定角度の斜め蒸着とガス中
蒸着を組み合わせたのみならず、特定の方向から不活性
ガスを供給するようにしたので、より薄い膜厚でありな
がら大きな静電容量をもつ電解コンデンサ用電極箔を安
価にしかも安定して得ることができたものである。本発
明では所定の静電容量を得るために必要な不活性ガスの
供給量を小さくできるので、槽内圧力の上昇に伴う膜付
着速度の低下を小さく押さえることができる。これらに
よって本発明は生産性の向上や基体の熱ダメージ防止に
著しい効果があった。
[Effects of the Invention] The present invention not only combines oblique vapor deposition at a specific angle and vapor deposition in gas in the production of valve metal thin films of aluminum, titanium, tantalum, etc., but also provides a method for supplying inert gas from a specific direction. Therefore, it was possible to stably obtain an electrode foil for an electrolytic capacitor that has a large capacitance despite having a thinner film thickness at a low cost. In the present invention, since the amount of inert gas required to be supplied to obtain a predetermined capacitance can be reduced, it is possible to suppress a decrease in the film deposition rate due to an increase in the pressure inside the tank. Due to these, the present invention has a remarkable effect on improving productivity and preventing heat damage to the substrate.

[特性の測定方法、評価方法] (1)静電容量の測定方法 試料を50mmx50mmの大きさに切り出し、被測定
面だけが露出するようにホルダーに取り付ける。10重
量%硼酸アンモニウム水溶液を電解液として、試料ホル
ダーとカーボン板を5Qmm間隔で対抗させた。試料と
カーボン板を電極として、LCRメーター(安藤電気■
製AG−4311)にて1kHzのときの静電容量を測
定した。
[Method for Measuring and Evaluating Characteristics] (1) Method for Measuring Capacitance Cut a sample into a size of 50 mm x 50 mm and attach it to a holder so that only the surface to be measured is exposed. Using a 10% by weight aqueous ammonium borate solution as an electrolyte, the sample holder and the carbon plate were placed against each other at an interval of 5 Qmm. Using the sample and carbon plate as electrodes, use an LCR meter (Ando Electric ■).
The capacitance at 1 kHz was measured using AG-4311 (manufactured by AG-4311).

測定された値を25(cm2)で除して単位面積当たり
の静電容量とした。
The measured value was divided by 25 (cm2) to obtain the capacitance per unit area.

[実施例] 以下実施例により本発明を具体的に説明するが、本発明
はこれらに限定されない。
[Examples] The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

実施例1 第2図の長尺基体走行系を備えた真空蒸着装置に厚さ2
0μmの長尺のアルミニウム箔基体を装着した。マスク
24および25を調節して、初期入射角が52度、最終
入射角が0度になるようにした。またマスク開口部端部
とドラムの距離は30mmとした。電子ビーム加熱器2
1にチタンのインゴット30を充填した後、真空槽14
内を排気口26および27より真空排気して隔壁22.
23、マスク24.25および冷却ドラム16でしきら
れた下槽20内圧力を5X10−’Torr以下にした
。次にバルブ28およびノズル29を通して蒸気の基体
への入射領域に向けてアルゴンガスを供給し、下槽内圧
力を6X10−’Torrに調整した。基体を走行させ
ながらチタンのインゴットを溶融蒸発させてアルミニウ
ム箔上に2゜5μm/分の蒸着速度で厚さ0.1,0.
15.0.3μmのチタン蒸着膜を形成した。アルミニ
ウム蒸着膜およびチタン膜を形成する際、冷却ドラム1
6は一20℃に冷却した。
Example 1 A vacuum evaporation apparatus equipped with a long substrate transport system shown in FIG.
A 0 μm long aluminum foil substrate was attached. Masks 24 and 25 were adjusted so that the initial angle of incidence was 52 degrees and the final angle of incidence was 0 degrees. Further, the distance between the end of the mask opening and the drum was 30 mm. Electron beam heater 2
After filling the titanium ingot 30 into the vacuum chamber 14
The inside of the partition wall 22 is evacuated through the exhaust ports 26 and 27.
23. The pressure inside the lower tank 20, which is separated by the mask 24, 25 and the cooling drum 16, was set to 5×10 −′ Torr or less. Next, argon gas was supplied through the valve 28 and the nozzle 29 toward the region where the vapor was incident on the substrate, and the pressure inside the lower tank was adjusted to 6×10 −′ Torr. While moving the substrate, a titanium ingot was melted and evaporated onto an aluminum foil at a deposition rate of 2.5 μm/min to a thickness of 0.1, 0.5 μm/min.
15. A titanium vapor deposited film of 0.3 μm was formed. When forming the aluminum vapor deposited film and the titanium film, the cooling drum 1
6 was cooled to -20°C.

かくして得た電解コンデンサ用電極箔には、熱による変
形はほとんどなく平坦性は良好であった。
The electrode foil for an electrolytic capacitor thus obtained had almost no deformation due to heat and had good flatness.

該電解コンデンサ用電極箔を10%硼酸アンモニウム水
溶液を電解液として静電容量を測定した結果を第3図に
示した。チタン膜厚が大きくなるにつれて静電容量は増
加した。膜厚が0.3μmのとき66μF/Cm2と非
常に大きな値が得られた。基体のアルミニウム箔のみの
場合、静電容量は3μF/cm2であった。
The capacitance of the electrolytic capacitor electrode foil was measured using a 10% aqueous ammonium borate solution as the electrolyte, and the results are shown in FIG. The capacitance increased as the titanium film thickness increased. When the film thickness was 0.3 μm, a very large value of 66 μF/Cm2 was obtained. In the case of only aluminum foil as the base, the capacitance was 3 μF/cm 2 .

実施例2 第2図の真空蒸着装置において、マスク24.25を調
整して初期入射角を85度とし、最終入射角を35度と
した以外は実施例1と同様にして電解コンデンサ用電極
箔を作成した。
Example 2 Electrode foil for an electrolytic capacitor was prepared in the same manner as in Example 1, except that the masks 24 and 25 were adjusted to make the initial angle of incidence 85 degrees and the final angle of incidence 35 degrees in the vacuum evaporation apparatus shown in FIG. It was created.

かくして得た電解コンデンサ用電極箔には、熱による変
形はほとんどなく平坦性は良好であった。
The electrode foil for an electrolytic capacitor thus obtained had almost no deformation due to heat and had good flatness.

該電解コンデンサ用電極箔の静電容量を測定した結果を
第3図に示した。チタン膜厚が大きくなるにつれて静電
容量は増加した。膜厚が0.1μmのとき45μF/c
m2、膜厚が0.3.czmのとき90μF/cm2と
非常に大きな値が得られた。
The results of measuring the capacitance of the electrode foil for electrolytic capacitors are shown in FIG. The capacitance increased as the titanium film thickness increased. 45μF/c when the film thickness is 0.1μm
m2, film thickness 0.3. When czm, a very large value of 90 μF/cm2 was obtained.

比較例1 蒸気の基体への入射領域に向けてアルゴンガスを基体走
行方向上流側から噴出させたほかは、実施例1と同様に
して電解コンデンサ用電極箔を作成した。
Comparative Example 1 An electrode foil for an electrolytic capacitor was produced in the same manner as in Example 1, except that argon gas was ejected from the upstream side in the direction of movement of the substrate toward the region where the vapor was incident on the substrate.

かくして得た電解コンデンサ用電極箔には、熱による変
形はほとんどなく、平坦性は良好であった。
The electrode foil for an electrolytic capacitor thus obtained had almost no deformation due to heat and had good flatness.

該電解コンデンサ用電極箔の静電容量を測定したところ
、第3図に示したように膜厚を大きくしていっても静電
容量は増加せず逆に静電容量は減少した。膜厚が0. 
1μmのとき最も静電容量は大きかったが34μF/C
m2の値にとどまった。
When the capacitance of the electrode foil for an electrolytic capacitor was measured, as shown in FIG. 3, even if the film thickness was increased, the capacitance did not increase, but on the contrary, the capacitance decreased. Film thickness is 0.
The capacitance was highest when it was 1μm, but it was 34μF/C.
The value remained at m2.

比較例2 第2図の真空蒸着装置において、マスク24.25を調
整して初期入射角を23度とし、最終入射角を一23度
とした以外は実施例1と同様にして電解コンデンサ用電
極箔を作成した。
Comparative Example 2 An electrode for an electrolytic capacitor was prepared in the same manner as in Example 1, except that the masks 24 and 25 were adjusted to make the initial incident angle 23 degrees and the final incident angle 123 degrees in the vacuum evaporation apparatus shown in FIG. I made a foil.

かくして得た電解コンデンサ用電極箔は、第3図に示す
ようにチタン膜厚の増加と共に静電容量も増加していっ
たが、膜厚が0.3μmのときでも27μF/Cm2と
比較的小さな静電容量しか得られなかった。
As shown in Figure 3, the electrostatic capacitance of the thus obtained electrode foil for electrolytic capacitors increased as the titanium film thickness increased, but even when the film thickness was 0.3 μm, the capacitance remained relatively small at 27 μF/Cm2. Only capacitance was obtained.

比較例3 蒸気の基体への入射領域に向けてアルゴンガスを供給し
なかったこと以外は実施例1と同様にして電解コンデン
サ用電極箔を作成した。
Comparative Example 3 An electrode foil for an electrolytic capacitor was produced in the same manner as in Example 1, except that argon gas was not supplied toward the region of incidence of vapor onto the substrate.

かくして得た電解コンデンサ用電極箔は、第3図に示す
ように、静電容量はチタン膜厚の増加に対してあまり増
加せず、膜厚が0.3μmのときでも約14μF/cm
2と比較的小さな値しか得られなかった。
As shown in Figure 3, the electrostatic capacitance of the thus obtained electrode foil for electrolytic capacitors does not increase much with increasing titanium film thickness, and is approximately 14 μF/cm even when the film thickness is 0.3 μm.
Only a relatively small value of 2 was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造方法における初期入射角と最終
入射角の説明図であり、αは初期入射角、βは最終入射
角であり、2は蒸発源、3および4は金属蒸気を遮蔽す
るためのマスクである。 第2図は、本発明の電解コンデンサ用電極箔を製造する
ための真空蒸着装置の一例であり、18は基体、21は
蒸発源、28はガス供給用バルブ、29はノズルである
。 第3図は、本発明の電解コンデンサ用電極箔および比較
例の電解コンデンサ用電極箔のチタン膜厚と静電容量の
関係を示すものである。
FIG. 1 is an explanatory diagram of the initial incident angle and final incident angle in the manufacturing method of the present invention, where α is the initial incident angle, β is the final incident angle, 2 is the evaporation source, and 3 and 4 are the metal vapor sources. It is a mask for shielding. FIG. 2 shows an example of a vacuum evaporation apparatus for manufacturing the electrode foil for an electrolytic capacitor of the present invention, in which 18 is a substrate, 21 is an evaporation source, 28 is a gas supply valve, and 29 is a nozzle. FIG. 3 shows the relationship between the titanium film thickness and capacitance of the electrode foil for an electrolytic capacitor of the present invention and the electrode foil for an electrolytic capacitor of a comparative example.

Claims (2)

【特許請求の範囲】[Claims] (1)円筒状ドラム表面に沿って走行する基体の少なく
とも片面にアルミニウム、チタン、ジルコニウム、タン
タル、ニオブおよびハフニウムの群から選ばれた少なく
とも一つの金属またはこれらの合金からなる蒸気を差し
向け、薄膜を形成する電解コンデンサ用電極箔の製造方
法であって、該蒸気の前記基体への初期入射角が45〜
90度の範囲にありかつ該蒸気の基体への入射領域に対
して基体走行方向下流側より不活性ガスを差し向けるこ
とを特徴とする電解コンデンサ用電極箔の製造方法。
(1) A vapor made of at least one metal selected from the group of aluminum, titanium, zirconium, tantalum, niobium, and hafnium or an alloy thereof is directed onto at least one side of a substrate running along the surface of a cylindrical drum to form a thin film. A method for manufacturing an electrode foil for an electrolytic capacitor forming an electrode foil for an electrolytic capacitor, the initial angle of incidence of the vapor on the substrate being 45 to
A method for manufacturing an electrode foil for an electrolytic capacitor, the method comprising directing an inert gas from the downstream side in the traveling direction of the substrate to an incident region of the vapor onto the substrate within a range of 90 degrees.
(2)該蒸気の該基体への最終入射角が−30〜30度
の範囲にあることを特徴とする請求項1記載の電解コン
デンサ用電極箔の製造方法。
(2) The method for manufacturing an electrode foil for an electrolytic capacitor according to claim 1, wherein the final angle of incidence of the vapor onto the substrate is in the range of -30 to 30 degrees.
JP34115689A 1989-12-28 1989-12-28 Production of electrode foil for electrolytic capacitor Pending JPH03202462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34115689A JPH03202462A (en) 1989-12-28 1989-12-28 Production of electrode foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34115689A JPH03202462A (en) 1989-12-28 1989-12-28 Production of electrode foil for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03202462A true JPH03202462A (en) 1991-09-04

Family

ID=18343773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34115689A Pending JPH03202462A (en) 1989-12-28 1989-12-28 Production of electrode foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03202462A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010490A (en) * 2006-06-27 2008-01-17 Nichicon Corp Manufacturing method of electrode for electrolytic capacitor
JP2008258231A (en) * 2007-03-31 2008-10-23 Nippon Chemicon Corp Electrode material for electrolytic capacitor
US9165717B1 (en) * 2012-02-01 2015-10-20 Sigma Laboratories Of Arizona, Llc High-Surface Capacitor Electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010490A (en) * 2006-06-27 2008-01-17 Nichicon Corp Manufacturing method of electrode for electrolytic capacitor
JP2008258231A (en) * 2007-03-31 2008-10-23 Nippon Chemicon Corp Electrode material for electrolytic capacitor
US9165717B1 (en) * 2012-02-01 2015-10-20 Sigma Laboratories Of Arizona, Llc High-Surface Capacitor Electrode

Similar Documents

Publication Publication Date Title
JP5807216B2 (en) Thin film manufacturing method
US20100272901A1 (en) Thin film forming apparatus and thin film forming method
JP5807217B2 (en) Thin film manufacturing method
JP3475193B2 (en) Method and apparatus for forming a porous coating of an electrolytic capacitor and a cathode film
JP3668255B2 (en) Method for producing electrode foil for electrolytic capacitor
JPH03202462A (en) Production of electrode foil for electrolytic capacitor
JPH05190400A (en) High capacitance electrolytic capacitor electrode material and its manufacturing method
KR910009841B1 (en) Apparatus and process for arc vapor depositing a coating in an evacuated chamber
JP3168587B2 (en) Electrode foil for electrolytic capacitor and method for producing the same
JPH04196208A (en) Electrode foil for electrolytic capacitor
JP2008057000A (en) Film deposition system of lithium or lithium alloy
JP3180226B2 (en) Method for producing electrode foil for electrolytic capacitor
KR20070106462A (en) Metalization through a thin seed layer deposited under plasma support
JPH03196510A (en) Electrode foil for electrolytic capacitor
JPH02280310A (en) Manufacture of electrode material for electrolytic capacitor
JPH01183110A (en) Formation of cathode for capacitor
JPH0463262A (en) Electrode foil for electrolytic capacitor
JPH03263312A (en) Manufacturing equipment of electrode material for electrolytic capacitor
JPS5937564B2 (en) Method for forming end face electrodes of electronic components
JPH05190399A (en) High capacitance electrolytic capacitor electrode material and its manufacturing method
JPH05129163A (en) Electrode material for high capacity electrolytic capacitor
JPH0461312A (en) Electrode foil for electrolytic capacitor
JPH0521289A (en) Manufacture of electrode foil for electrolytic capacitor
CN216550674U (en) Novel target material
JP7355348B1 (en) evaporator