JPH032011B2 - - Google Patents

Info

Publication number
JPH032011B2
JPH032011B2 JP60045610A JP4561085A JPH032011B2 JP H032011 B2 JPH032011 B2 JP H032011B2 JP 60045610 A JP60045610 A JP 60045610A JP 4561085 A JP4561085 A JP 4561085A JP H032011 B2 JPH032011 B2 JP H032011B2
Authority
JP
Japan
Prior art keywords
adsorbent
spherical
fiber
uranium
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60045610A
Other languages
Japanese (ja)
Other versions
JPS61204036A (en
Inventor
Norio Takagi
Shunsaku Kato
Koji Sakane
Kazuhiko Sugasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4561085A priority Critical patent/JPS61204036A/en
Publication of JPS61204036A publication Critical patent/JPS61204036A/en
Publication of JPH032011B2 publication Critical patent/JPH032011B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は球状繊維吸着材の製造方法に関するも
のである。さらに詳しくいえば、本発明は、海水
などの希薄溶液中のウランの回収に好適に使用し
うる、ウランに対する吸着速度及び吸着容量が大
きく、かつ球状で分離操作が容易なアミドキシム
型繊維吸着材を簡単に製造する方法に関するもの
である。 従来の技術 近年、オイルシヨツクや石油資源の枯褐化など
により、従来の石油一辺倒からエネルギー構造の
多様化が図られ、特に原子力エネルギー利用の重
要性が増してきている。そのため海水中に多量に
存在するウランがエネルギー源として注目される
ようになつた。 海水中には、安定な炭酸ウラニルとして約
3ppb程度の濃度でウランが含まれており、これ
を回収するためには、吸着能と選択性に優れた吸
着材が必要であるが、この吸着材は、長期間多量
の海水と接触するために、海水に対する抵抗性を
有し、取扱いや再生が容易で、かつ安価で大量に
入手することができ、しかも回収装置が経済的な
ものになるような吸着材でなければならない。 ところで、アミドキシム基を有する高分子化合
物はウラン吸着能に優れ(米国特許第3088798号
明細書)、また海水中のウランを選択的に吸着し
(特公昭54−32834号公報)、しかも安価に容易に
入手しうることから、ウラン吸着用として積極的
に実用化の研究がなされている。 このような吸着材を用いて海水などの希薄溶液
中のウランを回収するためには、その形状として
一般に、粒状、布状のものが考えられる。粒状吸
着材の場合、通常固定床方式又は流動床方式が用
いられ、特に海水中のウランの回収には、これま
で流動床方式が種々検討されている。しかしなが
ら、これらの固定床方式や流動床方式では、装置
に多大の費用を要し、ウラン回収コストが高くつ
くという欠点がある。 一方、布状吸着材の場合、吹き流し方式や多層
平行板方式などが提案されているが、容積当りの
吸着材の充てん量が小さく、占有面積が大きくな
るという欠点があり、実用的でない。 これらの形状の吸着材に対し、本発明球状吸着
剤の場合、添附図面の第1図に示すように、袋状
漁網1に吸着材を充てんし、浮体2に取り付ける
方式、あるいは第2図に示すように、生簀状の漁
網3の吸着材を充てんし、浮体2に取り付ける方
式などを用いることができ、多大の装置費用を要
する固定床方式や流動床方式を用いる必要がない
ので、実用的に有利である。繊維の球状化につい
ては有機繊維群を液体中に分散し、該分散液を撹
拌して繊維塊を得る方法が考案されている(特開
昭58−180229号)。 発明が解決しようとする問題点 本発明の目的は、このような事情に鑑み、海水
などの希薄溶液中のウランの回収に好適に使用で
きる、ウランに対する吸着速度や吸着容量が大き
く、かつ球状で、その内部までウランを均一に吸
着しうるアミドキシム型繊維吸着材を効率よく製
造する方法を提供することにある。 問題点を解決するための手段 本発明者らは鋭意研究を重ねた結果、所定形状
のアクリル繊維を、ヒドロキシルアミンを含有す
るメタノール溶液中でかきまぜながら加熱して、
該繊維のアミドキシム化と同時に球状化を行うこ
とにより、前記目的を達成しうること、及びさら
に得られた球状吸着材に特定の表面処理を施すこ
とにより、耐久性の優れたものになることを見出
し、これらの知見に基づいて本発明を完成するに
至つた。 すなわち、本発明は、ヒドロキシルアミンを含
有するメタノール溶液中に、繊維長5〜30mm、繊
維径3d以上のアクリル繊維を加え、かきまぜな
がら加熱して、該繊維をアミドキシム化すると同
時に球状に成形することを特徴とするアミドキシ
ム型球状繊維吸着材の製造方法、及び前記のよう
にして得られた球状成形体を親水性バインダーで
表面処理することを特徴とするアミドキシム型球
状繊維吸着材の製造方法を提供するものである。 本発明方法において用いるアクリル繊維は、繊
維長が5〜30mmで、繊維径が3d以上のものであ
るが、特に繊維長が5〜10mmで、繊維径が10〜
15dの範囲にあるものが好適である。該アクリル
繊維の形状が前記範囲を逸脱すると所望の球状吸
着材が得にくくなる。 一方、溶媒溶液中のヒドロキシルアミンの含有
量は、通常1〜5重量%の範囲で選ばれ、またア
クリル繊維とヒドロキシルアミンとの割合は、重
量比で1:1ないし1:2範囲で選ばれる。溶媒
としては、メタノール、メタノール−水、ジメチ
ルホルムアミド(DMF)及びジメチルスルホオ
キシド(DMSO)などが用いられる。該アクリ
ル繊維のアミドキシム化は、通常常圧下に加熱還
流させながら行なわれ、反応時間は1〜10時間程
度である。 本発明においては、該アクリル繊維はアミドキ
シム化されながら球状に成形されるが、アミドキ
シム化と球状化が同時に進行することによつて、
球状体の成形速度が速く、かつアルカリ処理時の
強度が優れた球状吸着剤が能率的に形成される。
その球径は5〜40mmの範囲にあるものが好まし
い。この球径は該繊維の形状、かきまぜ機の形状
やかきまぜ速度、容器の形状や大きさなどの条件
に左右されるので、所望の球径を有する球状繊維
吸着材を得るためには、前記条件を適宜選ぶ必要
がある。 このようにして得られた球状繊維吸着材は、そ
のままでアルカリ水溶液中に1〜48時間程度浸せ
きしてアルカリ処理したのち、ウラン吸着材とし
て用いてもよいが、吸着性能の低下をもたらす解
繊を防止するために、その表面を親水性バインダ
ーで処理することが望ましい。この親水性バイン
ダーとしては、例えばポリアクリル酸ヒドラジ
ド、ポリアクリロニトリル、ポリアクリルアミド
などが用いられる。ポリアクリル酸ヒドラジドを
用いる場合、該球状繊維吸着材をポリアクリル酸
ヒドラジド水溶液に数分間程度浸せきしたのち、
乾燥するか、又はエピクロルヒドリン中に浸せき
するなどして、該吸着材の表面に付着しているポ
リアクリル酸ヒドラジドを不溶化する。 このような表面処理された球状繊維吸着剤は、
使用中に解繊して吸着性能が劣化することがな
く、耐久性の優れたものとなる。このものは、前
記と同様に、アルカリ水溶液中に1〜48時間程度
浸せきしてアルカリ処理したのち、ウラン吸着材
として用いる。 第1図及び第2図は本発明方法により得られた
吸着材の使用態様例を示す説明図であり、第1図
は袋状漁網1に吸着材を充てんして、浮体2,2
に取り付け、錘り3で拡開状態を保持する方式を
示し、第2図は漁網1′をもつて四方を囲んだ生
簀状の囲いの中に吸着材を充てんし、浮体2′…
で海中に定着させる生簀方式を示す。 本発明方法で得られた球状繊維吸着材はこのよ
うに極めて簡単な構造の設備を利用して、海中に
配置し、使用することができるが、また従来の粒
状吸着材の場合と同様に、固定床方式や流動床方
式を用いてもよい。 本発明方法で得られた球状繊維吸着材は、その
内部までウランを均一に吸着することができ、吸
着されたウランは酸処理によつて容易に脱着さ
れ、吸着材の循環再使用が可能である。 発明の効果 本発明方法によると、海水などの希薄溶液中の
ウランの回収に好適な、ウランに対する吸着速度
や吸着容量が大きくかつ球状のアミドキシム型繊
維吸着材を効率よく製造することができる。 得られた吸着材は球状であるので、希薄溶液中
のウランを回収するのに、粒状吸着材のように装
置に多大の費用を要する固定床方式や流動床方式
を用いる必要がなく、極めて簡単な構造の装置を
利用することができ、希薄溶液から経済的有利に
ウランを回収することができる。 実施例 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 繊維径15d、繊維長10mmのアクリル繊維5g及
びヒドロキシルアミン1Mメタノール溶液200mlを
300mlの三つ口丸底セパラブルフラスコに入れ、
翼の長さ6cmのかくはん棒を用い、200rpmの回
転速度でかきまぜながら、8時間還流して、直径
1〜1.5cmの球状繊維吸着材を得た。次いでこの
吸着材を4重量%水酸化ナトリウム水溶液中に16
時間浸せきしてアルカリ処理したのち、ウラン吸
着実験に供した。 このようにして得られた球状繊維吸着材をカラ
ムに充てんし、これにろ過海水を通液して所定時
間ごとに該吸着材を取り出し、吸着材の表面部分
をほぐして、表面部分の繊維と内部の繊維とに分
け、1N塩酸で吸着ウランを脱着し、それぞれの
ウラン吸着量を測定した。 また、比較のために、球状繊維をほぐして、層
状にカラムに充てんし、ウラン吸着実験を行つ
た。これらの結果を第1表に示す。 この表から分るように、球状吸着材の内部まで
ウランが吸着していることが明らかである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a spherical fiber adsorbent. More specifically, the present invention provides an amidoxime-type fiber adsorbent that has a high adsorption rate and capacity for uranium, and is spherical and easy to separate, which can be suitably used for recovering uranium from dilute solutions such as seawater. It relates to a simple manufacturing method. BACKGROUND ART In recent years, due to oil shocks and the depletion of petroleum resources, the energy structure has been diversified from the conventional reliance on petroleum, and the use of nuclear energy has become particularly important. For this reason, uranium, which exists in large quantities in seawater, has attracted attention as an energy source. In seawater, there is approximately
Uranium is contained at a concentration of approximately 3 ppb, and in order to recover it, an adsorbent with excellent adsorption capacity and selectivity is required. In addition, the adsorbent must be resistant to seawater, easy to handle and regenerate, and available at low cost in large quantities, making recovery equipment economical. By the way, polymer compounds having an amidoxime group have excellent uranium adsorption ability (U.S. Pat. No. 3,088,798), can selectively adsorb uranium in seawater (Japanese Patent Publication No. 54-32834), and can be easily and inexpensively adsorbed. Because it is readily available, research is being actively conducted to put it into practical use for uranium adsorption. In order to recover uranium from a dilute solution such as seawater using such an adsorbent, the shape of the adsorbent is generally considered to be granular or cloth-like. In the case of granular adsorbents, a fixed bed method or a fluidized bed method is usually used, and in particular, various fluidized bed methods have been studied so far for the recovery of uranium from seawater. However, these fixed bed systems and fluidized bed systems have the disadvantage that they require a large amount of equipment and the cost of recovering uranium is high. On the other hand, in the case of cloth-like adsorbents, methods such as a streamer method and a multilayer parallel plate method have been proposed, but these methods have the drawbacks of a small amount of adsorbent per volume and a large occupied area, making them impractical. In the case of the spherical adsorbent of the present invention, as shown in FIG. 1 of the attached drawings, a bag-shaped fishing net 1 is filled with adsorbent and attached to a floating body 2, or as shown in FIG. As shown, it is possible to use a method such as filling a fish cage-like fishing net 3 with adsorbent and attaching it to the floating body 2, and it is not necessary to use a fixed bed method or a fluidized bed method that requires a large amount of equipment cost, so it is not practical. advantageous to Regarding the spheroidization of fibers, a method has been devised in which organic fibers are dispersed in a liquid and the dispersion is stirred to obtain a fiber mass (Japanese Patent Application Laid-Open No. 180229/1983). Problems to be Solved by the Invention In view of the above-mentioned circumstances, the object of the present invention is to obtain a spherical material that has a high adsorption rate and adsorption capacity for uranium and can be suitably used for recovering uranium from dilute solutions such as seawater. An object of the present invention is to provide a method for efficiently producing an amidoxime type fiber adsorbent that can uniformly adsorb uranium to its interior. Means for Solving the Problems As a result of extensive research, the present inventors found that acrylic fibers of a predetermined shape were stirred and heated in a methanol solution containing hydroxylamine.
By simultaneously converting the fibers into amidoximes and spheroidizing them, the above objective can be achieved, and furthermore, by subjecting the obtained spherical adsorbents to a specific surface treatment, they can be made to have excellent durability. Based on these findings, we have completed the present invention. That is, the present invention involves adding acrylic fibers with a fiber length of 5 to 30 mm and a fiber diameter of 3 d or more to a methanol solution containing hydroxylamine, heating the fibers while stirring, and simultaneously converting the fibers into amidoxime and forming them into a spherical shape. A method for producing an amidoxime-type spherical fiber adsorbent characterized by It is something to do. The acrylic fibers used in the method of the present invention have a fiber length of 5 to 30 mm and a fiber diameter of 3D or more, but in particular, a fiber length of 5 to 10 mm and a fiber diameter of 10 to 10 mm.
A range of 15d is preferred. If the shape of the acrylic fiber deviates from the above range, it will be difficult to obtain the desired spherical adsorbent. On the other hand, the content of hydroxylamine in the solvent solution is usually selected in the range of 1 to 5% by weight, and the ratio of acrylic fiber to hydroxylamine is selected in the range of 1:1 to 1:2 by weight. . As the solvent, methanol, methanol-water, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), etc. are used. The amidoxime formation of the acrylic fibers is usually carried out under normal pressure while heating and refluxing, and the reaction time is about 1 to 10 hours. In the present invention, the acrylic fiber is formed into a spherical shape while being converted into an amidoxim, and as the amidoximization and spheroidization proceed simultaneously,
A spherical adsorbent having a fast forming speed and excellent strength when treated with an alkali is efficiently formed.
The sphere diameter is preferably in the range of 5 to 40 mm. This spherical diameter depends on conditions such as the shape of the fibers, the shape and stirring speed of the agitator, and the shape and size of the container. Therefore, in order to obtain a spherical fiber adsorbent having a desired spherical diameter, the above-mentioned conditions must be met. need to be selected appropriately. The spherical fiber adsorbent obtained in this way may be used as a uranium adsorbent after being immersed in an alkaline aqueous solution for about 1 to 48 hours and treated with alkali, but defibration causes a decrease in adsorption performance. In order to prevent this, it is desirable to treat the surface with a hydrophilic binder. As this hydrophilic binder, for example, polyacrylic acid hydrazide, polyacrylonitrile, polyacrylamide, etc. are used. When using polyacrylic acid hydrazide, after soaking the spherical fiber adsorbent in an aqueous polyacrylic acid hydrazide solution for several minutes,
The polyacrylic acid hydrazide adhering to the surface of the adsorbent is insolubilized by drying or immersing it in epichlorohydrin. This kind of surface-treated spherical fiber adsorbent is
The adsorption performance does not deteriorate due to defibration during use, resulting in excellent durability. This material is treated with alkali by immersing it in an alkaline aqueous solution for about 1 to 48 hours in the same manner as described above, and then used as a uranium adsorbent. 1 and 2 are explanatory diagrams showing an example of how the adsorbent obtained by the method of the present invention is used. In FIG. 1, a bag-shaped fishing net 1 is filled with the adsorbent, and floating bodies 2,
Fig. 2 shows a method in which the floating body 2' is attached to a fishing net 1' and held in the expanded state using a weight 3.A fish cage-like enclosure surrounded on all sides by a fishing net 1' is filled with adsorbent material, and a floating body 2'...
This shows the cage method for establishing fish in the sea. The spherical fibrous adsorbent obtained by the method of the present invention can be placed and used underwater using equipment with an extremely simple structure, but in the same way as conventional granular adsorbents, A fixed bed method or a fluidized bed method may be used. The spherical fiber adsorbent obtained by the method of the present invention can uniformly adsorb uranium to its interior, and the adsorbed uranium can be easily desorbed by acid treatment, making it possible to recycle and reuse the adsorbent. be. Effects of the Invention According to the method of the present invention, it is possible to efficiently produce a spherical amidoxime type fiber adsorbent that has a high adsorption rate and adsorption capacity for uranium and is suitable for recovering uranium from dilute solutions such as seawater. Since the obtained adsorbent is spherical, it is extremely simple to recover uranium from dilute solutions without the need to use a fixed bed method or fluidized bed method, which requires a large amount of equipment, unlike granular adsorbents. Uranium can be economically advantageously recovered from dilute solutions. Examples Next, the present invention will be explained in more detail with reference to Examples. Example 1 5 g of acrylic fiber with a fiber diameter of 15 d and a fiber length of 10 mm and 200 ml of hydroxylamine 1M methanol solution were
Pour into a 300ml three-necked round-bottom separable flask.
Using a stirrer rod with a blade length of 6 cm, the mixture was refluxed for 8 hours while stirring at a rotational speed of 200 rpm to obtain a spherical fiber adsorbent with a diameter of 1 to 1.5 cm. Next, this adsorbent was dissolved in a 4% by weight aqueous sodium hydroxide solution.
After being immersed for a period of time and treated with alkali, it was used for uranium adsorption experiments. The spherical fiber adsorbent obtained in this way is filled in a column, filtered seawater is passed through the column, the adsorbent is taken out at predetermined intervals, the surface part of the adsorbent is loosened, and the fibers on the surface part are removed. The adsorbed uranium was separated into the inner fibers and was desorbed with 1N hydrochloric acid, and the amount of uranium adsorbed in each was measured. For comparison, we also loosened spherical fibers and packed them into a column in a layer to conduct a uranium adsorption experiment. These results are shown in Table 1. As can be seen from this table, it is clear that uranium is adsorbed to the inside of the spherical adsorbent.

【表】 実施例 2 実施例1と同一の素繊維を常温のメタノール溶
液中で実施例1の装置を用い、8時間かきまぜて
得られた球状体を更に8時間アミドキシム化した
球状繊維吸着材を球状体とし、実施例1と同一
の素繊維を8時間アミドキシム化処理した繊維を
常温のメタノール溶液中で実施例1と同様に球状
化した球状繊維吸着材を球状体とし、実施例1
のアミドキシム化と球状化を同時に行う方法によ
つて得られた球状繊維吸着材を球状体とした場
合、それぞれの球状化に要する時間、8時間のア
ルカリ処理を行つた場合の解繊率及び海水からの
6日間のウラン吸着量を第2表に示す。 球状体を得るための本発明による方法と比較
して、球状体及び球状体を得るための球状化
とアミドキシム化を個別に行う方法では球状体の
形成に長時間を要し、アルカリ処理時の解繊率が
大きい。 更に、本願による方法で得られる球状体は、
球状体及び球状体より海水ウランに対する吸
着性が高い。
[Table] Example 2 A spherical fiber adsorbent was prepared by stirring the same basic fibers as in Example 1 in a methanol solution at room temperature for 8 hours using the apparatus of Example 1, and converting the resulting spherical bodies into amidoximes for an additional 8 hours. The spherical fibers were made into spherical bodies, and the spherical fiber adsorbents were obtained by spheroidizing the same basic fibers as in Example 1 into amidoxime treatment for 8 hours in a room temperature methanol solution in the same manner as in Example 1.
When the spherical fiber adsorbent obtained by the method of simultaneous amidoxime formation and spheroidization is made into a spheroid, the time required for each spheroidization, the defibration rate when an alkali treatment is performed for 8 hours, and the seawater Table 2 shows the amount of uranium adsorbed in the six days since. Compared to the method according to the present invention for obtaining spheroids, the method of performing spheroidization and amidoximation separately to obtain spheroids requires a long time for the formation of spheroids, and during alkali treatment, High defibration rate. Furthermore, the spherical bodies obtained by the method according to the present application are
It has a higher adsorption ability for seawater uranium than spherical bodies and spherical bodies.

【表】 実施例 3 実施例1で作成した球状繊維吸着材をポリアク
リル酸ヒドラジド(分子量30万、ヒドラジド化率
45%)水溶液中に10分間浸せきしたのち、真空乾
燥して吸着材表面に付着しているポリアクリル酸
ヒドラジドを不溶化した。 このようなポリアクリル酸ヒドラジド処理を行
わない球状繊維吸着材は、アルカリ処理を24時間
行うと解繊したが、ポリアクリル酸ヒドラジド処
理した球状繊維吸着材は24〜48時間アルカリ処理
しても解繊しなかつた。また、このものは長時間
吸着実験を行つても、抜けたり、折れたりする繊
維は認められなかつた。 PAH処理しない球状繊維吸着材を16時間アル
カリ処理したもの(解繊してない)及びPAH処
理した球状繊維吸着材を24時間アルカリ処理した
ものについて、ウラン吸着性を測定した。その結
果を第3表に示す。 この表から分るように、ポリアクリル酸ヒドラ
ジド処理した球状繊維吸着材は、このような処理
しないものに比べてウラン吸着速度が大きい。
[Table] Example 3 The spherical fiber adsorbent prepared in Example 1 was mixed with polyacrylic acid hydrazide (molecular weight 300,000, hydrazide conversion rate
45%) aqueous solution for 10 minutes, and then vacuum-dried to insolubilize the polyacrylic acid hydrazide adhering to the adsorbent surface. This kind of spherical fiber adsorbent not treated with polyacrylic acid hydrazide was defibrated after 24 hours of alkali treatment, but the spherical fiber adsorbent treated with polyacrylic acid hydrazide was not defibrated even after 24 to 48 hours of alkali treatment. It was not delicate. Furthermore, even after long-term adsorption experiments, no fibers were observed to come off or break. Uranium adsorption properties were measured for spherical fiber adsorbents that were not PAH-treated and treated with alkali for 16 hours (not defibrated) and PAH-treated spherical fiber adsorbents that were treated with alkali for 24 hours. The results are shown in Table 3. As can be seen from this table, the spherical fiber adsorbent treated with polyacrylic acid hydrazide has a higher uranium adsorption rate than that without such treatment.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明で得られた球状繊
維吸着材を用いて、海水中のウランを回収する際
のそれぞれ異なつた様式の例を示す説明図であ
る。図において符号1は袋状漁網、2は浮体、
1′は囲い用漁網である。
FIGS. 1 and 2 are explanatory diagrams showing examples of different methods for recovering uranium from seawater using the spherical fiber adsorbent obtained by the present invention. In the figure, numeral 1 is a bag-shaped fishing net, 2 is a floating body,
1' is a fishing net for enclosure.

Claims (1)

【特許請求の範囲】 1 ヒドロキシルアミンを含有するメタノール溶
液中に、繊維長5〜30mm、繊維径3d以上のアク
リル繊維を加え、かきまぜながら加熱して、該繊
維をアミドキシム化すると同時に球状に成形する
ことを特徴とするアミドキシム型球状繊維吸着材
の製造方法。 2 ヒドロキシルアミンを含有するメタノール溶
液中に、繊維長5〜30mm、繊維径3d以上のアク
リル繊維を加え、かきまぜながら加熱して、該繊
維をアミドキシム化すると同時に球状に成形し、
次いでこの球状成形体を親水性バインダーで表面
処理することを特徴とするアミドキシム型球状繊
維吸着材の製造方法。
[Claims] 1. Acrylic fibers with a fiber length of 5 to 30 mm and a fiber diameter of 3 d or more are added to a methanol solution containing hydroxylamine, and heated while stirring to convert the fibers into amidoxime and simultaneously form them into a spherical shape. A method for producing an amidoxime type spherical fiber adsorbent, characterized by: 2. Add acrylic fibers with a fiber length of 5 to 30 mm and a fiber diameter of 3D or more to a methanol solution containing hydroxylamine, heat while stirring to convert the fibers into amidoxime, and simultaneously shape them into a sphere,
A method for producing an amidoxime type spherical fiber adsorbent, which comprises subsequently surface-treating the spherical molded body with a hydrophilic binder.
JP4561085A 1985-03-06 1985-03-06 Production of globular fiber adsorbent Granted JPS61204036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4561085A JPS61204036A (en) 1985-03-06 1985-03-06 Production of globular fiber adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4561085A JPS61204036A (en) 1985-03-06 1985-03-06 Production of globular fiber adsorbent

Publications (2)

Publication Number Publication Date
JPS61204036A JPS61204036A (en) 1986-09-10
JPH032011B2 true JPH032011B2 (en) 1991-01-14

Family

ID=12724135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4561085A Granted JPS61204036A (en) 1985-03-06 1985-03-06 Production of globular fiber adsorbent

Country Status (1)

Country Link
JP (1) JPS61204036A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333254A (en) * 1989-06-30 1991-02-13 Agency Of Ind Science & Technol Shaping method to spherical shape of amidoxime-type fiber and shaping machine therefor
CN104667886B (en) * 2015-01-22 2017-05-17 鲁东大学 Preparation method and application of amidoxime group modified p-aramid adsorption material, and application of amidoxime group modified p-aramid adsorption material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432834A (en) * 1977-08-19 1979-03-10 Mitsubishi Heavy Ind Ltd Processing system for exhaust combustion gas
JPS5428486B2 (en) * 1974-06-14 1979-09-17
JPS58180229A (en) * 1982-04-15 1983-10-21 Unitika Ltd Manufacture of adsorbent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428486U (en) * 1977-07-27 1979-02-24

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428486B2 (en) * 1974-06-14 1979-09-17
JPS5432834A (en) * 1977-08-19 1979-03-10 Mitsubishi Heavy Ind Ltd Processing system for exhaust combustion gas
JPS58180229A (en) * 1982-04-15 1983-10-21 Unitika Ltd Manufacture of adsorbent

Also Published As

Publication number Publication date
JPS61204036A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
CA1125651A (en) Process of preparing homogenous resin-polyiodide disinfectants
Dragan et al. Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads
KR101506094B1 (en) Heavy Metal Adsorbent Using Biochar-Alginate Capsule, Preparation Method Thereof and Removal Method ofHeavy Metal in Aqueous Solution Using the Same
Khan et al. Synthesis of poly (methacrylic acid)/montmorillonite hydrogel nanocomposite for efficient adsorption of amoxicillin and diclofenac from aqueous environment: kinetic, isotherm, reusability, and thermodynamic investigations
RU2064429C1 (en) Carbon sorbent and method for its production
JP3749941B2 (en) Method for producing cesium separator
CN1938037A (en) Adsorbent for oral administration and therapeutic agent or prophylactic agent for kidney disease and therapeutic agent or prophylactic agent for liver disease
Babakhani et al. Synthesis, characterization, and performance evaluation of ion-imprinted crosslinked chitosan (with sodium tripolyphosphate) for cadmium biosorption
CN109012586A (en) Uranium absorption agent and preparation method thereof
Zong et al. Preparation of a novel microsphere adsorbent of prussian blue capsulated in carboxymethyl cellulose sodium for Cs (I) removal from contaminated water
CN105688853A (en) Selective adsorbent for caesium and preparation method of selective adsorbent
KR20190090521A (en) Radioactive cesium absorbent and method of the same
Liu et al. Synthesis of new type dipropyl imide chelating resin and its potential for uranium (VI) adsorption
Su et al. Recycling of brewer’s spent grain as a biosorbent by nitro-oxidation for uranyl ion removal from wastewater
Karachalios et al. Nitrate removal from water by quaternized pine bark using choline based ionic liquid analogue
FR2608457A1 (en) CATION EXTRACTION PROCESS AND ITS APPLICATION TO TREATMENT OF AQUEOUS EFFLUENTS
Pawlaczyk et al. Efficient removal of Ni (II) and Co (II) ions from aqueous solutions using silica-based hybrid materials functionalized with PAMAM dendrimers
JPH032011B2 (en)
SK283578B6 (en) Magnetic particles, method for the preparation thereof and their use in purification of solutions
Jeon et al. Removal of cesium ions from waste solution using sericite incorporated into nickel hexacyanoferrate
JP3629743B2 (en) Method for producing activated carbon
JPS63248439A (en) Production of adsorbent comprising spherical acryl fiber having high strength
JPH0527457B2 (en)
JPS63248440A (en) Production of fibrous adsorbent having high strength
CN110124629A (en) A kind of melamine sponge-graphene oxide adsorbent material and its preparation method and application

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term