JPH03200952A - Method and apparatus for producing silver halide emulsion - Google Patents

Method and apparatus for producing silver halide emulsion

Info

Publication number
JPH03200952A
JPH03200952A JP2266615A JP26661590A JPH03200952A JP H03200952 A JPH03200952 A JP H03200952A JP 2266615 A JP2266615 A JP 2266615A JP 26661590 A JP26661590 A JP 26661590A JP H03200952 A JPH03200952 A JP H03200952A
Authority
JP
Japan
Prior art keywords
emulsion
reaction
solution
container
silver halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2266615A
Other languages
Japanese (ja)
Other versions
JP2687252B2 (en
Inventor
Mitsuo Saito
光雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Publication of JPH03200952A publication Critical patent/JPH03200952A/en
Application granted granted Critical
Publication of JP2687252B2 publication Critical patent/JP2687252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/015Apparatus or processes for the preparation of emulsions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • G03C2001/0055Aspect ratio of tabular grains in general; High aspect ratio; Intermediate aspect ratio; Low aspect ratio
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/015Apparatus or processes for the preparation of emulsions
    • G03C2001/0153Fine grain feeding method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/43Process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To make stable mass production with good reproducibility by successively effecting particle formation reaction in a specified direction to substantially prevent mingling of the reaction solns. in plural stages of batch wise medium volume reaction vessels disposed in series with each other. CONSTITUTION:The particle formation reaction is effected successively in the specified direction in such a manner that the reaction solns. in plural stages of the batch wise medium volume reaction vessels 2a, 2b, 2c disposed in series do not substantially mix with each other. Thus, the emulsions of the same performance as the performance of the improved emulsions developed by a small-volume device for research are produced immediately in a factory scale stage and particularly the capacity of the reaction vessels for nuclear formation is decreased. The average residence time of the respective emulsion particles in the respective reaction vessels is unified and the silver halides are produced continuously according to a required amt. with the good reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銀塩とハロゲン化物塩(以後X−塩と記す〉の
反応により、写真感光材料用のハロゲン化sI(以後、
AgXと記す)乳剤の結晶粒子を再現性よく小量から大
量まで自由に製造することの出来る方法および装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention produces halogenated sI (hereinafter referred to as
The present invention relates to a method and apparatus capable of freely producing emulsion crystal grains (denoted as AgX) in small to large quantities with good reproducibility.

〔従来の技術〕[Conventional technology]

最近のハロゲン化銀乳剤の製造方法及び装置としては、 ■「銀塩とX−塩水溶液を分散媒の存在下に連続的にダ
ブルジェット法で導入し、かつ、AgX粒子の形成が起
っている間に反応室からAgX乳剤を連続的に取り出す
」ことを特徴とするAgX乳剤の連続製造装置、および
「複数の連続的に結合されたカスケード式反応装置にお
いて、1つの反応室から連続的に取りだしたAgX乳剤
を第2の反応室の供給原料として用いるJことを特徴と
するAgX乳剤の連続製造装置。
Recent methods and equipment for producing silver halide emulsions are as follows: ■ "Silver salt and X-salt aqueous solutions are continuously introduced in the presence of a dispersion medium by a double jet method, and the formation of AgX grains occurs. AgX emulsion continuous production apparatus is characterized in that the AgX emulsion is continuously taken out from the reaction chamber during the continuous production of AgX emulsion, and in a plurality of continuously connected cascade reactors, An apparatus for continuously producing an AgX emulsion, characterized in that the AgX emulsion taken out is used as a feed material for a second reaction chamber.

〔ライ・エル・ゼリックマン アンド ニス・エム・レ
ヴイ “メイキング アンド コーティング ホトグラ
フィック エマルジゴンズ”、フォカール プレス、ロ
ンドン (V、 L、 Zelikmanand S、
 M、 Levi、  ”Making and Co
ating Photographic E+ulsi
on−s”) P、  228 (Focal Pre
ssLondon )(1964)、米国特許3,77
3,516号、同4,046.576号各明細書、有賀
研−1日本写真学会誌。
[L. L. Zelikman and N.M. Levy “Making and Coating Photographic Emulsions”, Focal Press, London (V, L, Zelikmanand S.
M. Levi, “Making and Co.
ating Photographic E+ulsi
on-s”) P, 228 (Focal Pre
ssLondon) (1964), U.S. Patent No. 3,77
Specifications of No. 3,516 and No. 4,046.576, Arigaken-1 Journal of the Photographic Society of Japan.

30巻、99 (1967年)参照〕 ■「筒型もしくはバイブ中にAgX乳剤を連続的に流し
、かつ、途中に多くの銀塩とX−塩水溶液の添加口を設
けた」ことを特徴とする連続製造装置〔米国特許3,6
55.166号、同3,827.888号各明細書、西
ドイツ特許出願公開明細書(OLS)2.755.16
6号明細書参照〕等がある。
30, 99 (1967)] ■Characteristic: ``AgX emulsion is continuously poured into a cylinder or a vibrator, and many addition ports for silver salt and X-salt aqueous solution are provided along the way.'' Continuous manufacturing equipment [U.S. Patent 3, 6]
55.166, 3,827.888, West German Patent Application Publication Specification (OLS) 2.755.16
See Specification No. 6], etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、■の方法及び装置は核形成を連続的に行
いながらAgX乳剤を連続的に抜きとる為、抜きとられ
たAgX粒子は該反応容器中の滞留時間が互いに異なる
粒子からなっているので、粒子サイズ分布の広いAgX
乳剤となるし、又サイズ分布が時間と共に変化する。粒
子の平均滞留時間を短くしてやると、サイズ分布は定常
となるが、平均粒径が小さくなるという欠点を有する。
However, since the method and apparatus of (2) continuously extracts the AgX emulsion while continuously forming nuclei, the extracted AgX particles consist of particles with different residence times in the reaction vessel. AgX with wide particle size distribution
It becomes an emulsion, and the size distribution changes over time. If the average residence time of the particles is shortened, the size distribution becomes steady, but this has the disadvantage that the average particle diameter becomes small.

例えば米国特許3,801.326号明細書にその例を
見ることができる。
An example can be found, for example, in US Pat. No. 3,801.326.

又、■の方法及び装置は一個所における乳剤の滞留時間
が短いので、粒子を大きくする為には非常に長いパイプ
ラインを必要とする。乳剤の流速を遅くし、該滞留時間
を長くすると、攪拌により隣接液との混合が促進され、
粒子サイズ分布が広くなる。また密封系における攪拌機
や添加系は、該パイプとの接合部に液もれ防止対策を施
さなければならず、トラブルが多い装置となる。その他
、装置形態が研究用小量装置と異なる為、それとの装置
定数対応がとれない。パイプ長が一定の為、処方時間の
異なる種々の処方に対する適応性がない。攪拌混合性能
が悪い等の問題点を有している。
Furthermore, in the method and apparatus of (2), the residence time of the emulsion at one location is short, so a very long pipeline is required in order to increase the size of the particles. By slowing the flow rate of the emulsion and increasing its residence time, mixing with adjacent liquids is promoted by stirring,
Broader particle size distribution. Furthermore, the stirrer and addition system in a sealed system require measures to prevent liquid leakage at the joints with the pipe, resulting in equipment that is prone to many troubles. In addition, since the device format is different from a small-volume research device, the device constants cannot be matched with that device. Since the pipe length is constant, there is no adaptability to various prescriptions with different prescription times. It has problems such as poor stirring and mixing performance.

又最も原始的な問題として、通常研究用の小容量の反応
容器からなる反応装置(以後、小量装置とよぶ。通常、
1〜51容積を有する)で性能の優れたAgX乳剤を開
発できた場合、該乳剤の商品化の為には該乳剤の大量製
造化(通常6001以上の反応容器での製造)を行なう
必要がある。
In addition, the most primitive problem is a reaction device (hereinafter referred to as a small-volume device) consisting of a small-capacity reaction vessel usually used for research.
If it is possible to develop an AgX emulsion with excellent performance (having a volume of 1 to 51), it is necessary to mass-produce the emulsion (usually in a reaction vessel of 6001 or more) in order to commercialize the emulsion. be.

この場合1次のような問題点がある。In this case, there is a first-order problem.

■ 同一の製造手順書に従って該小量装置で製造したA
gX乳剤と、大容量の反応装置(以後。
■ A manufactured using the small-volume equipment according to the same manufacturing procedure manual
gX emulsion and a large-capacity reactor (hereinafter).

大量装置とよぶ〉で製造したAgX乳剤の性能が全く一
致することはむしろ稀である。その為に大量製造の場合
には、該製造手順書の一部を修正して両者の性能を一致
させたりすることが多い。この仕事は多くの経費と時間
を要する。特に平行双晶面を有する平板状乳剤粒子の製
造においてこの問題が大きい。
It is rather rare that the performances of AgX emulsions produced using large-scale equipment are exactly the same. Therefore, in the case of mass production, a part of the manufacturing procedure manual is often modified to match the performance of both products. This work requires a lot of money and time. This problem is particularly serious in the production of tabular emulsion grains having parallel twin planes.

■ バッチ方式で一度に大量の乳剤を製造する場合、販
売量の少ない品種の場合は乳剤の過剰生産になり、乳剤
の一部を廃却しなければならない。
■ When manufacturing a large amount of emulsion at once using a batch method, if the product is of a variety that sells in small quantities, there will be overproduction of emulsion, and some of the emulsion will have to be discarded.

それは感光材料には使用期限の問題があり、在庫は許さ
れない為である。従って販売量の少ない品種の場合にも
、販売量の多い品種の場合も、販売品種に応じて必要な
量だけ乳剤を製造できることが望まれている。
This is because photosensitive materials have an expiration date and cannot be kept in stock. Therefore, it is desired to be able to produce emulsions in the required amount depending on the type of product sold, whether it is a type with a low sales volume or a variety with a large sales volume.

■ 通常、写真感光材料ハロゲン化銀乳剤の大量製造を
バッチ方式で行う場合は、1つの大容器で核形成から結
晶成長反応までを長時間かけて行い、しかも−度に大量
の乳剤が出来る。しかし、−度に大量の乳剤を塗布でき
ない場合には、大部分の乳剤は小分けされ冷蔵庫で保存
される。その為に余分な作業が増え、かつ冷蔵庫経費が
増えコスト高になる。また、該乳剤を塗布する度にそれ
を溶解する工程も必要になる。このように作業が複雑に
なるので、長時間間隔で大量のAgX乳剤が製造されて
くるよりも、短時間間隔で必要量の乳剤が製造されてく
る製造方法および製造装置が望まれている。
(2) Normally, when mass-producing silver halide emulsions for photographic light-sensitive materials is carried out in batch mode, the process from nucleation to crystal growth reaction takes a long time in one large container, and a large amount of emulsion can be produced at one time. However, if a large amount of emulsion cannot be coated at one time, most of the emulsion is divided into portions and stored in a refrigerator. This increases extra work, increases refrigerator expenses, and increases costs. Further, a step of dissolving the emulsion is also required each time the emulsion is coated. Since the work becomes complicated in this way, a manufacturing method and manufacturing apparatus that can manufacture the necessary amount of emulsion in a short period of time is desired, rather than a large amount of AgX emulsion that is manufactured in a long period of time.

本発明の目的は上記の諸問題を解消し、粒子サイズ分布
が狭く、平均粒径も任意に大きくすることが出来、研究
用反応装置の製造条件を大きな条件変更をすることなく
再現性よく安定に大量生産することが出来、必要に応じ
て小量生産にも対応出来るハロゲン化銀乳剤の製造方法
及び装置を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, to provide a narrow particle size distribution, the ability to arbitrarily increase the average particle diameter, and to provide stable manufacturing conditions with good reproducibility without major changes in the manufacturing conditions of research reactors. It is an object of the present invention to provide a method and apparatus for producing a silver halide emulsion, which can be mass-produced and can also be produced in small quantities if necessary.

(1題を解決するための手段及び作用〕本発明の上記目
的は、 (1)銀塩溶液とハロゲン塩溶液を液中添加して、かつ
ハロゲン化銀乳剤の粒子形成反応を直列に配置された複
数段の反応装置を通過させることによって行うハロゲン
化銀乳剤の製造方法において、該直列に配置された複数
段の反応装置が各々バッチ式中型反応装置であり、各反
応容器内の反応溶液が互に実質的に混り合うことなく、
一定方向に順に粒子形成反応を行わせることを特徴とす
るハロゲン化銀乳剤の製造方法。
(Means and effects for solving the problem) The above objects of the present invention are as follows: (1) A silver salt solution and a halide salt solution are added in the solution, and the grain formation reaction of the silver halide emulsion is arranged in series. In a method for producing a silver halide emulsion by passing the silver halide emulsion through a plurality of reactors arranged in series, each of the plurality of reactors arranged in series is a batch type medium-sized reactor, and the reaction solution in each reaction vessel is without substantially mixing with each other,
A method for producing a silver halide emulsion, characterized by carrying out a grain forming reaction in a certain direction.

(2)該ハロゲン化銀乳剤の結晶粒子が平行双晶面を有
する平板状乳剤粒子であることを特徴とする請求項(1
)記載のハロゲン化銀乳剤の製造方法。
(2) Claim (1) characterized in that the crystal grains of the silver halide emulsion are tabular emulsion grains having parallel twin planes.
) A method for producing a silver halide emulsion as described above.

(3)該銀塩溶液とハロゲン塩溶液を多孔体を通して直
接、液中添加することを特徴とする請求項(1)記載の
ハロゲン化銀乳剤の製造方法。
(3) The method for producing a silver halide emulsion according to claim (1), characterized in that the silver salt solution and the halide salt solution are directly added into the solution through a porous body.

(4)銀塩溶液とハロゲン塩溶液を液中添加して行なう
ハロゲン化銀乳剤粒子の製造装置が開閉弁付送液口を有
し、移送管によって直列に連結された2以上のバッチ式
中型反応装置より戒り、各反応装置が最終の反応装置よ
り逆のぼって順に、反応容器内の反応済反応溶液を次の
容器に送液した後、その反応容器の開閉弁を閉にして、
次に隣接する上流側の反応容器の開閉弁を開にして上流
側の反応容器内の反応溶液を受液し、しかる後一定時間
反応装置の稼働を行うことを繰り返すシステム制御装置
を有する装置であることを特徴とするハロゲン化銀乳剤
の製造装置。
(4) An apparatus for producing silver halide emulsion grains by adding a silver salt solution and a halide salt solution into the liquid has a liquid feeding port with an on-off valve, and has two or more batch-type medium-sized devices connected in series by a transfer pipe. After each reactor moves backwards from the last reactor and sends the reacted reaction solution in the reaction container to the next container, the on-off valve of the reaction container is closed.
Next, the on-off valve of the adjacent upstream reaction container is opened to receive the reaction solution in the upstream reaction container, and then the reaction device is operated for a certain period of time. An apparatus for producing a silver halide emulsion, characterized by the following.

(5)該銀塩溶液とハロゲン塩溶液の添加を多孔体を通
して直接、液中添加することを特徴とする請求項(4)
記載のハロゲン化銀乳剤の製造装置。
(5) Claim (4) characterized in that the silver salt solution and the halogen salt solution are added directly into the liquid through a porous body.
An apparatus for producing the silver halide emulsion described above.

(6)該バッチ式反応装置の核形成用反応装置が、2つ
以上の並列の核形成反応装置で構成されていることを特
徴とする請求項(4)又は(5)記載のハロゲン化銀乳
剤の製造装置。
(6) The silver halide according to claim 4 or 5, wherein the nucleation reactor of the batch reactor is composed of two or more parallel nucleation reactors. Emulsion manufacturing equipment.

によって遠戚される。distantly related to

3−1   発明の基本的考え方 1、研究用小量装置と本発明の製造装置が互いに該装置
定数の点で対応がとれていること。
3-1 Basic idea of the invention 1. The small-scale research device and the manufacturing device of the present invention are compatible with each other in terms of device constants.

即ち、研究用小量装置と本発明の製造装置が形態的に全
く異なった場合1両装置で同一特性のAgX乳剤粒子が
調整される補償は全くなくなる。
That is, if the small-scale research equipment and the manufacturing equipment of the present invention are completely different in form, there is no compensation for AgX emulsion grains having the same characteristics to be prepared by both equipments.

また、両装置で異なる特性のAgX乳剤粒子が得られた
場合も、両装置の装置の形態が異なると、その違いの原
因を解析しがたい。従って、研究用小量装置と本発明の
製造装置は形態的にも、サイズ的にもできるだけ近くす
ることを考えた。該研究用小量装置の場合、種々の実験
条件で小量のAgX乳剤を調製し、その特性を調べる為
、必然的に小容量の反応容器中でいわゆるバッチ方式で
AgX乳剤が調製される。従って本発明の製造装置も必
然的に該パンチシステムを取り入れた形態とした。
Furthermore, even if AgX emulsion grains with different characteristics are obtained using both apparatuses, it is difficult to analyze the cause of the difference if the forms of the apparatuses are different. Therefore, we considered making the small-volume research device and the manufacturing device of the present invention as close as possible in terms of form and size. In the case of the small-volume research apparatus, in order to prepare a small amount of AgX emulsion under various experimental conditions and investigate its properties, the AgX emulsion is necessarily prepared in a so-called batch mode in a small-capacity reaction vessel. Therefore, the manufacturing apparatus of the present invention also necessarily incorporates the punch system.

2、種々の乳剤処方に対応できること。2. Be able to respond to various emulsion formulations.

AgX乳剤は、まだこれからも更に続いて改良され、該
製造処方は変化している。また、製造装置の場合は小サ
イズから大サイズ粒子までの種々の製品の乳剤が製造で
きることが要求される。従って本発明の製造装置はそれ
らの要請に答えられる融通性に富んだ形体にすることを
考えた。
AgX emulsions continue to be improved and the manufacturing recipe is changing. Further, in the case of manufacturing equipment, it is required to be able to manufacture emulsions of various products ranging from small-sized to large-sized particles. Therefore, the manufacturing apparatus of the present invention was designed to have a highly flexible configuration that can meet these demands.

3、反応溶液の均一混合性が良く、装置は小型であるこ
と。
3. The reaction solution should have good homogeneous mixing properties, and the device should be small.

平行双晶面を有する平板状乳剤粒子を製造する場合、該
核形成時に該反応溶液中の種々の過飽和因子を不均一性
を少なくして高精度で制御する必要がある。その詳細に
関しては特願昭63−315741号、同63−223
739号、及び特開昭63−92942号各明細書、公
報の記載を参考にすることができる。また、結晶成長時
にも該成長の過飽和度が該反応溶液中で均一に制御され
た方がより単分散性のよい乳剤粒子が得られる。
When producing tabular emulsion grains having parallel twin planes, it is necessary to control various supersaturation factors in the reaction solution with high precision while reducing non-uniformity during nucleation. For details, see Japanese Patent Application Nos. 63-315741 and 63-223.
Reference may be made to the descriptions in the specifications and publications of No. 739 and JP-A No. 63-92942. Also, during crystal growth, emulsion grains with better monodispersity can be obtained if the degree of supersaturation during crystal growth is uniformly controlled in the reaction solution.

また混晶成長の場合にも、該反応溶液組成が均一に制御
された方が、成長層のハロゲン姐或比をより意図通りに
制御できて好ましい、これらは−殻内に大容器内の大量
の反応溶液内よりも、小容器内の小量の反応溶液内の方
がその循環頻度が高い為、より均一に制御できる。従っ
て、この点から容器容量は小型であることが好ましい。
Also, in the case of mixed crystal growth, it is preferable to control the composition of the reaction solution uniformly, since the halogen ratio in the growth layer can be controlled more precisely as intended. Since the circulation frequency of a small amount of reaction solution in a small container is higher than that of a reaction solution in a small container, more uniform control can be achieved. Therefore, from this point of view, it is preferable that the container capacity is small.

また、その方が研究用小量装置との対応がよくとれると
いう点でも好ましい。また、コスト的にも20001容
量の反応装置を1基作るよりも、40(1!容量の反応
装置を5基作る方が低コストである。従ってコスト的に
も大型装置よりも小型装置の方が好ましい。
This method is also preferable in that it can be more compatible with small-volume research devices. Also, in terms of cost, it is cheaper to make five reactors with a capacity of 40 (1!) than to make one reactor with a capacity of 20,001.Therefore, in terms of cost, it is cheaper to make a small reactor than a large one. is preferred.

本発明の最大目的は、特に核形成用容器容量をできるだ
け小さくすることにある。それはAgX粒子形成におい
て核形成工程が特に重要な為である。
The main objective of the present invention is, in particular, to reduce the volume of the nucleation vessel as much as possible. This is because the nucleation step is particularly important in AgX particle formation.

4、各装置はできるだけ機能分離化され単純であること
4. Each device should be functionally separated and simple as possible.

装置が単純であると、異常が生じた時の解析が簡単であ
る。装置を単純化する為には該装置を機能分離化すれば
よい。即ち、1つの装置で核形成も勢威も成長も行なう
より、核形成なら核形成専用にする。そうすることによ
って、核形成という観点1本に絞って、その装置を高性
能化できるからである。
If the device is simple, it will be easy to analyze when an abnormality occurs. In order to simplify the device, it is sufficient to separate the functions of the device. That is, rather than using one device for nucleation, growth, and growth, it is used exclusively for nucleation. This is because by doing so, the performance of the device can be improved by focusing on one point of view: nucleation.

5、得られる乳剤粒子の粒子サイズ分布が狭いこと。5. The grain size distribution of the resulting emulsion grains is narrow.

通常、乳剤粒子の粒子サイズ分布が狭いと、硬調であり
、また1重層効果が効果的になり、好ましい。従って単
分散性の良い乳剤粒子が得られることは必須条件である
。そのためには、各乳剤粒子の反応容器中の滞留時間が
等しいことが必要である。
Generally, it is preferable that the grain size distribution of the emulsion grains is narrow because the contrast is high and the single layer effect is effective. Therefore, it is essential to obtain emulsion grains with good monodispersity. For this purpose, it is necessary that each emulsion grain has an equal residence time in the reaction vessel.

6、AgX乳剤は必要量のみ連続的に製造されること。6. The AgX emulsion must be manufactured continuously in only the required amount.

3−2  本発明の特徴とする装置の説明上記l〜6の
考え方に基いて、AgX乳剤連続製造装置として、研究
用小量装置に形態的にできるだけ近い2基以上のバッチ
式中型反応装置(以後、中型装置と記す)が直列的に接
続された装置を発明した。具体例として第1〜3図の装
置もしくはそれらの2つ以上を組み合わせた装置を挙げ
ることができる。第1図の場合を代表例として該操作手
順を説明する。該AgX乳剤の調製時間をtとする。反
応装置Aの反応容器2Aに反応溶液を入れ、t/3時間
時間子粒子形成を行なう、その後、該溶液を2.容器に
移した後、2mに新しい反応溶液を入れ、2aと2.で
それぞれt/3時間の粒子形成反応を行なう0次に2.
の溶液を2c容器に移した後2Aの溶液を2.に移し、
それが済んだ後に2Aに新しい反応溶液を入れ、それぞ
れL/3時間の粒子形成反応を行なう。あとはこの操作
をくり返す、なお、この各工程で9例えば2.溶液を2
.へ移した後2.溶液を2.へ移した時点で2.の粒子
形成反応を開始すればよく、2Aにも反応溶液がセット
されるまで該反応の開始を持つ必要がないことはいうま
でもない。また、必要に応じて各移液操作後、核反応容
器を洗浄する工程を入れることができる。
3-2 Description of the apparatus characterized by the present invention Based on the above ideas 1 to 6, two or more batch-type medium-sized reactors ( He invented a device in which two devices (hereinafter referred to as medium-sized devices) are connected in series. Specific examples include the devices shown in FIGS. 1 to 3 or a combination of two or more of them. The operating procedure will be explained using the case of FIG. 1 as a representative example. Let t be the preparation time of the AgX emulsion. The reaction solution is put into the reaction container 2A of the reaction apparatus A, and particle formation is performed for t/3 hours.Then, the solution is heated in 2. After transferring to a container, add new reaction solution to 2m, and add 2a and 2. The particle formation reaction is carried out for t/3 hours each at 0th order 2.
After transferring the solution of 2A to the 2c container, add the solution of 2A to the 2c container. Move to
After that, a new reaction solution is added to 2A and the particle forming reaction is carried out for L/3 hours each. After that, repeat this operation, for example 2. 2 of the solution
.. After moving to 2. 2. 2. It goes without saying that it is not necessary to start the reaction until the reaction solution is set in 2A. Further, if necessary, a step of cleaning the nuclear reaction vessel can be included after each liquid transfer operation.

特にn≦6の時はシャワー水による洗浄工程を1〜2回
、入れることが好ましい、該シャワー水の温度は30〜
70°Cが好ましく、35〜60°Cがより好ましい。
In particular, when n≦6, it is preferable to perform a washing process with shower water once or twice, and the temperature of the shower water is 30-30°C.
70°C is preferred, and 35-60°C is more preferred.

なお、該A、B、Cの反応容器の位置は、重力による迅
速な移液が達成されるに必要な落差の最小値であること
がより好ましい。
In addition, it is more preferable that the positions of the reaction vessels A, B, and C are at the minimum value of the head required to achieve rapid liquid transfer by gravity.

本発明における複数段の反応装置としてnの値(直列的
に接続された該中型装置の数)は2以上。
In the present invention, the value of n (the number of medium-sized devices connected in series) is 2 or more in the multi-stage reaction device.

好ましくは2〜8より好ましくは3〜7であり、更に好
ましくは3〜4である。nの数を増すと製造効率が増す
という利点がある0例えば100ffiの容器を3基を
直列に連結した場合と、10基を直列に連結した場合と
を比較する。120分間のAgX乳剤調製処方で移液時
間を、それぞれ1分間とする。また、最終段の乳剤収量
を801とすると、前者の場合は約42分毎に801!
、の乳剤が調製されて出てくるが、後者の場合は14分
毎に80ffiの乳剤が調製されて出てくる。
Preferably it is 2-8, more preferably 3-7, and still more preferably 3-4. For example, a case where three 100ffi containers are connected in series and a case where 10 containers are connected in series will be compared. The transfer time is 1 minute for each AgX emulsion preparation recipe for 120 minutes. Also, assuming that the emulsion yield at the final stage is 801, in the former case it is 801! every 42 minutes!
, and in the latter case, 80ffi of emulsion is prepared and delivered every 14 minutes.

本発明の装置はこれを利用して(乳剤製造量/時間)を
変えずに、反応容器を小型化すること、特に核形成用反
応装置の容器を小型化することを意図している。その他
、nの数を増すと、各移液後の洗浄工程が不要になると
いう利点が生しる。
The apparatus of the present invention utilizes this to reduce the size of the reaction vessel, particularly the vessel of the nucleation reactor, without changing the amount of emulsion produced/time. Another advantage is that increasing the number n eliminates the need for a cleaning step after each liquid transfer.

その理由は次の通りである。nが大きいと、各反応容器
内における粒子形成時間は短くなり、1つ手前の反応装
置の乳剤粒子との粒子サイズ差が小さくなる。従って、
移液時の残液により、隣接容器の乳剤が少し混入した場
合、それが該乳剤の粒子サイズ分布に与える影響は小さ
くなる。従って該洗浄工程を省くことができるのである
。しかし、nの数を8以上にするとその設備経費が増え
、かつ全体の装置の大きさが大きくなりすぎる。また、
(移液時間/反応時間)が増し、該反応温度が高温の場
合は、移液中のオストワルド熟成の寄与が増してくる。
The reason is as follows. When n is large, the grain formation time in each reaction vessel becomes short, and the difference in grain size from the emulsion grains in the previous reactor becomes small. Therefore,
If a small amount of emulsion from an adjacent container is mixed in due to residual liquid during liquid transfer, the effect of this on the grain size distribution of the emulsion will be small. Therefore, the cleaning step can be omitted. However, if the number of n is 8 or more, the equipment cost will increase and the size of the entire device will become too large. Also,
When (liquid transfer time/reaction time) increases and the reaction temperature is high, the contribution of Ostwald ripening during liquid transfer increases.

従って、この観点からもn≦8が好ましい。Therefore, also from this point of view, n≦8 is preferable.

本発明の装置は小粒子乳剤から大粒子乳剤まで(即ち、
短時間処方から長時間処方まで)、あらゆる種類の乳剤
の製造に用いることができる。具体的には、長時間処方
の場合は該時間に応して使用する中型装置数を増すこと
、およびまたは各中型装置における平均滞留時間を長く
すればよい。
The apparatus of the present invention can be used for small grain emulsions to large grain emulsions (i.e.
It can be used to manufacture all types of emulsions (from short-term formulations to long-term formulations). Specifically, in the case of long-term prescriptions, the number of medium-sized devices used may be increased depending on the length of time, and/or the average residence time in each medium-sized device may be lengthened.

短時間処方の場合は、その逆にすればよい。即ち、処方
に応して該中型装置数nおよびまたは平均滞留時間を少
なくすればよい。
For short-term prescriptions, do the opposite. That is, the number n of medium-sized devices and/or the average residence time may be reduced depending on the prescription.

また、該オストワルド熟成の寄与を小さくするという観
点や、無駄な製造時間をなくするという観点から、該移
液時間をできる限り短くすることが望ましい。その為に
各装置の接液部は水に対して(接触角〉90°)の材質
のもの(例えばテフロン、もしくはステンレス鋼をテフ
ロンで表面コートシたもの)が好ましい。それは該溶液
と器壁との相互作用が小さい為、移液後の残留溶液量を
少なくし、かつ、迅速に移液できる為である。その他、
送液パイプの内径をできるだけ大きくし、長さを短くす
ると該送液時間が短かくなる。しかし、送液パイプの内
径を大きくすると移液時に該パイプ内での残液量が増え
るので、それとの兼ね合いで決められる。該移動波時間
は2分以内が好ましく、60秒以内が更に好ましい。
Further, from the viewpoint of reducing the contribution of Ostwald ripening and eliminating wasteful production time, it is desirable to shorten the liquid transfer time as much as possible. For this reason, the wetted parts of each device are preferably made of a material that is resistant to water (contact angle>90°) (for example, Teflon or stainless steel whose surface is coated with Teflon). This is because the interaction between the solution and the vessel wall is small, so the amount of solution remaining after the liquid transfer can be reduced and the liquid can be transferred quickly. others,
If the inner diameter of the liquid feeding pipe is made as large as possible and the length thereof is shortened, the liquid feeding time will be shortened. However, if the inner diameter of the liquid transfer pipe is increased, the amount of liquid remaining in the pipe increases during liquid transfer, so the size is determined by taking this into account. The traveling wave time is preferably within 2 minutes, more preferably within 60 seconds.

本発明の各反応容器内の反応溶液が実質的に混ざり合う
ことなくということは、該残液量が移液量の10%以下
が好ましく、より好ましくは3%以下であることをいう
In the present invention, the expression that the reaction solutions in each reaction container do not substantially mix means that the amount of residual liquid is preferably 10% or less of the amount of liquid transferred, and more preferably 3% or less.

本発明の実施態様を図を用いて説明すると、第1〜3図
において各反応容器2Aに設けられた次の反応容器2■
への送液口9は該反応容器2□の最低部に開閉弁を附属
させて設けることが好ましい。それは移液後の残液量を
少なくする為に有効な為である。
To explain the embodiment of the present invention using the drawings, in FIGS. 1 to 3, the next reaction container 2
The liquid feeding port 9 is preferably provided with an on-off valve attached to the lowest part of the reaction vessel 2□. This is because it is effective in reducing the amount of liquid remaining after liquid transfer.

各中型反応装置、特に核形成反応装置は研究用小量装置
と形態的に同じ装置であることが好ましい。反応装置A
としては、銀塩水溶液(Ag” )とX−塩(X−)水
溶液は添加後、迅速に該反応溶液5中に均一混合化され
ることが好ましい。その為にそれらの添加溶液Ag”、
X−はそれぞれ添加管3.4によって直接に該反応溶液
5中に液中添加(即ち、直接波面下添加)され、それぞ
れの添加口6.7近辺に設置された攪拌羽根8によって
激しく攪拌される型のものが好ましい、また該添加を多
孔体を通して添加することは更に好ましい。
Preferably, each medium-sized reactor, particularly the nucleation reactor, is a device that is identical in form to a small-volume research device. Reactor A
It is preferable that the silver salt aqueous solution (Ag'') and the X-salt (X-) aqueous solution be uniformly mixed into the reaction solution 5 quickly after addition.
X- is added directly into the reaction solution 5 through the addition tube 3.4 (that is, directly added under the wave front), and is vigorously stirred by the stirring blade 8 installed near each addition port 6.7. It is preferable to use a material of this type, and it is even more preferable to add the material through a porous body.

特に大量装置では銀塩とハロゲン化物塩の水溶液の添加
流束は太くなり、添加口近辺の溶質の濃度の不均一性が
より大きくなる。これがAgX乳剤製造をスケールアッ
プした時に生しる性能差の一因になっている。該溶液の
添加を多孔体を通して添加すると、該不均一性が大きく
改良される。
Particularly in a large-volume apparatus, the addition flux of aqueous solutions of silver salts and halide salts becomes thicker, and the non-uniformity of solute concentration near the addition port becomes larger. This is one of the reasons for the performance difference that occurs when AgX emulsion production is scaled up. Adding the solution through a porous body greatly improves the non-uniformity.

ここで多孔体とは1添加溶液あたり4個以上、好ましく
は10個以上、より好ましくは10”〜IQIs個の孔
を有し、かつ該孔径が2閣φ以下、好ましくは0.5m
mφ〜100人より好ましくは0.1mφ〜0.1μm
φの孔を有するものである。特に中空管型多孔膜は該支
持具が簡単であり、使い易さの点で特に好ましい。
Here, a porous body has 4 or more pores, preferably 10 or more, more preferably 10" to IQIs pores per one added solution, and the pore diameter is 2 mm or less, preferably 0.5 m.
mφ to 100 people, preferably 0.1 mφ to 0.1 μm
It has a hole of φ. In particular, a hollow tube type porous membrane is particularly preferable because the supporting device is simple and it is easy to use.

その詳細に関しては特願平2−78534号明細書の記
載を参考にすることができる。
For details, reference may be made to the description in Japanese Patent Application No. 78534/1999.

また、本発明においては大量装置で結晶成長させる時に
供給する溶質イオンの供給方法としては、あらかしめ調
製した0、1tImφ以下のサイズの超微粒子乳剤(A
gcl、AgBr、八glおよび/またはそれらの2種
以上の混晶)を供給する方法が特に好ましい。該超微粒
子は主に、大量の乳剤中に均一に混合された後に徐々に
溶解し、また、その平衡溶解以上の溶質の不均一分布を
生しない。従って大量装置での種晶の均一な結晶成長を
可能にする。
In addition, in the present invention, as a method for supplying solute ions during crystal growth in a large-scale apparatus, an ultrafine grain emulsion (A
Particularly preferred is a method of supplying (gcl, AgBr, 8gl and/or a mixed crystal of two or more thereof). The ultrafine particles mainly dissolve gradually after being uniformly mixed into a large amount of emulsion, and do not cause non-uniform distribution of solutes beyond their equilibrium dissolution. Therefore, it is possible to uniformly grow seed crystals in a mass-volume device.

該超微粒子は多重双晶粒子(1つのAgX粒子中に双晶
面を2枚以上含む粒子)や螺旋転移粒子を実質的に含ま
ない無欠陥粒子であることが好ましい。
The ultrafine particles are preferably defect-free particles that do not substantially contain multiple twin grains (particles containing two or more twin planes in one AgX grain) or helical transition grains.

ここで実質的とは該欠陥粒子数の割合が5%以下、好ま
しくは1%以下を指す、該超微粒子の調製法の詳細に関
しては特開平1−183417号、特願平2−1426
35号各公報の記載を参考にすることができる。
Here, "substantially" means that the proportion of the number of defective particles is 5% or less, preferably 1% or less.For details of the method for preparing the ultrafine particles, see JP-A No. 1-183417 and Japanese Patent Application No. 2-1426.
The descriptions in each publication No. 35 can be referred to.

これらの手法は、特に本発明で好ましく用いることがで
きる。即ち、平行双晶面を有する平板状乳剤粒子、特に
特開昭63−151618号や特開平2−838号の公
報に記載の平行2重双晶平板状乳剤粒子の製造や、特開
平2−146033号公報記載の実質的に無双品な乳剤
粒子の製造に好ましく用いることができる。
These methods can be particularly preferably used in the present invention. That is, the production of tabular emulsion grains having parallel twin planes, particularly the parallel double twinned tabular emulsion grains described in JP-A-63-151618 and JP-A-2-838; It can be preferably used for producing the substantially peerless emulsion grains described in Japanese Patent No. 146033.

これらの添加系や攪拌機及び反応容器、邪魔板、攪拌羽
根に関しては、リサーチ ディスクロージ+ −(Re
serch Disclosure) 、166巻、i
te++116662(1978年2月)、特願平2−
78534号、米国特許3.897,935号、同3,
790,386号、同3,415.650号、同3,6
92.283号、同4,289,733号、同3,78
5,777号、特開昭57−92524号、同60−1
17834記載明細書。
Regarding these addition systems, stirrers, reaction vessels, baffles, and stirring blades, please refer to Research Disclosure + - (Re
search Disclosure), vol. 166, i
te++116662 (February 1978), patent application Hei 2-
No. 78534, U.S. Pat. No. 3,897,935, U.S. Patent No. 3,
No. 790,386, No. 3,415.650, No. 3,6
No. 92.283, No. 4,289,733, No. 3,78
No. 5,777, JP-A-57-92524, JP-A No. 60-1
17834 description.

公報等の記載を参考にすることができる。You can refer to descriptions in publications, etc.

第1図は一般にカスケード(Cascade )型と呼
ばれる本発明の装置の一実施例の側面断面図であり、各
反応容器2の底のバルブ9を開けると、重力により該容
器溶液は次の容器へ移液される。
FIG. 1 is a side sectional view of one embodiment of the apparatus of the present invention, which is generally called a cascade type apparatus. When the valve 9 at the bottom of each reaction vessel 2 is opened, the solution in the vessel is transferred by gravity to the next vessel. Liquid is transferred.

第2図はステップ(Step)型と呼ばれる本発明の一
実施例の装置であり、(a)は該装置の側面断面図を表
し、(ロ)は平面図を表す。この装置の場合、送液パイ
プ10がなくなり、傾斜のついた上下可動の容器側壁1
3や容器底部がその役割を兼ねている。この型の装置は
送液パイプ10中への残液がなくなり、切換えバルブ1
1、廃水用パイプ12も必要がなくなり、かつ、迅速に
次の装置へ送液できるという利点を有する。移液は各上
下可動の容器側壁13を上げ下げすることにより、もし
くは横方向に出し入れすることにより行う方式でもよく
、該容器側壁13の下部に開閉バルブを設けておく方式
でもよい、第1.2図の装置は自然ヘッドを利用した方
式である。
FIG. 2 shows a device called a step type according to an embodiment of the present invention, and (a) shows a side sectional view of the device, and (b) shows a plan view. In the case of this device, the liquid sending pipe 10 is eliminated, and the container side wall 1 is tilted and movable up and down.
3 and the bottom of the container also serve this role. In this type of device, there is no remaining liquid in the liquid sending pipe 10, and the switching valve 1
1. There is an advantage that the wastewater pipe 12 is not required and the liquid can be quickly transferred to the next device. The liquid transfer may be carried out by raising and lowering each vertically movable side wall 13 of the container, or by loading and unloading it in the lateral direction, or by providing an on-off valve at the lower part of the container side wall 13. The device shown in the figure uses a natural head.

この方式では単に弁の開閉のみで迅速に移液できる為に
低コストであり、かつ、残液量が少ないという利点を有
する。
This method has the advantage of being low cost and having a small amount of residual liquid because liquid can be transferred quickly by simply opening and closing a valve.

第3図は各中型装置を互いにほぼ水平の位置に置き、移
液はポンプ14を用いて行う方式である。
FIG. 3 shows a system in which each medium-sized device is placed in a substantially horizontal position relative to each other, and liquid transfer is performed using a pump 14.

各装置は(a)に示すように独立した装置でもよく、ω
)に示すように、一体化した装置でもよく、それぞれの
目的に応して選択することができる。(その他の記号は
第1.2図と共通である。
Each device may be an independent device as shown in (a), and ω
), an integrated device may be used, and the device can be selected depending on the purpose. (Other symbols are the same as in Figure 1.2.

ここで用いる移液用ポンプ14とは、外部から動力の供
給を受けて低水位にある液体を高水位に移動させる機械
のことを指し、詳細は化学工学協会編、化学装置便覧、
第17.18章、丸首(1989年)の記載を参考にす
ることが出来る。
The liquid transfer pump 14 used here refers to a machine that receives power from an external source and moves a liquid at a low water level to a high water level.For details, refer to the Chemical Equipment Handbook, edited by the Society of Chemical Engineers.
Chapters 17 and 18, Marukubi (1989) can be referred to.

本発明の装置の場合はAgX乳剤に圧力かぶり等の悪影
響を与えることなく移液できるポンプが好ましい。この
点で第4図に示すようなダイヤフラムポンプ(a)や真
空吸引型伽)、往復ポンプ(C)が好ましい。いずれも
移液パイプ内を減圧にして乳剤を吸い上げ、次に、逆止
弁15.16と連動させて該乳剤をを隣りの中型容器に
移液するものである。第4図にその具体例を挙げる。
In the case of the apparatus of the present invention, it is preferable to use a pump that can transfer the AgX emulsion without causing any adverse effects such as pressure build-up. In this respect, diaphragm pumps (a), vacuum suction type pumps (c), and reciprocating pumps (c) as shown in FIG. 4 are preferable. In either case, the pressure inside the liquid transfer pipe is reduced to suck up the emulsion, and then the emulsion is transferred to an adjacent medium-sized container in conjunction with check valves 15 and 16. Figure 4 shows a specific example.

(a)〜(C)図の15.16はそれぞれ吸引用および
吐出用の逆止弁である。(a)図はダイヤフラムポンプ
の一例であり、蛇腹型ダイヤフラム17を上げると吸液
容器18の内部が減圧となり、反応液が吸引用逆止弁1
5を通して吸液容器18に吸い上げられ、蛇腹型ダイヤ
フラム17を下げると吸液容器18内の反応液は吐出用
逆止弁16を通して移液される。ガード19は吸入液の
飛び散りを防止するガードである。0))図は真空吸引
型の例であり、バルブ20を真空系21側に切りかえる
と吸液容器18内が減圧となり、反応液が吸引用逆止弁
15を通して吸液容器18内に吸引される。吸引量が吸
液容器18のある水準を越えると吸引が停止し、バルブ
20が大気圧もしくは加圧系22側に切り変わり、吸液
容器18内の反応液が吐出用逆止弁16を通って移液さ
れる。吸引時間幅の調節により、該吸引液量を調節する
ことができる。(C)図は往復ポンプ例であり、ピスト
ン23を上げるとシリンダー24の内部が減圧となり、
反応液が吸引用逆止弁15を通ってシリンダー24内に
吸い上げられる。次にピストン23を下げるとシリンダ
ー24内の反応液が吐出用逆止弁16を通して移液され
る。25は空気洩れ防止用バッキングである。
Reference numerals 15 and 16 in Figures (a) to (C) indicate check valves for suction and discharge, respectively. (a) The figure shows an example of a diaphragm pump, and when the bellows-shaped diaphragm 17 is raised, the pressure inside the liquid suction container 18 is reduced, and the reaction liquid is transferred to the suction check valve 1.
When the bellows-shaped diaphragm 17 is lowered, the reaction liquid in the liquid suction container 18 is transferred through the discharge check valve 16. The guard 19 is a guard that prevents the suction liquid from scattering. 0)) The figure shows an example of a vacuum suction type, and when the valve 20 is switched to the vacuum system 21 side, the pressure inside the liquid suction container 18 is reduced, and the reaction liquid is sucked into the liquid suction container 18 through the suction check valve 15. Ru. When the amount of suction exceeds a certain level in the liquid suction container 18, suction stops, the valve 20 switches to atmospheric pressure or the pressurized system 22 side, and the reaction liquid in the liquid suction container 18 passes through the discharge check valve 16. The liquid is transferred. The amount of suction liquid can be adjusted by adjusting the suction time width. Figure (C) shows an example of a reciprocating pump, and when the piston 23 is raised, the pressure inside the cylinder 24 is reduced.
The reaction liquid is sucked up into the cylinder 24 through the suction check valve 15 . Next, when the piston 23 is lowered, the reaction liquid in the cylinder 24 is transferred through the discharge check valve 16. 25 is a backing for preventing air leakage.

(a)〜(C)では、いずれもAgX乳剤とポンプの可
動部は直接接触しない為、こすられ、摩耗を受けること
はない。各パイプの長さや太さ、各逆止弁の位置、その
他の装置形状は移液速度をできるだけ速くし、残液量を
できるだけ少なくするように決められる。その他、必要
に応して各ポンプに乳剤の代りに洗浄水を通すことによ
り各ポンプを洗浄することができる。
In all cases (a) to (C), the AgX emulsion and the movable part of the pump do not come into direct contact with each other, so they are not rubbed or abraded. The length and thickness of each pipe, the position of each check valve, and other device shapes are determined to make the liquid transfer rate as fast as possible and to minimize the amount of residual liquid. In addition, if necessary, each pump can be washed by passing washing water instead of emulsion through each pump.

(a)と(C)の場合、蛇腹型ダイヤフラム17やピス
トン23の動きによる吸液容器18又はシリンダー24
内の変化する体積V、と、変化しない体積■2と吸引時
の内圧P2との関係はP+’V+=Pz(V+ +V、
)の関係で与えられる。ここでPlは吸引前の圧である
。従ってV+/Vt比を変えることにより、吸引速度を
選ぶことができる。
In the case of (a) and (C), the liquid suction container 18 or cylinder 24 due to the movement of the bellows-type diaphragm 17 or the piston 23
The relationship between the changing volume V, the unchanged volume ■2, and the internal pressure P2 during suction is P+'V+=Pz(V+ +V,
) is given by the relationship. Here, Pl is the pressure before suction. Therefore, by changing the V+/Vt ratio, the suction speed can be selected.

その他、本発明の装置にはコンドロールド・ダブル・ジ
ェット(C,D、J)制御系を設けることができる。こ
れに関してはF、 C1aes and R,Bere
nds−en Phot、 Korr、 101巻、3
7 (1965年)の記載を参考にすることができる。
Additionally, the apparatus of the present invention may be equipped with a chondral double jet (C, D, J) control system. Regarding this, F, C1aes and R, Bere.
nds-en Photo, Korr, vol. 101, 3
7 (1965) may be referred to.

通常、AgX粒子粒子形量も重要な過程は核形成過程で
あり、どのような核が形威されるかにより、最終的に得
られるAgX乳剤の性能が大きく左右される。従って核
形成条件はできるだけ研究用小量装置と同一条件で行な
い、同一の核を作ることが好ましい。その為に、次の手
法を用いて該反応容器を更に小型化することができる。
Usually, the process in which the grain size of AgX particles is important is the nucleation process, and the performance of the AgX emulsion finally obtained is greatly influenced by what kind of nuclei are formed. Therefore, it is preferable to use the same nucleation conditions as possible in a small-scale research device to produce the same nuclei. Therefore, the reaction vessel can be further miniaturized using the following method.

■ 第5図のA1〜A、に示すように核形成用の反応装
置を2基以上、好ましくは2〜5基設置する。この場合
、第5図のA、、A、、A、で核形成し、核形成が終る
とそれぞれをBに移液し、Bで次の勢威もしくは結晶成
長反応を行なうのである。
(2) As shown in A1 to A in FIG. 5, two or more reactors for nucleation, preferably two to five, are installed. In this case, nuclei are formed at A, , A, and A in FIG. 5, and when the nucleation is completed, each is transferred to B, where the next force or crystal growth reaction is performed.

■ 他の態様として、第5図のA+ 、At 、Asで
核を形威し、核形成が終るとそれぞれをBに移液する。
(2) As another embodiment, nuclei are formed in A+, At, and As shown in FIG. 5, and when the nucleus formation is completed, each is transferred to B.

これを1回くり返した後、Bの溶液をCへ移し、Cで勢
威もしくは結晶成長を行うのである。この場合、核形成
用の反応装置Aを1基以上、好ましくは2〜5基設置す
る。またBにおける保存中の核の変化を防止する為に、
Bの温度を低温(10〜40°C)にしておくことが好
ましい。この場合、該核形成用小型装置Aの容量規定は
第1表に示した。(第1表は次頁に示す。)通常、核形
成は銀塩とX−塩水溶液をC,[1,J、添加ではなく
、精密定流量ポンプで計算量を添加することが好ましい
。核形成初期の銀電位はX−塩過剰溶液中ではプラス側
に変動する為、銀電位制御をすると逆に制御PAg値が
不正確になる為である。
After repeating this once, the solution of B is transferred to C, and crystal growth is performed in C. In this case, one or more reactors A for nucleation are installed, preferably 2 to 5 reactors A. In addition, in order to prevent nuclear changes during storage in B,
It is preferable to keep the temperature of B at a low temperature (10 to 40°C). In this case, the capacity specifications for the small nucleation device A are shown in Table 1. (Table 1 is shown on the next page.) Usually, for nucleation, it is preferable to add a calculated amount of silver salt and X-salt aqueous solution using a precision constant flow pump, rather than adding C, [1, J, to the aqueous solution. This is because the silver potential at the initial stage of nucleation changes to the positive side in an X-salt excessive solution, so controlling the silver potential will conversely make the control PAg value inaccurate.

これらおよびその他の核形成条件の詳細に関しては特願
昭63−315741号、同63−223739号、特
願平1−90089号各明細記載記載を参考にすること
ができる。
For details of these and other nucleation conditions, reference may be made to the descriptions in the specifications of Japanese Patent Application Nos. 315741/1980, 223739/1983, and 90089/1999.

その他、第1〜3図のように中型装置が直列に1列に連
結された態様の場合、各装置間の反応時間をほぼ等しく
なるように設計しなければならない。(第1表参照) 該時間が異なると、各装置における乳剤の滞在時間を、
その内、最も長い滞在時間に合わせなければならず、無
駄な待ち時間を生ずる。これを緩和する為に第5図のD
l、D3に示すようにDlと同一容量の分岐反応装置D
!、I)3を適宜設けることができる。
In addition, in the case of an embodiment in which medium-sized devices are connected in series as shown in FIGS. 1 to 3, the reaction time between each device must be designed to be approximately equal. (See Table 1) If the times are different, the residence time of the emulsion in each device is
Of these, it is necessary to adjust to the longest stay time, resulting in wasted waiting time. In order to alleviate this, D in Figure 5
Branch reactor D with the same capacity as Dl as shown in D3.
! , I)3 can be provided as appropriate.

該分岐反応装置を1つ設けると、該ステップにおける反
応時間を約2倍に伸ばすことができる。
Providing one branch reactor can approximately double the reaction time in this step.

該分岐反応装置数は1つの反応工程に対しl〜5基が好
ましく、l〜3基がよりこのましい。5基以上になると
反応装置全体が大きくなりすぎ、コストアップする為で
ある。具体例で示すと、結晶成長のある期間を、連続的
にハロゲン組成を変化させながら、ある関数に従って休
止なしに加速添加法で成長させたい場合、また、結晶成
長のある期間のみ、温度をTl″Cで成長させ、他の期
間はT2°Cで成長させたい場合などである。また、あ
る装置が故障した時にも、それに対する分岐反応装置を
用いると、装置全体を止めなくてよいという利点を有す
る。なお、分岐反応装置は処方に応じて移動できること
が好ましい0例えば第5図のDlを移動し、Ctとして
も使えることが好ましい。本発明の各装置は小型である
から、そのような移動も可能である。この場合、第1.
3.4図の各連結パイプは簡単に着脱できるカップリン
グ型連結パイプがより好ましい、これらのパイプや逆止
弁、パイプ連結の詳細に関しては化学工学協会編、化学
装置便覧、第13章、丸首 (1989)の記載を参考
にすることができる。
The number of branching reactors per one reaction step is preferably 1 to 5, more preferably 1 to 3. This is because if there are five or more reactors, the entire reactor becomes too large and costs increase. To give a specific example, if you want to grow a crystal by the accelerated addition method without pauses while continuously changing the halogen composition during a certain period of crystal growth, and only during a certain period of crystal growth, the temperature is changed to Tl. For example, when you want to grow at T2°C during other periods, and at T2°C for other periods.Also, if one device breaks down, using a branch reaction device has the advantage that you do not have to stop the entire device. It is preferable that the branching reaction device can be moved according to the prescription. For example, it is preferable that the branching reaction device can be moved by moving Dl in FIG. It is also possible to move.In this case, the first.
3.4 Coupling-type connecting pipes that can be easily attached and detached are more preferable for each of the connecting pipes shown in Figure 4. For details on these pipes, check valves, and pipe connections, please refer to Chapter 13, Round Neck, Chemical Equipment Handbook, edited by the Japan Society of Chemical Engineers. (1989) can be referred to.

核形成装置の場合、従来の製造装置は通常−つの反応容
器で核形成反応から結晶成長まで行なう。
In the case of nucleation equipment, conventional production equipment typically conducts everything from nucleation reactions to crystal growth in one reaction vessel.

その為、結晶成長時の該溶液量の増加を予測して核形成
時の反応溶液量は該容器容量の173以下に抑えること
が多い。この場合、激しく攪拌すると、該反応溶液が泡
だらけとなり、逆に攪拌効率が悪くなる。しかし、本発
明の装置の場合該スペースを空けておく必要がなく、反
応液量を増して用いることができる為、より激しく攪拌
混合することができ、より均一な核形成ができる。また
、■回の反応で、より多くの核が形成される。好ましい
反応溶液量は該中型容器容量の30〜90%、より好ま
しくは50〜90%である。従って、本発明の装置では
、核形成→熟成→結晶成長工程の順に、該反応溶液量の
増加に応じて、各反応容器の容量が大きくなる。
Therefore, in anticipation of an increase in the amount of the solution during crystal growth, the amount of the reaction solution during nucleation is often suppressed to 173 or less of the container capacity. In this case, if vigorously stirred, the reaction solution will become full of bubbles, and the stirring efficiency will deteriorate. However, in the case of the apparatus of the present invention, there is no need to leave this space open, and the amount of reaction liquid can be increased, so that stirring and mixing can be performed more vigorously, and more uniform nuclei can be formed. In addition, more nuclei are formed in the second reaction. A preferable amount of the reaction solution is 30 to 90%, more preferably 50 to 90% of the capacity of the medium-sized container. Therefore, in the apparatus of the present invention, the capacity of each reaction vessel increases as the amount of the reaction solution increases in the order of nucleation→ripening→crystal growth.

また、添加系は核形成時の添加系だけでよい為、種々の
ハロゲン組成や濃度の添加系を設置する必要がなく、か
つ、添加系容量も小さくてよい為、単純で小型化できる
。また計量溶液の数や量も少ない。
Further, since the addition system only needs to be added during nucleation, there is no need to install addition systems with various halogen compositions and concentrations, and the capacity of the addition system may be small, so it is simple and compact. Also, the number and amount of measuring solutions are small.

このことは結晶成長装置に対してもいえる。This also applies to crystal growth equipment.

その他、製造期間中、各中型装置の温度を上げ下げする
必要がなく、核形成装置は常に核形成温度に保っておけ
ばよい。従って省エネルギーになり、かつ、温度制御性
がよい。また、核形成過程が切り離されている為、安定
核数を制御する必要もなくなる。例えば正常晶AgX粒
子形威形成合、従来法では核形成に続いて勢威を行ない
、安定核の数を減少させることがあるが、本発明の装置
の場合、核形成の反応容器容量を小さくして該安定核数
を減少させることができる為、そのような熟成操作を省
くことができるという利点もある。
Additionally, there is no need to raise or lower the temperature of each medium-sized device during the manufacturing period, and the nucleation device can be kept at the nucleation temperature at all times. Therefore, it saves energy and has good temperature controllability. Furthermore, since the nucleation process is separated, there is no need to control the number of stable nuclei. For example, in the conventional method, the number of stable nuclei is reduced by nucleation followed by normal crystal AgX particle formation, but in the case of the device of the present invention, the capacity of the reaction vessel for nucleation is reduced. Since it is possible to reduce the number of stable nuclei, there is also the advantage that such a ripening operation can be omitted.

本発明のAgX乳剤の製造装置における連続製造とは、
連続ホームランのように、ある事象が相継いで行なわれ
る現象を指す。即ち、AgX乳剤がある時間間隔である
量が繰り返し製造されてくる現象を指す。
Continuous production in the AgX emulsion production apparatus of the present invention means:
Refers to a phenomenon in which certain events occur one after the other, such as consecutive home runs. That is, it refers to a phenomenon in which a certain amount of AgX emulsion is repeatedly produced at certain time intervals.

本発明でいう研究用小量装置、製造用大量装置。In the present invention, a small-volume device for research and a large-scale device for manufacturing.

中型装置(第1ステツプの中型装置、第2〜最終ステツ
プの中型装置の反応容器の容量規定は第1表に示した。
The capacity specifications for the reaction vessels of the medium-sized apparatus (the medium-sized apparatus for the first step, and the medium-sized apparatus for the second to final steps) are shown in Table 1.

3−3  脱塩・濃縮過程 このようにしである時間間隔で、繰り返し製造されてく
る乳剤は次の方式で脱塩濃縮される。
3-3 Desalting/Concentration Process The emulsion thus repeatedly produced at certain time intervals is desalted and concentrated in the following manner.

■ 生産量の大きい場合は脱塩用の大量タンクに次々と
注入され、ある一定量に達すると、従来法通りに、脱塩
される。次に製造されてくる乳剤は、別の脱塩用大量タ
ンクに入れられる。これを交互にくり返す。
■ When the production volume is large, it is poured one after another into a large-volume tank for desalination, and when a certain amount is reached, it is desalted as per conventional methods. The emulsion produced is then placed in a separate desalination bulk tank. Repeat this alternately.

■ 生産量が中量の場合脱塩用の中型容器に移液され、
脱塩され、次の工程に移液される。従って、脱塩濃縮さ
れた乳剤がある時間間隔で、中量単位で製造されてくる
■ If the production volume is medium, the liquid is transferred to a medium-sized container for desalination,
It is desalted and transferred to the next step. Therefore, desalted and concentrated emulsions are produced in medium quantities at certain time intervals.

具体的な脱塩法として、次の方法を用いることができる
。(1)乳剤沈降剤を加え、沈降・水洗する方法、(2
)乳剤を冷却・固化し、冷水で水洗する方法、(3)限
外濾過膜を用いて脱塩する方法、(4)電気透析法によ
る脱塩法、(5)遠心分離器や液体サイクロンを用いた
脱塩法、(6)上記(1)〜(5)の内二つ以上の方法
の併用による脱塩法。
The following method can be used as a specific desalting method. (1) Method of adding emulsion sedimentation agent, sedimentation and washing with water, (2)
) method of cooling and solidifying the emulsion and washing with cold water, (3) method of desalting using an ultrafiltration membrane, (4) method of desalting using electrodialysis, (5) method of desalting using a centrifuge or liquid cyclone. (6) A desalting method using two or more of the above methods (1) to (5) in combination.

(1)の方法を大量容器で行なう場合、小量容器で行う
場合に比べて、通常、その沈降時間が長くなる。それは
、該表面近くの乳剤が、該容器の底部にまで沈降する距
離が長くなる為である。該沈降時間が長くなると、該沈
降過程中にAgX乳剤の性能が変化することがあり、ま
た製造時間が長くなる為に好ましくない。上記■の中量
容器で行なう場合は問題は小さいが、小量容器に比べる
と、沈降時間は少し長くなる。該沈降時間は短ければ短
い程好ましい。これは、該容器の深さを浅くすることに
より遠戚される。原理的には、小量装置の水深と同じ水
深にすれば、該沈降時間も同じになる。この場合、深さ
を浅くすることにより、減少した容器容量は該容器の水
平面方向の面積を大きくしたり、およびまたはその浅い
容器を積層した形態にすることにより補うことができる
。好ましい水深としては100〜10C11,より好ま
しくは60〜20cmである。この沈降水洗過程に対し
て、第5図のDt、Dsに示すような分岐装置を設ける
ことができる。それば乳剤の種類等により、その沈降時
間に任意性がありそれに対処できる為である。
When method (1) is carried out in a large-volume container, the sedimentation time is usually longer than when carried out in a small-volume container. This is because the emulsion near the surface has a longer distance to settle to the bottom of the container. If the sedimentation time becomes longer, the performance of the AgX emulsion may change during the sedimentation process, and the production time becomes longer, which is not preferable. The problem is small when using a medium volume container in the above item (1), but the sedimentation time is a little longer than in a small volume container. The shorter the settling time, the better. This is closely related by reducing the depth of the container. In principle, if the water depth is the same as that of the small volume device, the settling time will also be the same. In this case, by reducing the depth, the reduced container volume can be compensated for by increasing the horizontal area of the container and/or by configuring the shallow containers in a stacked configuration. The preferred water depth is 100 to 10C11, more preferably 60 to 20 cm. For this sedimentation and washing process, a branching device as shown at Dt and Ds in FIG. 5 can be provided. This is because the settling time is arbitrary depending on the type of emulsion, and this can be dealt with.

(2)の方法は乳剤を冷却・固化し、サイコロ状。Method (2) cools and solidifies the emulsion to form dice.

うどん状もしくはソーメン状に細分化して冷水中で水洗
し、脱塩する方法である。通常、該細分乳剤の表面/体
積を大きくする程、脱塩速度は速くくなる。
This method involves cutting the noodles into udon-like or somen-like pieces, washing them in cold water, and desalting them. Generally, the larger the surface/volume of the subdivided emulsion, the faster the desalination rate.

(3)の方法として、AgX粒子の直径より小さい孔径
の多孔膜を用いて (a)「乳剤側に圧をかけ、乳剤から水溶液を除去し、
かつ乳剤に水を加える」ことをくり返し、脱塩する方法
As method (3), a porous membrane with a pore size smaller than the diameter of the AgX particles is used to (a) apply pressure to the emulsion side and remove the aqueous solution from the emulsion;
A method of desalting by repeatedly adding water to the emulsion.

(b)中空系多孔膜のような細い中空管中に乳剤を通過
させ、主に塩の濃度拡散を利用して脱塩する方法、 (C)該(a)と伽)の併用法を用いることができる。
(b) A method of desalting by passing the emulsion through a thin hollow tube such as a hollow porous membrane and mainly utilizing salt concentration diffusion, (C) A combination method of (a) and (a) Can be used.

(a)の方法では脱塩と乳剤の濃縮が行なわれるが、(
ロ)の方法では濃縮は殆ど行なわれない。その場合には
必要に応じて真空脱気脱水等により濃縮する工程を付は
加えればよい。通常、濃縮された乳剤が、多孔膜表面上
に堆積すると、それに続く脱水が防げられる。従って多
孔膜面に対して平行方向に圧をかけ、乳剤を該方向へ流
すことにより、該濃縮乳剤を除去しつつ、脱水する方式
が一般に用いられている。該多孔膜が目詰まりを起こし
た場合、多孔膜を交換し、ゼラチン層を酵素分解、酸も
しくはアルカリによる加水分解で分解し、洗浄除去すれ
ばよい。AgX粒子はハイポ、AgX溶剤で溶解し、洗
浄除去すればよい。
In method (a), desalting and concentration of the emulsion are performed, but (
In method (b), almost no concentration is performed. In that case, a step of concentrating by vacuum degassing, dehydration, etc. may be added as necessary. Typically, the deposition of a concentrated emulsion on the porous membrane surface prevents subsequent dehydration. Therefore, a method is generally used in which the concentrated emulsion is removed and dehydrated by applying pressure in a direction parallel to the surface of the porous membrane and causing the emulsion to flow in that direction. If the porous membrane becomes clogged, the porous membrane may be replaced, the gelatin layer decomposed by enzymatic decomposition, hydrolysis with acid or alkali, and washed and removed. The AgX particles may be dissolved with a hypo AgX solvent and removed by washing.

(4)の方法に関しては有賀研−1日本写真学会誌、第
31巻、9 (196B)、日本化学全編、化学便覧、
応用化掌編11.16・6節、丸善(1986年)の記
載を参考にすることができる。
Regarding method (4), see Arigaken-1 Journal of the Photographic Society of Japan, Volume 31, 9 (196B), Japanese Chemistry Complete Edition, Chemistry Handbook,
The description of Maruzen (1986) in Section 11.16.6 of the Applied Handbook can be referred to.

(5)の方法の一例を第6図に示す、この場合、容器と
AgX乳剤は該容器の中心の回転軸26によって回転す
る。仕切板27によって乳剤の回転効率を上げ(乳剤と
該容器が一体となって回転する為)でいる。また2枚以
上のテフロン製W428を備え、再分散しやすいように
している。即ち、洗濯器の脱水器のような態様で回転し
、遠心力によりAgX乳剤と水を分離する。分離された
水は、前述の第4図の型式のポンプで除去される。次に
水を加え、テフロン製1i128を振動させて再分散し
、この操作をくり返して脱塩する。
An example of method (5) is shown in FIG. 6, in which the container and the AgX emulsion are rotated by a rotating shaft 26 at the center of the container. The partition plate 27 increases the rotation efficiency of the emulsion (because the emulsion and the container rotate as one). It is also equipped with two or more Teflon W428 sheets to facilitate redispersion. That is, it rotates in a manner similar to a dehydrator in a washing machine, and the AgX emulsion and water are separated by centrifugal force. The separated water is removed with a pump of the type shown in FIG. 4 previously described. Next, water is added, the Teflon 1i128 is vibrated to re-disperse, and this operation is repeated to desalinate.

この方法は最も短時間で、低コストで脱塩、濃縮できる
方法であり、処理時間が一定している為、本発明のよう
なシステム制御系に好ましく用いることができる。
This method allows desalting and concentration in the shortest time and at the lowest cost, and since the processing time is constant, it can be preferably used in a system control system such as the present invention.

(1ンの方法は乳剤のpHをゼラチンの等電点以下(通
常、pH3,8〜4.5)に下げなければならないが、
(2)〜(5)の方は、そのような制約がないというメ
リットを有する。その他、(2)の方法は乳剤の濃縮が
行われない為、必要に応じて真空脱気脱水や限外濾過法
等によるil!l退縮を付は加える必要がある。上記(
1)〜(5)の詳細に関しては、CG。
(For method 1, the pH of the emulsion must be lowered to below the isoelectric point of gelatin (usually pH 3.8 to 4.5).
(2) to (5) have the advantage of not having such restrictions. In addition, since method (2) does not involve concentration of the emulsion, vacuum degassing and dehydration, ultrafiltration, etc. may be used as necessary. It is necessary to add l regression. the above(
For details of 1) to (5), please refer to CG.

F、 Duffin ”Photographic E
mulsion  ChemistryFocal P
ress、 London+ 1966)、特公昭43
−27725号公報、米国特許4,334.012号、
同4,336゜328号、同3,326,641号、同
3.881,934号、同3゜396.027号、英国
特許1,543.322号各記載書、特開昭62−11
3137号公報、リサーチ ディスクロージ+  (R
eserch Disclosure+)  102巻
F. Duffin “Photographic E
mulsion Chemistry Focal P
ress, London+ 1966), Tokuko Sho 43
-27725 publication, U.S. Patent No. 4,334.012,
4,336°328, 3,326,641, 3.881,934, 396.027, British Patent No. 1,543.322, JP-A-62-11
Publication No. 3137, Research Disclosure + (R
esearch Disclosure+) Volume 102.

item 10208 (1972年10月)、同13
1巻item 13122 (1975年3月)、同1
76巻。
item 10208 (October 1972), 13
Volume 1 item 13122 (March 1975), same 1
Volume 76.

item 17643 (1978年12月)、有賀研
−1日本写真学会誌、31巻、  9 (1968) 
、日本化学全編、化学便覧、応用化学WI1.16・6
節、丸善(1986年)の記載を参考にすることができ
る。
item 17643 (December 1978), Arigaken-1 Journal of the Photographic Society of Japan, Volume 31, 9 (1968)
, Complete Japanese Chemistry, Chemistry Handbook, Applied Chemistry WI1.16/6
The description by Setsu and Maruzen (1986) can be referred to.

多孔膜に関しては特願平1−76678号明細書の記載
を参考にすることができる。
Regarding the porous membrane, reference may be made to the description in Japanese Patent Application No. 1-76678.

3−4  化学増感工程 AgX乳剤の改良研究においては、AgX乳剤の化学増
感工程は通常、バッチ式反応装置で行なわれる。従って
新たに開発されたAgX乳剤を工場で製造する場合、該
化学熟成過程も、できるだけ研究用化学熟成条件に近い
状態で行なわれることが好ましい。それ故、本発明の装
置の場合も、前記の脱塩・濃縮工程から送りだされてく
るAgX乳剤は、バッチ式反応装置で化学増感されるこ
とが好ましい。この場合、取扱う量に応じて次の3つの
工程を用いることができる。
3-4 Chemical sensitization process In research on improving AgX emulsions, the chemical sensitization process of AgX emulsions is usually carried out in a batch reactor. Therefore, when a newly developed AgX emulsion is manufactured in a factory, it is preferable that the chemical ripening process be carried out under conditions as close as possible to research chemical ripening conditions. Therefore, also in the case of the apparatus of the present invention, it is preferable that the AgX emulsion sent out from the desalting/concentration process is chemically sensitized in a batch type reaction apparatus. In this case, the following three steps can be used depending on the amount to be handled.

(1)大量容器で脱塩・濃縮され、送り出されてきた乳
剤を、化学増感用大量容器で化学増感する。
(1) The emulsion, which has been desalted and concentrated in a large-scale container and sent out, is chemically sensitized in a large-scale container for chemical sensitization.

(2)中量容器で脱塩・濃縮され、送り出されてきた乳
剤を次々と大量容器に入れ、ある一定量に達すると昇温
し、化学増感する。
(2) The emulsion that has been desalted and concentrated in a medium-capacity container and sent out is placed one after another into a large-capacity container, and when a certain amount is reached, the temperature is raised to chemically sensitize it.

(3)中量容器で脱塩・濃縮され、送り出されてきた乳
剤を、化学増感用中量容器に入れ、化学増感する。(3
)の方式の場合は全ての問題がすべて改善される為、最
も好ましい。
(3) The emulsion that has been desalted and concentrated in a medium capacity container and sent out is placed in a medium capacity container for chemical sensitization and chemically sensitized. (3
) method is the most preferable because it solves all problems.

化学増感は乳剤の種類や温度により異なるが、通常、化
学増感剤を添加した後、lO〜70分間程度行なわれる
。該化学熟成時間が長い場合、該時間の長さに応じて、
化学熟成工程を2段以上に分割することもできるし、第
5図の如く、分岐反応装置を設けることもできる。
Chemical sensitization varies depending on the type of emulsion and temperature, but is usually carried out for about 10 to 70 minutes after adding a chemical sensitizer. When the chemical ripening time is long, depending on the length of the time,
The chemical ripening process can be divided into two or more stages, and a branch reaction apparatus can be provided as shown in FIG.

化学増感剤溶液の添加方法としては、直接にAgX乳剤
中に添加(即ち、直接・液面下添加)し、添加口近辺に
設置された攪拌羽根で迅速に攪拌されることが好ましい
。また、該添加を多孔体を通して添加することは更に好
ましい。これらの添加系や攪拌機に関しては前述の反応
容器に関する文献を参考にすることができる。すなわち
、AgX粒子形成の場合と同し形態の反応装置を好まし
く用いることができる。
As for the method of adding the chemical sensitizer solution, it is preferable to directly add it to the AgX emulsion (that is, directly add it below the liquid surface) and rapidly stir it with a stirring blade installed near the addition port. Moreover, it is more preferable to add this through a porous body. Regarding these addition systems and stirrers, reference can be made to the aforementioned literature regarding reaction vessels. That is, it is possible to preferably use the same type of reaction apparatus as in the case of AgX particle formation.

その他、化学増感修飾剤(増感色素、かぶり防止剤、増
感色素−かふり防止剤連結化合物の1種以上)をAgX
粒子に吸着させた状態で化学増感し、化学増感核の形成
場所や数/dを制御することができる、該化学増感修飾
剤は化学増感工程の終了の3分前以前のいかなる時期に
も添加することができる。
In addition, AgX
The chemical sensitization modifier can be chemically sensitized while adsorbed to the particles, and the formation location and number/d of chemical sensitization nuclei can be controlled. It can also be added at any time.

この化学増感法を用いると、化学熟成時間を短時間化(
通常3〜15分間)することができる為に特に好ましい
。これに関しては特願昭63−315741号、同63
−223739号、特願平1−90089号の記載を参
考にすることができる。
Using this chemical sensitization method, the chemical ripening time can be shortened (
This is particularly preferable since it can be carried out (usually for 3 to 15 minutes). Regarding this, Japanese Patent Application No. 63-315741, No. 63
-223739 and Japanese Patent Application No. 1-90089 can be referred to.

3−5  写真用添加剤の添加工程 ここで写真用添加剤とは分光増感色素、かぶり防止剤2
色像形成剤、界面活性剤、硬膜剤等であり、後述の記載
や文献を参考にすることができる。
3-5 Addition process of photographic additives Here, photographic additives are spectral sensitizing dyes, antifoggants 2
These include color image forming agents, surfactants, hardening agents, etc., and the descriptions and literature described below can be referred to.

この場合、該添加剤を水溶液添加する場合の添加・攪拌
混合装置としては前述のAgX粒子形威形成や化学増感
装置と同じ形態の中型装置を用いることができる。なお
、前述の水洗工程、化学増感工程および該写真用添加剤
の添加工程に用いられる中型装置と大量装置の容量規定
は第1表にまとめて示した。色像形成剤のように油溶液
の形態で添加する場合、即ち乳化分散添加については特
開昭63−296035号公報、特願平1−766・7
8号および後述の文献の記載を参考にすることができる
In this case, a medium-sized device of the same type as the AgX particle formation and chemical sensitization device described above can be used as the addition/stirring/mixing device for adding the additive to the aqueous solution. Incidentally, the capacity specifications of the medium-sized equipment and the large-scale equipment used in the above-mentioned water washing step, chemical sensitization step, and addition step of the photographic additive are summarized in Table 1. When adding in the form of an oil solution like a color image forming agent, that is, emulsifying and dispersing addition, see Japanese Patent Application Laid-Open No. 63-296035 and Japanese Patent Application No. 1-766.7.
Reference may be made to the descriptions in No. 8 and the documents mentioned below.

3−6   AgX乳剤製造工程 本発明においては、脱塩、化学増感、写真用添加剤の添
加、の工程は、取り扱う量に応じて2次の3つの態様を
とりうる。
3-6 AgX emulsion manufacturing process In the present invention, the steps of desalting, chemical sensitization, and addition of photographic additives can take the following three modes depending on the amount handled.

(1)脱塩(大量)→化学増感(大N)→添加剤の添加
(大量)→塗布 (2)脱塩(中量)→化学増感(大量)→添加剤の添加
(大量)→塗布 (3)脱塩(中量)→化学増感(中量)→添加剤の添加
(中量)→塗布 但し、該工程において、AgX粒子形威形成塗布前まで
のいずれかの工程の後に、冷蔵庫保存工程を入れること
もできる。また、脱塩工程と化学増感工程順を逆にする
こともできる。また、各工程は互いに直列に連結された
別の容器で行なわれることが好ましい。
(1) Desalting (large amount) → chemical sensitization (large N) → addition of additives (large amount) → coating (2) desalting (medium amount) → chemical sensitization (large amount) → addition of additives (large amount) → Coating (3) Desalination (medium amount) → Chemical sensitization (medium amount) → Addition of additives (medium amount) → Coating However, in this process, any of the steps up to the AgX particle formation coating A refrigerator storage step can also be added later. Furthermore, the order of the desalting step and the chemical sensitization step can be reversed. Further, each step is preferably performed in separate containers connected in series.

本発明の装置を用いた写真感光材料の製造において、最
も好ましい態様は、上記の工程がすべて中量容器で連続
的に行なわれ、かつ、その連続的に製造された乳剤が、
連続的に塗布される態様である。WIち、冷蔵庫保存工
程なしに連続自動的に全工程が行なわれる態様である。
In the production of photographic light-sensitive materials using the apparatus of the present invention, the most preferred embodiment is that all of the above steps are carried out continuously in a medium-sized container, and that the continuously produced emulsion is
This is a continuous application mode. WI, this is an embodiment in which all processes are continuously and automatically performed without a refrigerator storage process.

レントゲン写真フィルムのように、一つの支持体上に1
〜2種類のAgX乳剤を塗布する場合、1〜2系統のA
gX乳剤製造系統と塗布工程の連動であり、この場合は
経済的に連動させることができる。即ち、全自動無人連
続製造化が可能である。しかし、カラーネガ写真フィル
ムのように、1つの支持体の上に7〜10!!IIのA
gX乳剤を同時塗布する場合、AgX乳剤製造と塗布工
程を連動させる為には、7〜10系統のAgX乳剤製造
系統を設けなければならず、逆に不経済になる。また、
その上、例えば1つの該系統が故障を起こすと、それに
より全体の製造が停止し、損害が大きくなることがある
。このような場合には該7〜10種類の乳剤が揃ってか
ら塗布する方が好ましい、この場合、適宜、冷蔵庫保存
を用いることができる。その他、3−4の(1)、 (
2)項のように大量の乳剤が送り出されてくる場合は、
該乳剤を小分けして冷蔵庫保存することが好ましい。
1 on one support, like an X-ray photographic film.
~ When coating two types of AgX emulsions, one to two types of A
The gX emulsion production system and the coating process are linked, and in this case, they can be linked economically. That is, fully automatic, unmanned, continuous manufacturing is possible. But like color negative photographic film, 7-10! on one support! ! II A
When gX emulsions are coated simultaneously, 7 to 10 AgX emulsion production systems must be provided in order to link AgX emulsion production and coating processes, which is rather uneconomical. Also,
Moreover, if for example one such system fails, it may halt the entire production and cause significant damage. In such a case, it is preferable to apply the coating after preparing the 7 to 10 types of emulsions. In this case, storage in a refrigerator can be used as appropriate. Others, 3-4 (1), (
If a large amount of emulsion is sent out as in item 2),
It is preferable to divide the emulsion into portions and store them in a refrigerator.

3−7  装置に関するその他の付帯事項本発明におけ
るシステム制御装置とは、各移液弁の開閉、攪拌の開始
、停止、溶液の計量および添加の開始・停止、 C,D
、J制御の開始、停止等の制御を装置全体にわたって、
予め定められた順序と時間スケジュールに従って、逐次
組織的に調節する制御装置をいう。制御装置としては、
−船釣なものを使用することができ、詳細に関しては沢
井善三部監修、シーケンス自動制御便覧、オーム社(1
971)の記載を参考にすることが出来る。
C, D
, control such as start and stop of J control over the entire device,
A control device that sequentially and systematically makes adjustments according to a predetermined order and time schedule. As a control device,
- Can be used for fishing on a boat. For details, see Sawai Zenbe supervised, Sequence Automatic Control Handbook, Ohmsha (1.
971) can be referred to.

前述の各中型装置には通常温度制御装置が設けられる。Each medium-sized device mentioned above is typically provided with a temperature control device.

通常、AgX乳剤製造時の温度は15〜90°Cであり
、かつ水の熱容量が大きいこともあり、熱交換媒体とし
て水が用いられる。例えば、反応容器の外表面にジャケ
ットをつけてそこへ熱媒体を流して温度制御をする。そ
の他1反応溶液内にパイプを入れ、該バイブ内に熱交換
媒体を循環させる方法も併用することができる。その他
、電気抵抗加熱、ホットプレート加熱、赤外線(熱線)
加熱、渦電流加熱を用いて、容器外壁側から、およびま
たは溶液内側から加熱することができる。
Usually, the temperature during AgX emulsion production is 15 to 90°C, and water is used as a heat exchange medium because water has a large heat capacity. For example, temperature can be controlled by attaching a jacket to the outer surface of the reaction vessel and flowing a heat medium through it. In addition, a method in which a pipe is inserted into the reaction solution and a heat exchange medium is circulated within the vibrator can also be used. Others: electric resistance heating, hot plate heating, infrared rays (hot wire)
Heating can be done using eddy current heating from the outside wall of the container and/or from inside the solution.

その他、該温度調節に関しては日本化学全編、実験ガイ
ドブック、3・2・3〜3・2・4節、丸首(1984
年)9日本化学会編、新実験化学講座l(基本操作!、
2・2節、丸首(1975年)、化学工学協会編、化学
装置便覧、14章、丸首(19B9年)の記載を参考に
することができる。
In addition, regarding temperature control, Nippon Kagaku Complete Edition, Experiment Guidebook, Sections 3, 2, 3 to 3, 2, 4, Marukubi (1984
Year) 9 Edited by the Chemical Society of Japan, New Experimental Chemistry Course (Basic Operations!)
You can refer to Section 2.2, Marukubi (1975), edited by the Society of Chemical Engineers, Chemical Equipment Handbook, Chapter 14, Marukubi (19B9).

該温度制御や前述のC,D、J @御等のp、t、o制
御系に関しては化学工学協会編、化学装置便覧、第21
章、丸首(1989年)の記載を参考にすることができ
る。
Regarding the temperature control and the p, t, o control system of C, D, J @ etc., please refer to the Chemical Engineering Society, Chemical Equipment Handbook, No. 21.
You can refer to the description in Chapter, Marukubi (1989).

銀塩やX−塩水溶液の添加系としては、空気や窒素ガス
加圧でオリフィスやメツシュ、ニードルバルブを通して
添加する添加系、第4図の(a)や(C)に例示される
ダイヤフラムポンプやプランジャーポンプによる添加系
、その他は特開昭62−182623号公報、特願昭6
3−22842号明細書に記載の方式や、化学工学協会
編、化学工学便覧、5・6・5節、丸首(1988年)
、化学装置百科辞典、1章、化学工業社(1976年)
の記載を参考にすることができる。原理的には特開昭6
2−182623号公報記載の如く、アナログ系に比べ
て、デジタル流量制御系の方が精度が高い。また、前記
のダイヤフラムポンプやプランジャーポンプの場合、そ
のピストン動作が即溶液の添加、溶液の計量動作となり
、簡便化される為好ましい。
Addition systems for adding silver salts and X-salt aqueous solutions include addition systems that add through orifices, meshes, or needle valves using pressurized air or nitrogen gas, diaphragm pumps as exemplified in Figure 4 (a) and (C), and Addition system using plunger pump, others are disclosed in Japanese Patent Application Laid-open No. 182623/1983, Japanese Patent Application No. 6
The method described in specification No. 3-22842, edited by the Society of Chemical Engineers, Chemical Engineering Handbook, Sections 5, 6, and 5, Marukubi (1988)
, Chemical Equipment Encyclopedia, Chapter 1, Kagaku Kogyosha (1976)
You can refer to the description. In principle, JP-A-6
As described in Japanese Patent No. 2-182623, a digital flow rate control system has higher accuracy than an analog system. Further, in the case of the above-mentioned diaphragm pump or plunger pump, the piston action is an immediate solution addition and solution metering action, which is preferable because it is simplified.

AgX乳剤が接する部分の材料としては通常。Usually used as the material for the parts that come in contact with the AgX emulsion.

AgX乳剤に悪影響を及ぼさない材質のものが好ましく
、通常、ステンレス(SUS316,316L、、32
9J)、硬質ガラスの他、ポリエチレン、ポリプロピレ
ン、テフロン等の高分子材料が用いられる。その他、そ
れらの複合材料 (例えばステンレス鋼にテフロンコー
トしたもの)が用いられる。
It is preferable to use a material that does not adversely affect the AgX emulsion, usually stainless steel (SUS316, 316L, 32
9J), in addition to hard glass, polymeric materials such as polyethylene, polypropylene, and Teflon are used. In addition, composite materials (for example, stainless steel coated with Teflon) are used.

逆止弁の場合も、ボール球リフト型弁の球や、スウィン
グ型弁のスウィングの材質として、テフロン、ポリエチ
レン等が用いられる。弁の開閉時に、該開閉部の乳剤に
大きな衝撃を与えないように、滑らかなポンプ動作をす
ることが好ましい。
In the case of check valves, Teflon, polyethylene, etc. are used as the material for the ball of a ball lift type valve and the swing of a swing type valve. When opening and closing the valve, it is preferable to perform a smooth pumping operation so as not to give a large impact to the emulsion in the opening/closing part.

本発明の装置はAgX乳剤粒子の製造以外に。The apparatus of the present invention can be used in addition to producing AgX emulsion grains.

該AgX乳剤粒子形威形成と同タイプの一般の化学反応
用の装置としても使用することができる。
It can also be used as an apparatus for general chemical reactions of the same type as the AgX emulsion grain formation.

従来、知られている化学反応装置は(1)回分式、(2
)半回分式、(3)連続式(a管式、b1式、C多段槽
式)に分類されるものである。これに関しては化学工学
協会編、化学工学便覧、第23章、丸首(1988年)
の記載を参考にすることができる。
Conventionally known chemical reaction devices are (1) batch type, (2)
) semi-batch type, and (3) continuous type (A-tube type, B1 type, C multi-stage tank type). Regarding this, see the Chemical Engineering Handbook, Chapter 23, round neck (1988), edited by the Chemical Engineering Society.
You can refer to the description.

これによると本発明の操作方式(連続多段回分式)の装
置は知られていない。
According to this, an apparatus using the operation method (continuous multi-stage batch method) of the present invention is not known.

3−8  本発明の装置によるAgX乳剤製造のその他
の条件 本発明の装置を用いてAgX乳剤を製造する場合に用い
られる分散媒としてはAgX乳剤に通常用いられるもの
を用いることができ、ゼラチンをはしめ、種々の親水性
コロイドを用いることができる。通常はゼラチンが好ま
しく、ゼラチンとしてはアルカリ処理ゼラチンの他、酸
処理ゼラチン、フタル化ゼラチンの如き誘導体ゼラチン
、低分子量ゼラチン(分子量2000〜10万、酵素分
解ゼラチン、酸・アルカリによる加水分解ゼラチン)メ
チオニン含率が50μモル/g以下のゼラチン(特開昭
62−157024号公報の記載を参考にすることがで
きる)を用いることができるし、それらの2種以上の混
合物を用いることもできる。
3-8 Other conditions for producing AgX emulsions using the apparatus of the present invention As the dispersion medium used when producing AgX emulsions using the apparatus of the present invention, those commonly used for AgX emulsions can be used. However, various hydrophilic colloids can be used. Generally, gelatin is preferred, and examples of gelatin include alkali-processed gelatin, acid-processed gelatin, derivative gelatin such as phthalated gelatin, low molecular weight gelatin (molecular weight 2,000 to 100,000, enzymatically decomposed gelatin, gelatin hydrolyzed by acid and alkali), and methionine. Gelatin having a content of 50 μmol/g or less (the description in JP-A-62-157024 can be referred to) can be used, or a mixture of two or more thereof can also be used.

誘導体ゼラチンとしてはゼラチンと酸ハライド、酸無水
物、イソシアナート類、ブロモ酢酸、アルカンサルトン
類、ビニルスルホンアごド類、マレインイミド化合物類
、ポリアルキレンオキシド類、エポキシ化合物類等の種
々の化合物を反応させて得られるものが用いられる。そ
の他、ゼラチンと他の高分子とのグラフトポリマー、チ
オエーテルポリマー、アルブミン、カゼイン等の蛋白質
、ヒドロキシエチルセルロース、カルボキシメチルセル
ロース、セルロース硫酸エステル類の如きセルロース誘
導体、アルギン酸ソーダ、でん粉誘導体などの糖誘導体
、ボリビGルアルコール、ポリビニルアルコール部分ア
セタール、ポ1J−N−ビ=ルピロリドン、ポリアクリ
ル酸、ポリメタクリル酸、ポリアクリルアミド、ポリビ
ニルイミダゾール、ポリビニルピラゾール等の単一ある
いは共重合体の如き多種の合成親水性高分子物質を単独
もしくは混合系で用いることができる。
Derivative gelatin includes gelatin and various compounds such as acid halides, acid anhydrides, isocyanates, bromoacetic acids, alkanesultones, vinyl sulfonate compounds, maleimide compounds, polyalkylene oxides, and epoxy compounds. The product obtained by reacting is used. Other examples include graft polymers of gelatin and other polymers, thioether polymers, proteins such as albumin and casein, cellulose derivatives such as hydroxyethyl cellulose, carboxymethyl cellulose, and cellulose sulfate esters, sugar derivatives such as sodium alginate and starch derivatives, and boribi G. Synthetic highly hydrophilic compounds such as single or copolymers of alcohol, polyvinyl alcohol partial acetal, poly(1J-N-bi-lpyrrolidone), polyacrylic acid, polymethacrylic acid, polyacrylamide, polyvinylimidazole, polyvinylpyrazole, etc. Molecular substances can be used alone or in a mixed system.

これらの詳細に関しては後述の文献の記載を参考にする
ことができる。
Regarding these details, reference can be made to the descriptions in the documents mentioned below.

該AgX粒子の核形成時に過飽和度を調節する為に、ま
た熟成過程で熟成を促進する為に、また結晶成長過程で
成長を促進する為に、また化学増感時に化学増感を効果
的にならしめる為にハロゲン下鈑溶剤を用いることがで
きる。
In order to adjust the degree of supersaturation during nucleation of the AgX particles, to promote ripening during the ripening process, to promote growth during the crystal growth process, and to effectively perform chemical sensitization during chemical sensitization. A halogen base solvent can be used for leveling.

しばしば用いられるハロゲン化m溶剤としては、チオシ
アン酸塩、アンモニア、チオエーテル、チオ尿素類など
を上げることが出来る。これについては後述の文献の記
載を参考にすることができる。
Examples of frequently used halogenated solvents include thiocyanates, ammonia, thioethers, and thioureas. Regarding this, the description in the literature mentioned below can be referred to.

本発明の装置によるAgX乳剤の製造時に粒子形成から
塗布時までに添加することのできる添加剤に特に制限は
ない。添加することのできる添加剤はAgX溶剤(勢威
促進剤ともいう)、AgX粒子へのドープ剤〔第8族貴
金属化合物、その他の金属化合物(金、鉄、鉛、カドミ
ウム等)、カルコゲン化合物、SCNCN化物等分散媒
、かぶり防止剤、安定剤、増感色素(青、緑、赤、赤外
、パンクロ、オルソ用等)、強色増感剤、化学増感剤(
イオウ、セレン、テルル、金および第8族貴金属化合物
、リン化合物の単独およびその組み合わせ添加による化
学増感剤で最も好ましくは金、イオウ、セレン化合物の
組み合わせからなる化学増感剤、塩化第1スズ、二酸化
チオウレア、糸リアビンおよびアミンボラン系化合物等
の還元増感剤)、かぶらせ剤(ヒドラジン系化合物等の
有機かぶらせ剤、無機かぶらせ剤)、界面活性剤(消泡
剤等)、乳剤沈降剤、可溶性銀塩(AgSCN、リン酸
銀、酢酸銀等)、乳剤沈降剤、潜像安定剤、圧力減感防
止剤、増粘剤、硬膜剤、現像剤(ハイドロキノン系化合
物等)、現像変性剤等であり、具体的な化合物および使
用方法等については、下記文献の記載を参考にすること
ができる。
There are no particular restrictions on the additives that can be added from grain formation to coating during the production of AgX emulsions using the apparatus of the present invention. Additives that can be added include AgX solvent (also called force promoter), dopant for AgX particles [Group 8 noble metal compounds, other metal compounds (gold, iron, lead, cadmium, etc.), chalcogen compounds, SCNCN] Chemical dispersion medium, antifogging agent, stabilizer, sensitizing dye (for blue, green, red, infrared, panchromatic, ortho, etc.), supersensitizer, chemical sensitizer (
Chemical sensitizers made by adding sulfur, selenium, tellurium, gold, Group 8 noble metal compounds, and phosphorus compounds alone or in combination, most preferably chemical sensitizers made from a combination of gold, sulfur, and selenium compounds, and stannous chloride. , reduction sensitizers such as thiourea dioxide, thread riabin, and amine borane compounds), fogging agents (organic fogging agents such as hydrazine compounds, inorganic fogging agents), surfactants (antifoaming agents, etc.), emulsion sedimentation agent, soluble silver salt (AgSCN, silver phosphate, silver acetate, etc.), emulsion precipitating agent, latent image stabilizer, pressure desensitization inhibitor, thickener, hardening agent, developer (hydroquinone compound, etc.), development It is a modifier, etc., and for specific compounds, usage methods, etc., the descriptions in the following documents can be referred to.

その他、該AgX乳剤は下記文献に記載された既知技術
、既知化合物とのあらゆる組み合わせ構成を用いること
ができる。
In addition, for the AgX emulsion, any combination of known techniques and known compounds described in the following documents can be used.

Re5erch Disclosure Vol、  
176 (item 17643)(Deces+be
rp 1978)、Vol、 184 (ites+ 
18431)(August。
Re5erch Disclosure Vol.
176 (item 17643) (Deces+be
rp 1978), Vol, 184 (ites+
18431) (August.

1979)、Vol、  216  (itege  
21728)(May、  1982  )  、 日
化協月報1984年、12月号、 P、 18〜27、
日本写真学会誌、49巻、7 (1986年)、同52
%、144〜166 (1989年)、特開昭58−1
13926〜11392B、同59−90842、同5
9−142539、同62−253159、同62−9
9751、同63−151618、同62−6251、
同62−115035、同63−305343、同62
−269958、同61−1121/12、同62−2
66538、同63−220238、同63−7846
5、特開平1−131541、同1−297649、同
2−146033、特願昭63−315741、同62
−208241同63−311518、特公昭59−4
3727、米国特許4,705,744、同4+707
+436 、T、 H,James、 The The
ory of ThePhotographic  P
rocess、Fourth  Edition+  
Macmillan+  New York、1977
 、V、L、Zelikman et al、Maki
ng  and  Coating  Photo−g
raphic  ε−ulsion   (The F
ocal  Press、1964 )  、P、G1
afkides+  Chi+m1eet Physi
ques Photogra−phiques、Fif
th Editi。
1979), Vol. 216 (itege
21728) (May, 1982), JCIA Monthly 1984, December issue, P, 18-27,
Journal of the Photographic Society of Japan, Volume 49, 7 (1986), Volume 52
%, 144-166 (1989), JP-A-58-1
13926-11392B, 59-90842, 5
9-142539, 62-253159, 62-9
9751, 63-151618, 62-6251,
62-115035, 63-305343, 62
-269958, 61-1121/12, 62-2
66538, 63-220238, 63-7846
5, Japanese Patent Publications No. 1-131541, No. 1-297649, No. 2-146033, Japanese Patent Applications No. 1983-315741, No. 62
-208241 63-311518, Special Publication 1986-4
3727, U.S. Patent No. 4,705,744, U.S. Patent No. 4+707
+436, T, H, James, The The
ory of ThePhotographic P
rocess, Fourth Edition+
Macmillan+ New York, 1977
, V.L., Zelikman et al., Maki.
ng and Coating Photo-g
rapic ε-ulsion (The F
ocal Press, 1964), P, G1
afkides+ Chi+m1eet Physi
ques Photogra-phiques, Fif
th Editi.

n  、Edition de  l’  Usi−n
e Nouvelle+  Paris+1987、同
5econd Edition、 Paul Mont
el+ Paris+1957、K、  R,Ho1l
ister、  Journal of  Image
、Sci、31. 148〜156(1987) 。
n, Edition de l'Usi-n
e Nouvelle+ Paris+1987, 5th Edition, Paul Mont
el+ Paris+1957, K, R, Ho1l
ister, Journal of Image
, Sci, 31. 148-156 (1987).

〔実 施 例〕〔Example〕

以下に実施例を挙げて本発明を更に説明するが、本発明
はこれに限定されるものではない。
The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

比較例−1 第1図の小型装置と同形態で、容器容量が42の研究用
小量装置を用いて、平行双晶面を有する平板状AgX乳
剤粒子を調製した。まず該反応容器にゼラチン水溶液(
H,OIL平均分子量(M)2万のゼラチン1g、pH
6,0,KBr4.5g)を添加し、温度を30℃に保
った。攪拌しながらダブルジェット法でA g N O
s水溶液(100d中に32gのA g N OsとM
=2万のゼラチンを0.7g、HNOs  (IN)0
.2dを有する)とKBr水溶液(10〇−中に23゜
2gのKBrとM=2万のゼラチンを0.7g有する)
を同時にそれぞれ25d/分で27.5mだけ添加した
。1分後にゼラチン水溶液197id(脱イオン化アル
カリ処理ゼラチン32gを含む。
Comparative Example 1 Tabular AgX emulsion grains having parallel twin planes were prepared using a small-volume research device having the same configuration as the small-sized device shown in FIG. 1 and having a container capacity of 42. First, a gelatin aqueous solution (
H, OIL 1 g of gelatin with an average molecular weight (M) of 20,000, pH
6,0,KBr (4.5 g) was added and the temperature was maintained at 30°C. A g N O using the double jet method while stirring
s aqueous solution (32 g of A g N Os and M in 100 d
= 0.7g of 20,000 gelatin, HNOs (IN) 0
.. 2d) and a KBr aqueous solution (containing 23゜2g of KBr and 0.7g of M = 20,000 gelatin in 10〇)
were simultaneously added by 27.5 m at 25 d/min each. After 1 minute, add 197 id of gelatin aqueous solution (containing 32 g of deionized alkali-treated gelatin).

pH6,5)を添加し、1分間均一に混合した後、10
分間かかって75℃に昇温した。昇温後15分間の熟成
をした後、A g N O3水溶液(15重量%)27
11dを3分間かけて添加した。次にNH。
pH 6,5) was added and mixed uniformly for 1 minute, then 10
The temperature was raised to 75°C over a period of minutes. After raising the temperature and aging for 15 minutes, A g N O3 aqueous solution (15% by weight) 27
11d was added over 3 minutes. Next is NH.

溶液(25重量%)ioIllとNHaNOs水溶液(
50重量%)lOaeの混合液を添加し、21分間の熟
成をした。次に3NのHNO,溶液を加え、pH5,5
にし、更にKBr(10重量%)水溶液を10m添加し
た。次にA g N Os  (15重量%)水溶液と
KBr水溶液(11重量%)を用いて、銀電位−20m
V (vs、飽和カロメル電極)で8d/分で10分間
のC,D、J、添加した。
solution (25% by weight) ioIll and NHaNOs aqueous solution (
A mixed solution of 50% by weight) lOae was added and aged for 21 minutes. Next, add 3N HNO, solution, pH 5.5
Then, 10 m of KBr (10% by weight) aqueous solution was added. Next, using an aqueous solution of A g N Os (15% by weight) and an aqueous KBr solution (11% by weight), a silver potential of −20 m
C, D, J for 10 min at 8 d/min at V (vs. saturated calomel electrode) were added.

A g N O3溶液のみ更に添加し、銀電位+5mV
にした。 次にAgNOs  (15重重景)溶液とX
−塩溶液(654−中にKB r、 56 gとKl。
Add only the A g N O3 solution and increase the silver potential by +5 mV.
I made it. Next, AgNOs (15 layers) solution and
- Salt solution (654- in KBr, 56 g and Kl.

9gを含む)を用いて銀電位5mVでC,D、J、添加
した。最初4IIdl/分、流量加速0.37m/分で
43分間の直線的流量加速法で添加した。次に該乳剤に
KBr水溶液(15重量%)を添加し、銀電位を−50
mVにし、A g N Os水溶液(15重重景)とK
Br水溶液(11重量%)を用いて20IR1/分で8
分間、該電位でC,Il、 J 、添加した。
C, D, and J were added at a silver potential of 5 mV. The addition was performed using a linear flow acceleration method for 43 minutes with an initial flow rate of 4 II dl/min and a flow rate acceleration of 0.37 m/min. Next, a KBr aqueous solution (15% by weight) was added to the emulsion to lower the silver potential to -50.
mV, A g N Os aqueous solution (15 layers) and K
8 at 20IR1/min using Br aqueous solution (11% by weight)
C, Il, J was added at this potential for minutes.

該乳剤をその後、3分間攪拌した後、沈降剤を加え、温
度を30°Cにした。従って該AgX乳剤製造工程はA
gX核形核形始から沈降剤の添加まで、120分を要し
て0.735モルの平板状AgX乳剤粒子を水洗工程に
送り込んだことになる。
The emulsion was then stirred for 3 minutes, then a precipitant was added and the temperature was brought to 30°C. Therefore, the AgX emulsion manufacturing process is A
It took 120 minutes from the beginning of the gX nucleus shape to the addition of the precipitant, and 0.735 mol of tabular AgX emulsion grains were sent to the water washing process.

該乳剤に硝酸を加えPH4,1にし、攪拌を止め、乳剤
を沈降させた。上澄み液を除去し、水を28001加え
、攪拌し、乳剤を水洗し、攪拌を止め、再び乳剤を沈降
させた。これを更にもう一回行なった後、温度を40°
Cに上げ、ゼラチン水溶液(Hgo 700 ad、骨
ゼラチン70g)を添加し、再分散させ、収量1.  
II!、とした。
Nitric acid was added to the emulsion to adjust the pH to 4.1, stirring was stopped, and the emulsion was allowed to settle. The supernatant liquid was removed, 28,001 liters of water was added, stirred, the emulsion was washed with water, stirring was stopped, and the emulsion was allowed to settle again. After doing this one more time, increase the temperature to 40°.
C, add an aqueous gelatin solution (Hgo 700 ad, bone gelatin 70 g) and redisperse to obtain a yield of 1.
II! ,.

得られた六角平板状乳剤粒子のレプリカの透過型電子顕
微鏡写真像(TEM像)より求めた特性は第1表の通り
であった。
The properties determined from a transmission electron micrograph (TEM image) of a replica of the obtained hexagonal tabular emulsion grains were as shown in Table 1.

次に該AgX乳剤を55℃に昇温した後5,5゜ジクロ
ル−9−エチル−3+  3’   b i s (3
スルホプロピル)−オキサカルボシアニンNa塩を飽和
吸着量の83%添加し、10分後にチオ硫酸ナトリウム
水溶液を1.lXl0−’mol/mo IAgXだけ
添加し、続けてKSCNを3×10−’mol /so
l A g Xだけ添加した。2分後に塩化金酸水溶液
を8 X 10−’mol /+gol A g Xだ
け添加し、15分間熟成した。
Next, the temperature of the AgX emulsion was raised to 55°C, and then 5,5° dichloro-9-ethyl-3+ 3' bis (3
83% of the saturated adsorption amount of Na salt (sulfopropyl)-oxacarbocyanine was added, and after 10 minutes, 1. Add only lXl0-'mol/mo IAgX, followed by KSCN at 3x10-'mol/so
Only lAgX was added. After 2 minutes, an aqueous chloroauric acid solution of 8 x 10-'mol/+golAgX was added, and the mixture was aged for 15 minutes.

次に該乳剤の温度を40℃にし、かぶり防止剤(TAI
(4−ヒドロキシ−6−メチル1,3゜3a、7−チト
ラアザインデン)〕を7X1(1−”mol /e+o
l A g Xだけ添加した。10分後にゼラチン水溶
液(10重量%)25(ldと塗布助剤(ドデシルベン
ゼンスルホン酸ナトリウム)の1重量%液を26−1増
粘剤〔ポリ(4−スルホスチレン)ナトリウム塩〕の2
重量%液を26d。
Next, the temperature of the emulsion was raised to 40°C, and an antifoggant (TAI) was added.
(4-hydroxy-6-methyl 1,3゜3a,7-titraazaindene)] in 7X1 (1-”mol/e+o
Only lAgX was added. After 10 minutes, add gelatin aqueous solution (10% by weight) 25(ld) and 1% by weight solution of coating aid (sodium dodecylbenzenesulfonate) to 26-1 thickener [poly(4-sulfostyrene) sodium salt].
26d of wt% liquid.

硬膜剤を加え、ゼラチン保護層とともに、三酢酸セルロ
ース透明ベース上に銀2 g/mで塗布し、乾燥させた
。この場合、AgX乳剤粒子形威形成洗、化学増感、添
加剤の添加の各工程は、同一の中量容器で行なった。
A hardener was added and coated with a gelatin protective layer at 2 g/m silver on a cellulose triacetate transparent base and dried. In this case, the steps of AgX emulsion grain formation, washing, chemical sensitization, and addition of additives were carried out in the same medium-sized container.

比較例−2 比較例−1と同形態で容器容量が9602の大量装置を
用いて比較例−1の各工程をその250倍量で製造した
。得られた乳剤粒子のレプリカのTEM像を観察した結
果を第1表に示した。該粒子サイズ分布が広がり、六角
平板粒子比率が大きく減少したことを示している。反応
溶液のセットから沈降剤の添加まで、約135分を要し
て、約184モルの平板状AgX乳剤が得られた。温度
を30℃から75℃に昇温する為に、10分間。
Comparative Example-2 Using a large-scale apparatus having the same configuration as Comparative Example-1 and a container capacity of 9602, each step of Comparative Example-1 was produced in 250 times the amount. Table 1 shows the results of observing a TEM image of a replica of the emulsion grains obtained. This shows that the grain size distribution was broadened and the hexagonal tabular grain ratio was greatly reduced. It took about 135 minutes from setting the reaction solution to adding the precipitant, and a tabular AgX emulsion of about 184 mol was obtained. 10 minutes to raise the temperature from 30°C to 75°C.

余計に要した為である。該乳剤を大量容器を用いて、そ
の後、比較例−1と同じ処理をし、ゼラチン保護層とと
もに、三酢酸セルロース透明ベース上に銀2g/rrf
で塗布し、乾燥させた。
This is because it required extra. The emulsion was then treated in the same manner as in Comparative Example-1 using a bulk container, and 2 g/rrf of silver was deposited on a cellulose triacetate transparent base together with a gelatin protective layer.
It was applied and dried.

実施例−1 第1図に示す態様の本発明の装置で核形成第1段階を分
岐型装置で繰返し3回行い、比較例−1のAgX乳剤製
造処方の大量連続製造を行なった。
Example 1 Using the apparatus of the present invention shown in FIG. 1, the first stage of nucleation was repeated three times using a branch type apparatus, and the AgX emulsion manufacturing recipe of Comparative Example 1 was continuously produced in large quantities.

第2表に示す如く、その核形成用に容器容量2゜lの装
置2基(AI とAりを用い、核形成第2段階としてB
の装置(容器容量150ffi)を用い熟成と結晶成長
用にC−Fの装置(容器容量は、C,Dが1504!、
Eが18(1!、F、Gが2502)を用いた。核形成
は比較例−1の12倍量スケールで行ない、熟成・結晶
成長過程は72倍量スケールで行なった。添加溶液濃度
はいずれも比較例−1と同じである。反応溶液の移液と
シャワー洗浄はいずれも1分間以内で行なった。
As shown in Table 2, two devices (AI and A) with container capacities of 2゜l were used for nucleation, and B was used as the second stage of nucleation.
For ripening and crystal growth, use the C-F device (container capacity: 150ffi) (container capacity: C and D are 1504!).
E was 18 (1!, F, G was 2502). Nucleation was performed on a scale 12 times that of Comparative Example-1, and ripening and crystal growth processes were performed on a scale 72 times that of Comparative Example-1. The concentration of the added solution is the same as in Comparative Example-1. Transfer of the reaction solution and shower washing were both performed within 1 minute.

A、、A、、Bの容器温度は常に30″Cに保たれ、C
−Fの容器温度は75°Cに保たれた。各工程の繰り返
し周期は31分間である。各スイッチ切りかえ時間を7
秒間とした。
The container temperature of A, , A, , B is always kept at 30''C,
-F vessel temperature was maintained at 75°C. The repetition period of each step is 31 minutes. Each switch switching time is 7
Seconds.

まず、201の中型容器2基を用い、各々、比較例−1
の処方の12倍量の大きさで核形成を行なった。即ち、
該容器に30℃のゼラチン水溶液(HzO,121,M
=2万のゼラチン84g。
First, using two medium-sized containers of 201, each of Comparative Example-1
Nucleation was carried out with a volume 12 times larger than the recipe. That is,
A gelatin aqueous solution (HzO, 121, M
= 20,000 gelatin 84g.

pH6,0,KBr54g)を20秒間で入れ、30°
Cに保ちながら4分30秒間攪拌した。次にA[NO,
水溶液とKBr水溶液を同時に300m1/分で330
dをダブルジェット添加した。1分後に該反応溶液をB
へ移液した。Bには予めゼラチン溶液14.18/$d
が入れてあり、攪拌されている。移液した後、A、とA
!の容器をシャワー水で洗浄廃水(1分間)した、全所
要時伺は8分56秒間であった。これをそれぞれ3回く
り返し、Bの容器に比較例−1の72倍量の核(反応溶
液量は90.144 ffi ’)を蓄えた。この操作
は31分毎にくり返し行なった。Bの溶液をCに移液し
た後、Bにゼラチン水溶液14,184afを30秒間
で添加し、次の操作の為に待機した。Cにおいては、該
移液後、22分間攪拌した後、 A g N Os水溶液1.944 mを3分間かけて
添加した。1分後に該反応溶液をDへ移液した。Cの容
器を1分間、シャワー水で洗浄・廃水した後、次の操作
の為に待機した。
pH 6.0, KBr54g) was added for 20 seconds and heated at 30°
The mixture was stirred for 4 minutes and 30 seconds while maintaining the temperature at C. Then A[NO,
Aqueous solution and KBr aqueous solution at 300ml/min at the same time
d was added by double jet. After 1 minute, the reaction solution was transferred to B.
The liquid was transferred to B contains gelatin solution 14.18/$d in advance.
is added and stirred. After transferring the liquid, A, and A
! The total time required was 8 minutes and 56 seconds. This was repeated three times each, and 72 times the amount of nuclei (the amount of reaction solution was 90.144 ffi') as in Comparative Example-1 was stored in the container B. This operation was repeated every 31 minutes. After the solution of B was transferred to C, gelatin aqueous solution 14,184af was added to B for 30 seconds, and the mixture was stood by for the next operation. In C, after the liquid transfer and stirring for 22 minutes, 1.944 ml of A g NOs aqueous solution was added over 3 minutes. After 1 minute, the reaction solution was transferred to D. After washing the container C with shower water for 1 minute and draining the water, it was placed on standby for the next operation.

Dでは該移液後、30秒間攪拌した後、N11lJOi
 。
In D, after the liquid transfer, after stirring for 30 seconds, N11lJOi
.

72(ldとNus水溶液72(ldの混合溶液を30
秒間かけて、直接に該混合容器内に液面下添加した。そ
の後、21分間PIli、シた後、3NのHNO3水溶
液2.520 mを30秒間かけて該混合容器内に液面
下添加し、pH6,5にした。30秒後にKBr水溶液
720jdを30秒間かけて該混合容器内に添加した。
72 (ld) and Nus aqueous solution 72 (ld)
It was added directly to the mixing vessel below the liquid level over a period of seconds. Thereafter, after 21 minutes of PIli, 2.520 ml of a 3N aqueous HNO3 solution was added under the liquid level into the mixing vessel over 30 seconds to adjust the pH to 6.5. After 30 seconds, 720jd of KBr aqueous solution was added into the mixing vessel over 30 seconds.

2分間攪拌した後、該反応溶液をEへ移液した0次にD
の容器を1分間、シャワー水で洗浄・排水した後1次の
操作の為に待機した。Eでは移液後、30秒間攪拌した
後、AgN01水溶液とKBr水溶液を用いて、銀電位
−20mVで576m/分で10分間のC,D、J、添
加をした。AgN0.液のみ更に添加し、+5mVにし
た。30秒間攪拌した後、次にAgN0.水溶液とX−
塩水溶液を用いて銀電位5mVでC,D、J。
After stirring for 2 minutes, the reaction solution was transferred to E.
After washing and draining the container with shower water for 1 minute, it was placed on standby for the next operation. In E, after stirring for 30 seconds after the liquid transfer, C, D, and J were added using AgN01 aqueous solution and KBr aqueous solution at a silver potential of -20 mV and a speed of 576 m/min for 10 minutes. AgN0. Only the solution was further added to bring the voltage to +5 mV. After stirring for 30 seconds, AgN0. Aqueous solution and X-
C, D, J at a silver potential of 5 mV using an aqueous salt solution.

添加した。lk初288m/分、流量加速26.64 
d7分で13分間、 C,D、J、添加した。添加後、
1分間攪拌した後、該反応溶液をFへ移液した。次にE
の容器を1分間、シャワー水で洗浄・排水した後、次の
操作の為に待機した。Fの容器では30秒間攪拌した後
、AgN0.水溶液とX−塩水溶液を最初632.32
gf/分、流量加速26.6477分子: 26 分間
(7)C,D、J、添加(sIli位5mV)した。3
0秒間攪拌した後、該反応溶液をGへ移液した。次にF
の容器を1分間、シャワー水で洗浄、排水した後、次の
操作の為に待機した。
Added. lk first 288m/min, flow rate acceleration 26.64
C, D, J were added for 13 minutes at d7 minutes. After addition,
After stirring for 1 minute, the reaction solution was transferred to F. Then E
After washing and draining the container with shower water for 1 minute, it was placed on standby for the next operation. In the container F, after stirring for 30 seconds, AgN0. The aqueous solution and the X-salt aqueous solution are initially 632.32
gf/min, flow rate acceleration 26.6477 molecules: 26 minutes (7) C, D, J were added (sIli position 5 mV). 3
After stirring for 0 seconds, the reaction solution was transferred to G. Next F
After washing the container with shower water for 1 minute and draining it, it was placed on standby for the next operation.

Gの容器では30秒間撹拌した後、AgN0.水溶液と
X−塩水溶液を最初1.326.96w1/分、 流量
加速26.64 d1分で4分間、 C,D、J、添加
した。添加後30秒間攪拌した後、KBr水溶液を添加
し、銀電位を−50mVにした。30秒後に、AgN0
j液とKBr液を用い、1,440 d/分で8分間。
In the container G, after stirring for 30 seconds, AgN0. The aqueous solution and the X-salt aqueous solution were initially added C, D, J for 4 minutes at a rate of 1.326.96 w1/min and a flow rate acceleration of 26.64 d1 min. After stirring for 30 seconds after the addition, an aqueous KBr solution was added to bring the silver potential to -50 mV. After 30 seconds, AgN0
J solution and KBr solution were used at 1,440 d/min for 8 minutes.

C,D、J、添加(50mV)した、添加後、3分間撹
拌した後、該反応溶液を水洗用容器へ移液し、Gの容器
を1分間、シャワー水で洗浄・排水した後1次の操作の
為に待機した。この場合、31分毎に52.92モルの
平板状AgX乳剤粒子が生成(211,67モル/12
4分)しており、比較例−2よりも高生産性で、かつ、
中型装置で、高性能のAgX粒子を製造できたことを示
しており(第4表参照)、本発明の効果を示している。
C, D, and J were added (50 mV). After stirring for 3 minutes, the reaction solution was transferred to a washing container, and the container G was washed with shower water for 1 minute and drained. Waited for operation. In this case, 52.92 moles of tabular AgX emulsion grains are produced every 31 minutes (211.67 moles/12
4 minutes), with higher productivity than Comparative Example-2, and
This shows that high-performance AgX particles could be produced using a medium-sized device (see Table 4), demonstrating the effectiveness of the present invention.

水洗工程の容器は、深さ50cmで容8300 fの平
底円筒型容器(半径的44cm)であり、温度は30°
Cに保たれている。移液後30秒間攪拌した後、沈降剤
を添加し、10分後に硝酸を加え、pH4,1にした。
The container for the washing process was a flat-bottom cylindrical container (44 cm radius) with a depth of 50 cm and a capacity of 8300 f, and the temperature was 30°.
It is kept at C. After stirring for 30 seconds after the liquid transfer, a precipitant was added, and 10 minutes later, nitric acid was added to adjust the pH to 4.1.

5分後に攪拌を止め、乳剤を約13分間で沈降させた。Stirring was stopped after 5 minutes and the emulsion was allowed to settle in about 13 minutes.

上澄み液を第4図の(ロ)の吸引ポンプで吸液し、除去
した0次に水2001を加え、5分間攪拌した後、攪拌
を止め、乳剤を約13分間で沈降させた。これをもう−
回くり返した後、温度を40℃に上げ、ゼラチン水溶液
を添加し10分間で再分散させ、収179.21とした
。該乳剤を化学熟成用容器に移液し、シャワー水で洗浄
・排水し、次の操作の為に待機した。この工程の総時間
は80分間であった。この時点で採取した乳剤粒子のレ
プリカのTEM像より求めた特性は第1表の通りであり
、研究用小量装置による結果とよく対応していた。
The supernatant liquid was sucked using the suction pump shown in FIG. 4 (b), water 2001 was added to the removed liquid, and after stirring for 5 minutes, stirring was stopped and the emulsion was allowed to settle in about 13 minutes. Have this again-
After repeating the process, the temperature was raised to 40° C., and an aqueous gelatin solution was added to redisperse the mixture for 10 minutes, resulting in a yield of 179.21. The emulsion was transferred to a container for chemical ripening, washed with shower water, drained, and stood by for the next operation. The total time for this step was 80 minutes. The characteristics determined from the TEM image of the replica of the emulsion grains collected at this point are shown in Table 1, and corresponded well with the results obtained using a small-scale research device.

これは特に、核形成用容器容量を(20e/960ff
i)=1/4Bに小さくした効果が大きく寄与している
。該水洗用容器は第5図のDに示すように、分岐型で、
3基が設置されている。各装置は93分周期で操作した
This specifically reduces the nucleation vessel capacity (20e/960ff
The effect of reducing the amount to i)=1/4B makes a large contribution. The washing container is of a branched type, as shown in D in FIG.
Three units have been installed. Each device was operated on a 93 minute cycle.

化学熟成用容器は1204!の容量であり2基、が分岐
型で設置されており、温度は55°Cに設定されている
。移液後、10分間攪拌した後、比較例−1の72倍量
で同じ化学増感を施し、次の写真用添加剤の添加工程用
容器へ移液した。各装置は62分周期で操作した。
The container for chemical ripening is 1204! Two units with a capacity of After the liquid transfer, the mixture was stirred for 10 minutes, and then the same chemical sensitization was applied in an amount 72 times that of Comparative Example 1, and the liquid was transferred to a container for the next step of adding photographic additives. Each device was operated on a 62 minute cycle.

該容器は120ffiの容器であり、温度は40℃に保
たれている。移液後、10分間攪拌した後、比較例−1
の72倍量で、同し添加剤を添加し、塗布工程へ移液し
た。
The container is a 120ffi container and the temperature is maintained at 40°C. After the liquid transfer and stirring for 10 minutes, Comparative Example-1
The same additive was added in an amount 72 times that of the total amount, and the solution was transferred to the coating process.

塗布工程ではゼラチン保護層とともに、三酢酸セルロー
ス透明ベース上に12 g/rrtで塗布し、乾燥させ
た。
In the coating process, it was coated at 12 g/rrt on a cellulose triacetate transparent base together with a gelatin protective layer and dried.

実施例−2 第1図の態様の第3表のような装置を用いて比較例−1
のAgX乳剤製造処方の大量連続製造を行なった。2A
として1807!、2.として250I!、、2.とし
て3201の反応容器を用いた。
Example-2 Comparative example-1 using the apparatus shown in Table 3 in the embodiment shown in FIG.
A large-scale continuous production of the following AgX emulsion formulation was carried out. 2A
As 1807! , 2. As 250I! ,,2. A 3201 reaction vessel was used.

また、AgN0.液とX−塩液の添加はいずれも特願平
2−188243号の実施例項記載の中空管型多孔膜添
加系(テフロンチューブに0.15鴫φの穴を1添加系
あたり1個/2.5閣2の割合で8000個有する)を
用いた。
In addition, AgN0. The addition of both the liquid and the /2.5 cabinets 2) was used.

第   3   表 各ステップとも、比較例−1の85倍量のスケールで行
なった。添加溶液濃度はいずれも比較例−1と同じであ
る。反応溶液の移液とシャワー洗浄はいずれも1分間以
内で行なった。各工程のくり返し周期は50分間である
。まず2Aの容器に、30℃のゼラチン水溶液(HzO
851,平均分子量M=2万のゼラチン595g、PH
6,0゜KBr382.5g)を30秒以内で入れ、3
0“Cに保ちながら4分30秒間、攪拌した。次に比較
例−1の85倍量で核形成し、ゼラチン溶液を添加し、
75℃に昇温した。約15分で昇温した。
Table 3 Each step was carried out on a scale 85 times that of Comparative Example-1. The concentration of the added solution is the same as in Comparative Example-1. Transfer of the reaction solution and shower washing were both performed within 1 minute. The repetition period of each step is 50 minutes. First, add a gelatin aqueous solution (HzO) at 30°C to a 2A container.
851, 595 g of gelatin with average molecular weight M = 20,000, PH
6,0°KBr382.5g) within 30 seconds,
Stirring was carried out for 4 minutes and 30 seconds while maintaining the temperature at 0"C.Next, nucleation was carried out using 85 times the volume of Comparative Example-1, and a gelatin solution was added.
The temperature was raised to 75°C. The temperature rose in about 15 minutes.

75℃に昇温後、15分間の勢威をした後、AgNo、
水溶液を添加した。更に2分間攪拌した後、攪拌を止め
、2.の溶液を2.に移液した。移液後、バルブ11を
切りかえ、2Aの容器を温水シャワーで洗浄し、排液し
た。バルブを閉じ、反応容器温度を30°Cに下げ、次
の操作の為に待機した。全所要時間は待機時間を含めて
50分間であった。
After raising the temperature to 75°C and incubating for 15 minutes, AgNo.
Aqueous solution was added. After stirring for an additional 2 minutes, stop stirring; 2. 2. The liquid was transferred to After the liquid transfer, the valve 11 was switched, the 2A container was washed with a hot water shower, and the liquid was drained. The valve was closed and the reactor temperature was lowered to 30°C, waiting for the next operation. The total time required was 50 minutes including waiting time.

一方、28は常に75℃に保たれており、移液された反
応溶液は攪拌され、1分後にNH4NO。
On the other hand, 28 is constantly maintained at 75°C, the transferred reaction solution is stirred, and NH4NO is added after 1 minute.

液とNH,液を添加し、21分間熟酸量た0次にHNO
3(3N)液を加えPH5,5にし、更にKBr液を添
加した0次にA g N Os液とKBr液を用いて、
銀電位−20mVで10分間のC,D。
Add the solution and NH, then add the solution and let the amount of mature acid rise for 21 minutes.
3 (3N) solution was added to adjust the pH to 5.5, and then KBr solution was added. Using A g N Os solution and KBr solution,
C, D for 10 min at silver potential -20 mV.

J添加をした0次にAgNO3溶液とX−塩溶液を用い
て銀電位5mVで10分間のC,D、J、添加をした。
Next, C, D, and J were added at a silver potential of 5 mV for 10 minutes using an AgNO3 solution and an X-salt solution.

最初340m11分、流量加速31.45m11分であ
った。添加後、1分間攪拌した後、該反応液を2.へ移
液した0次に2.の容器を1分間、温水シャワーで洗浄
し、排水した後、次の操作の為に待機した。全所要時間
は待機時間を含めて50分間であった。
The initial flow rate was 340 m11 minutes, and the flow rate acceleration was 31.45 m11 minutes. After the addition, the reaction solution was stirred for 1 minute. 2. The container was rinsed in a hot shower for 1 minute, drained, and then readied for the next operation. The total time required was 50 minutes including waiting time.

2cは常に75℃に保たれており、移液された反応溶液
は攪拌され、1分後に該AgNO2溶液とX゛塩溶液を
該C,D、J、添加した0gL初654.5m11分、
流量加速31.45m11分で33分間添加した。次に
KBr液を添加し、銀電位を50mVにし、AgN0.
液とKBr液を用いて、銀電位−50mVで、8分間の
C,D、J、添加をした。
2c was always kept at 75°C, the transferred reaction solution was stirred, and after 1 minute, the AgNO2 solution and the X' salt solution were added to the C, D, J, 0gL first 654.5ml for 11 minutes,
The addition was carried out for 33 minutes at a flow rate acceleration of 31.45 ml for 11 minutes. Next, KBr solution was added, the silver potential was set to 50 mV, and AgN0.
C, D, and J were added for 8 minutes at a silver potential of -50 mV using the solution and the KBr solution.

添加後、2分間撹拌した後、該反応溶液を冷却用容器2
.へ移液した。2.容器を温水シャワーで1分間洗浄し
、排水し、次の操作の為に待機した。
After the addition, after stirring for 2 minutes, the reaction solution was transferred to cooling container 2.
.. The liquid was transferred to 2. The container was rinsed in a hot shower for 1 minute, drained, and ready for further operation.

全所要時間は待機時間を含めて50分間であった。The total time required was 50 minutes including waiting time.

該2Dは常に35°Cに保たれており、該乳剤が38°
C以下に下った時点で該乳剤を第6図の水洗用容H2E
に移液した。2Eは3607!の容量(深さ50as、
半径約500)であり、該装置で乳剤を遠心分離し、分
離水を第4図(ロ)型のポンプでくみだした。次に水洗
水を2307!添加し、テフロン5!網28を振動させ
、該分離乳剤を再分散させ、再び該乳剤を遠心分離した
0次にゼラチン水溶液を加え、乳剤を再分散させ、該乳
剤を化学!成用容器2Fへ移液した。乳剤の収量は93
゜51であった。該2D、2E工程の全所要時間は50
分間であった。この時点で採取した乳剤粒子のレプリカ
のTEM像より求めた特性は第4表の通りであった。比
較例−2に比べて、小量装置結果に近い結果であった。
The 2D is always kept at 35°C, and the emulsion is kept at 38°C.
When the temperature drops below C, the emulsion is transferred to the water washing volume H2E in Figure 6.
The liquid was transferred to 2E is 3607! capacity (depth 50as,
The emulsion was centrifuged using this device, and the separated water was pumped out using a pump of the type shown in FIG. 4 (b). Next, wash water 2307! Added Teflon 5! The screen 28 is vibrated to redisperse the separated emulsion, and the emulsion is again centrifuged and an aqueous gelatin solution is added to redisperse the emulsion. The liquid was transferred to the 2F container for production. The yield of emulsion is 93
It was ゜51. The total time required for the 2D and 2E processes is 50
It was a minute. The properties determined from the TEM image of the replica of the emulsion grains collected at this point are shown in Table 4. Compared to Comparative Example-2, the results were close to those obtained using a small-volume device.

これは核形成時の反応容器容量が比較例−2の9601
から、1801に、小さくなったこと、および多孔膜添
加系の効果の為である。
This is because the reaction vessel capacity at the time of nucleation is 9601 of Comparative Example-2.
This is due to the reduction in size from 1801 to 1801 and the effect of the porous membrane addition system.

2Fは常に55°Cに保たれており、容器容量は150
1である。移液後、10分間攪拌した後、比較例−1の
85倍量で添加溶液を添加し、化学増感を施した0次に
該温度を40℃に下げ、かぶり防止剤、ゼラチン水溶液
、塗布助剤、増粘剤。
2F is always kept at 55°C, and the container capacity is 150
It is 1. After the liquid transfer, after stirring for 10 minutes, an additive solution was added in an amount 85 times that of Comparative Example-1, and the temperature was lowered to 40°C after chemical sensitization. Auxiliary agent, thickener.

硬膜剤を添加し、塗布工程へ移液した。該操作を50分
周期で行なった。
A hardener was added and the solution was transferred to the coating process. This operation was performed every 50 minutes.

塗布工程ではゼラチン保護層とともに、三酢酸セルロー
ス透明ベース上に銀2g/rrrで塗布し、乾燥させた
In the coating process, 2 g/rr of silver was coated on a cellulose triacetate transparent base together with a gelatin protective layer and dried.

比較例−1と−2、および実施例−1と2の試料に対し
て、5400°にのタングステン光源に419nmの干
渉フィルターをかけてl/10秒間の青光によるウェッ
ジ露光をした0次に下記現像液D−1で現像(20“C
,4分間)し、定着液F−1で定着した後、水洗、乾燥
した。
The samples of Comparative Examples-1 and -2 and Examples-1 and 2 were subjected to zero-order wedge exposure with blue light for 1/10 seconds using a tungsten light source at 5400° and a 419 nm interference filter. Developed with the following developer D-1 (20"C
, 4 minutes) and fixed with fixer F-1, then washed with water and dried.

(現像液D−1) l−フェニル−3−ピラゾリ ドン                  0.5gハ
イドロキノン           20.0gエチレ
ンシアミン四酢酸二ナ トリウム 亜硫酸カリウム ホウ酸 炭酸カリウム 臭化ナトリウム ジエチレングリコール 水を加えて11とする。
(Developer D-1) 1-Phenyl-3-pyrazolidone 0.5g Hydroquinone 20.0g Ethylenecyaminetetraacetic acid disodium Potassium sulfite Potassium borate Potassium carbonate Sodium bromide Diethylene glycol Water was added to make 11.

する。) (現像液F−11) チオ硫酸アンモニウム 亜硫酸ナトリウム(無水〉 ホウ酸 エチレンジアミン四酢酸二ナ トリウム 硫酸アルミニウム 硫酸 氷酢酸 水を加えて11とする。(PHは4゜ る。) (P)lは10゜ 2.0g 60.0g 4.0 g 20.0g 5.0g 30.0g oに調整 200.0 g 20.0g 8.0g 0.1g 15.0 g 2.0g 22.0 g 2に調整す センシトメトリーの結果を第4表に示した。実施例−1
の結果は、性能的にも比較例−1の結果とよく対応して
いることを示している。
do. ) (Developer F-11) Ammonium thiosulfate Sodium sulfite (anhydrous) Ethylene diamine borate Disodium tetraacetate Aluminum sulfate Add glacial acetic acid water to make 11. (PH is 4°.) (P)l is 10° 2.0 g 60.0 g 4.0 g 20.0 g 5.0 g 30.0 g Adjust to o 200.0 g 20.0 g 8.0 g 0.1 g 15.0 g 2.0 g 22.0 g Adjust to 2 The results of sensitometry are shown in Table 4. Example-1
The results show that they correspond well to the results of Comparative Example-1 in terms of performance.

第   4   表 〔発明の効果〕 以上説明してきたように本発明のハロゲン化銀乳剤の製
造方法及び装置によれば次のような効果が期待できる。
Table 4 [Effects of the Invention] As explained above, according to the method and apparatus for producing a silver halide emulsion of the present invention, the following effects can be expected.

即ち、 (1)研究用小量装置で開発した改良乳剤と同一性能の
乳剤をすぐに工場規模段階で製造化することができる。
That is, (1) An emulsion with the same performance as an improved emulsion developed using a small-scale research device can be immediately produced on a factory scale.

特に核形成用の反応容器容量を小さくできる為、平板粒
子比率の高い単分散平板状乳剤粒子を製造する場合に特
に効果が大きい。
In particular, since the capacity of the reaction vessel for nucleation can be reduced, it is particularly effective in producing monodisperse tabular emulsion grains with a high tabular grain ratio.

(2)各乳剤粒子の各反応容器における平均滞留時間が
揃っており、従って単分散性の良い乳剤粒子が得られる
(2) The average residence time of each emulsion grain in each reaction vessel is the same, and therefore emulsion grains with good monodispersity can be obtained.

(3)各乳剤粒子の平均粒径も任意の大きさに作ること
が出来る。
(3) The average grain size of each emulsion grain can also be made to any size.

(4)該連続時間の調節により、小量品種乳剤は小量生
産することができ、不要な過剰生産をなくすることがで
きる。
(4) By adjusting the continuous time, small-variety emulsions can be produced in small quantities, and unnecessary overproduction can be eliminated.

(5)上記のような乳剤を再現性よく、連続的に、所要
量に応して製造できるという利点を有する。
(5) It has the advantage that the emulsion as described above can be manufactured continuously with good reproducibility in accordance with the required amount.

従って、水洗工程、化学増感工程、添加剤添加工程、塗
布工程と連動させた場合、AgX粒子粒子形作工程塗布
工程までを一貫して全自動連続製造することができ、乳
剤の冷蔵庫保存および該乳剤の再溶解工程を省くことが
できるので、製造コストを低減させることが出来る。
Therefore, when linked with the water washing process, chemical sensitization process, additive addition process, and coating process, it is possible to perform fully automatic continuous production from the AgX particle forming process to the coating process, and to store the emulsion in the refrigerator and Since the step of redissolving the emulsion can be omitted, manufacturing costs can be reduced.

(6)各装置すべてが単機能化して作られ、かつ小型で
あるため、制御性能を向上させ、自動化が容易であり、
高精度の設備とすることが出来る。
(6) Since each device is made with a single function and is small, control performance is improved and automation is easy.
High precision equipment can be achieved.

(7)各装置すべてが単機能化して作られ、且つ小型で
あり、設備の稼動率が高いので、装置全体として設備コ
ストを安くすることが出来る。
(7) Since each device is made with a single function and is small in size, the operating rate of the facility is high, so the facility cost for the device as a whole can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明のAgX乳剤の製造方法を実現する
装置の1実施例の断面図、第4図は第3図の移液用ポン
プの具体的代表例の断面図で(a)はダイヤフラム型、
(b)は真空吸引型、(C)は往復ポンプ型、第5図は
本発明の分岐型反応装置を有する場合の各バッチ式反応
装置の配列例、第6図は遠心分離型水洗・脱塩装置の一
例であり、(a)は平面図、Φ)は側面図を示す。 A、B、C,、・ ・・装置 2^、2B、2c・・・ ・・反応容器3・・Ag”添
加管 4・・X−添加管 5・・反応溶液  6・・Ag”添加ロア・・X−添加
口  8・・攪拌羽根 9・・開閉弁付送液口 10・・送液パイプ   11・・切換バルブ12・・
痔水用パイプ  13・・容器側壁14・・循環用ポン
プ  I5・・吸引用逆止弁16・・吐出用逆止弁 17・・蛇腹型ダイヤフラム 18・・吸液容器    19・・ガード20・・切換
弁     21・・真空系22・・加圧系     
23・・ピストン24・・シリンダー 25・・空気漏れ防止用バッキング 26・・回転軸     27・・仕切り板28・・テ
フロン製網 29・・分離された水 30 ・ ・分離された乳剤 (ばか3名) 図 (b)
Figures 1 to 3 are cross-sectional views of one embodiment of an apparatus for realizing the AgX emulsion manufacturing method of the present invention, and Figure 4 is a cross-sectional view of a specific representative example of the liquid transfer pump shown in Figure 3. is a diaphragm type,
(b) is a vacuum suction type, (C) is a reciprocating pump type, Figure 5 is an arrangement example of each batch type reactor when it has a branched type reactor of the present invention, and Figure 6 is a centrifugal type water washing/desorption type. This is an example of a salt apparatus, in which (a) shows a plan view and Φ) shows a side view. A, B, C,... Apparatus 2^, 2B, 2c... Reaction vessel 3...Ag" addition tube 4...X-addition tube 5...Reaction solution 6...Ag" addition lower ...
Pipe for hemorrhoids 13... Container side wall 14... Circulation pump I5... Suction check valve 16... Discharge check valve 17... Bellows type diaphragm 18... Liquid suction container 19... Guard 20... Switching valve 21... Vacuum system 22... Pressure system
23... Piston 24... Cylinder 25... Air leak prevention backing 26... Rotating shaft 27... Partition plate 28... Teflon net 29... Separated water 30... Separated emulsion (3 idiots) ) Figure (b)

Claims (6)

【特許請求の範囲】[Claims] (1)銀塩溶液とハロゲン塩溶液を液中添加して、かつ
ハロゲン化銀乳剤の粒子形成反応を直列に配置した複数
段の反応装置を通過させることによって行うハロゲン化
銀乳剤の製造方法において、該直列に配置された複数段
の反応装置が各々バッチ式中型反応装置であり、各反応
容器内の反応溶液が互いに実質的に混り合うことなく、
一定方向に順に粒子形成反応を行わせることを特徴とす
るハロゲン化銀乳剤の製造方法。
(1) In a method for producing a silver halide emulsion, which is carried out by adding a silver salt solution and a halide salt solution into the liquid, and passing the silver halide emulsion through a multi-stage reaction device arranged in series for grain formation reaction. , each of the plurality of stages of reactors arranged in series is a batch type medium-sized reactor, and the reaction solutions in each reaction vessel are not substantially mixed with each other,
A method for producing a silver halide emulsion, characterized by carrying out a grain forming reaction in a certain direction.
(2)該ハロゲン化銀乳剤の結晶粒子が平行双晶面を有
する平板状乳剤粒子であることを特徴とする請求項(1
)記載のハロゲン化銀乳剤の製造方法。
(2) Claim (1) characterized in that the crystal grains of the silver halide emulsion are tabular emulsion grains having parallel twin planes.
) A method for producing a silver halide emulsion as described above.
(3)該銀塩溶液とハロゲン塩溶液を多孔体を通して直
接、液中添加することを特徴とする請求項(1)記載の
ハロゲン化銀乳剤の製造方法。
(3) The method for producing a silver halide emulsion according to claim (1), characterized in that the silver salt solution and the halide salt solution are directly added into the solution through a porous body.
(4)銀塩溶液とハロゲン塩溶液を液中添加して行なう
ハロゲン化銀乳剤粒子の製造装置が、開閉弁付送液口を
有し、移送管によって直列に連結された2以上のバッチ
式中型反応装置より成り、各反応装置が最終の反応装置
より逆のぼって順に、反応容器内の反応済反応溶液を次
の容器に送液した後、その反応容器の開閉弁を閉にして
、次に隣接する上流側の反応容器の開閉弁を開にして上
流側の反応容器内の反応溶液を受液し、しかる後一定時
間反応装置の稼働を行うことを繰り返すシステム制御装
置を有する装置であることを特徴とするハロゲン化銀乳
剤の製造装置。
(4) An apparatus for producing silver halide emulsion grains by adding a silver salt solution and a halide salt solution into the liquid has a liquid feeding port with an on-off valve, and has two or more batch-type devices connected in series by a transfer pipe. It consists of a medium-sized reactor, and each reactor works backwards from the last reactor to send the reacted reaction solution in the reaction container to the next container, then closes the on-off valve of that reaction container, and then starts the next reaction. This device has a system control device that repeatedly opens the on-off valve of the upstream reaction container adjacent to the , receives the reaction solution in the upstream reaction container, and then repeatedly operates the reaction device for a certain period of time. An apparatus for producing a silver halide emulsion, characterized by the following.
(5)該銀塩溶液とハロゲン塩溶液の添加を多孔体を通
して直接、液中添加することを特徴とする請求項(4)
記載のハロゲン化銀乳剤の製造装置。
(5) Claim (4) characterized in that the silver salt solution and the halogen salt solution are added directly into the liquid through a porous body.
An apparatus for producing the silver halide emulsion described above.
(6)該バッチ式反応装置の核形成用反応装置が、2つ
以上の並列の核形成反応装置で構成されていることを特
徴とする請求項(4)又は(5)記載のハロゲン化銀乳
剤の製造装置。
(6) The silver halide according to claim 4 or 5, wherein the nucleation reactor of the batch reactor is composed of two or more parallel nucleation reactors. Emulsion manufacturing equipment.
JP2266615A 1989-10-05 1990-10-05 Method for producing silver halide emulsion Expired - Fee Related JP2687252B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-258862 1989-10-05
JP25886289 1989-10-05
DE4105649A DE4105649A1 (en) 1989-10-05 1991-02-22 Photographic silver halide emulsion prodn. - by continuous multistage method using series of reactors with batch operation giving reproducible emulsion

Publications (2)

Publication Number Publication Date
JPH03200952A true JPH03200952A (en) 1991-09-02
JP2687252B2 JP2687252B2 (en) 1997-12-08

Family

ID=39534981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2266615A Expired - Fee Related JP2687252B2 (en) 1989-10-05 1990-10-05 Method for producing silver halide emulsion

Country Status (2)

Country Link
JP (1) JP2687252B2 (en)
DE (1) DE4105649A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649657A1 (en) * 1996-11-29 1998-06-04 Agfa Gevaert Ag Silver halide emulsion preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258237A (en) * 1985-09-07 1987-03-13 Konishiroku Photo Ind Co Ltd Silver halide emulsion and its production and silver halide photosensitive material using said silver halide emulsion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258237A (en) * 1985-09-07 1987-03-13 Konishiroku Photo Ind Co Ltd Silver halide emulsion and its production and silver halide photosensitive material using said silver halide emulsion

Also Published As

Publication number Publication date
DE4105649A1 (en) 1992-08-27
JP2687252B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US6096495A (en) Method for preparing silver halide emulsion
US4147551A (en) Process for photographic emulsion precipitation in a recycle stream
JPS5945132B2 (en) Method for producing photosensitive silver halide crystals
US4263011A (en) Crystallization process
JPH03148648A (en) Silver halide photographic emulsion
JP2699119B2 (en) Method for producing silver halide emulsion
JPH04292416A (en) Plug flow modulus for nucleation of halogenated silver crystal
US5223388A (en) Process for producing silver halide emulsion and apparatus
JPH03200952A (en) Method and apparatus for producing silver halide emulsion
US5202226A (en) Process for producing silver halide emulsion
JPH03140946A (en) Manufacture of photosensitive silver halide emulsion
JP2687180B2 (en) Method for producing silver halide emulsion
JP2852738B2 (en) Method for producing silver halide emulsion
JPH055094B2 (en)
JPH0782208B2 (en) Method for producing silver halide
JPH04340538A (en) Production of silver halide emulsion
JPH0711679B2 (en) Method for producing silver halide emulsion
JP2987011B2 (en) Method for producing silver halide emulsion
JP2849872B2 (en) Method for forming silver halide photographic emulsion grains and photosensitive material containing the emulsion grains
JPH11231449A (en) Production of silver halide emulsion and producing device therefor
JP2000187293A (en) Manufacture of silver halide emulsion
JPH11217217A (en) Device for producing silver halide
JPH06242526A (en) Production device for silver halide emulsion particle
JPH02172815A (en) Device for forming silver halide grain
JPH03246534A (en) Production of silver halide emulsion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees