JP2687180B2 - Method for producing silver halide emulsion - Google Patents
Method for producing silver halide emulsionInfo
- Publication number
- JP2687180B2 JP2687180B2 JP2188243A JP18824390A JP2687180B2 JP 2687180 B2 JP2687180 B2 JP 2687180B2 JP 2188243 A JP2188243 A JP 2188243A JP 18824390 A JP18824390 A JP 18824390A JP 2687180 B2 JP2687180 B2 JP 2687180B2
- Authority
- JP
- Japan
- Prior art keywords
- emulsion
- nucleation
- silver halide
- medium
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は写真感光材料用のハロゲン化銀(以後、AgX
と呼ぶ)乳剤の製造方法に関し、特に該AgX乳剤粒子を
再現性よく、大量に製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silver halide (hereinafter referred to as AgX) for a photographic light-sensitive material.
The present invention relates to a method for producing an emulsion, and particularly to a method for producing the AgX emulsion grains with good reproducibility and in a large amount.
(従来の技術) 通常、研究用の小容量の反応装置(通常1〜5lの容積
を有する)で性能の優れたAgX乳剤を開発できた場合、
該乳剤の実用化の為には、次に該乳剤の製造スケールを
中容量(通常、10〜150lの反応容器での製造)にスケー
ルアップする。該中容量の反応容器で目的性能の乳剤が
製造できると、次に該乳剤の製造スケールを大容量(通
常、200〜2000l)にスケールアップする必要がある。同
一の製造手順に従って該乳剤を製造した場合、該小容量
の反応装置で製造したAgX乳剤と中容量の反応装置で製
造したAgX乳剤の性能は許容範囲内で一致することが多
いが、大容量の反応装置で製造したAgX乳剤の性能とは
一致しないことが多い。その為に、大量製造の場合に
は、該製造手順の一部を修正して両者の性能を一致させ
たりすることが多い。この仕事は多くの経費と時間を要
する。(Prior Art) Usually, if an AgX emulsion with excellent performance can be developed in a small-volume reactor for research (usually having a volume of 1 to 5 l),
In order to put the emulsion into practical use, the production scale of the emulsion is then scaled up to a medium volume (usually in a reaction vessel of 10 to 150 l). Once the emulsion of the desired performance can be produced in the medium volume reaction vessel, it is necessary to scale up the production scale of the emulsion to a large volume (usually 200 to 2000 liters). When the emulsion is produced according to the same production procedure, the performance of the AgX emulsion produced in the small-capacity reactor and the performance of the AgX emulsion produced in the medium-capacity reactor often agree within an allowable range, but the large-capacity Often does not match the performance of AgX emulsions produced in the Reactor. Therefore, in the case of mass production, it is often the case that a part of the production procedure is modified to match the performances of both. This work is expensive and time consuming.
この原因は従来のAgX乳剤の製造方法が主に次の方法
で行なわれてきた為である。核形成→(熟成)→結晶
成長を同一の反応容器で行なう。従来の殆んどのAgX乳
剤製造はこの方法で行なわれてきている。熟成過程を経
る場合と経ない場合がある。種晶形成を行なった後、
該種晶の一部を分割して取り出し、反応容器に入れ、結
晶成長を行なう方式。例えば米国特許4,067,739号の実
施例1では核形成→熟成→乳剤水洗工程により種晶を形
成し、その一部をとり出し、次に核種晶を結晶成長させ
ている。また、米国特許4,797,354号の実施例7〜11で
は核形成後、その一部をとり出し、熟成→結晶成長工程
を経ることによりAgX乳剤を製造している。しかし、い
ずれも同じレベル容量の反応容器で行なったものであ
り、核形成過程と結晶成長過程の反応容器容量を使い分
けたものではない。また、核形成もしくは種形成乳剤の
一部を取り出す方式である。This is because the conventional AgX emulsion manufacturing method has been mainly performed by the following method. Nucleation → (aging) → crystal growth is performed in the same reaction vessel. Most conventional AgX emulsion production has been carried out by this method. It may or may not go through the aging process. After seeding,
A method in which a part of the seed crystal is divided and taken out, and put into a reaction vessel for crystal growth. For example, in Example 1 of U.S. Pat. No. 4,067,739, seed crystals are formed by the steps of nucleation → ripening → emulsion water washing, a part of the seed crystals is taken out, and then the seed crystals are grown. In Examples 7 to 11 of U.S. Pat. No. 4,797,354, after the nucleation, a part of the nuclei is taken out, and an aging → crystal growth step is performed to produce an AgX emulsion. However, all of them were carried out in a reaction container of the same level capacity, and the reaction container capacities of the nucleation process and the crystal growth process were not used separately. Further, it is a system in which a part of the nucleation or seed formation emulsion is taken out.
また、大量装置における問題点は主に、添加する銀塩
水溶液とハロゲン化物塩水溶液が太い流束で添加される
ことにあるが、これに対する処置がなされていない。Further, a problem in a large-scale apparatus is mainly that the silver salt aqueous solution and the halide salt aqueous solution to be added are added in a thick flux, but no measures have been taken against this.
(発明が解決しようとする課題) 本発明は上記の問題を解決したAgX乳剤の大量製造方
法を提供するものである。(Problems to be Solved by the Invention) The present invention provides a method for mass-producing an AgX emulsion that solves the above problems.
すなわち、本発明の目的は小容量の反応装置で製造し
たAgX乳剤と同一性能のAgX乳剤を簡単に、かつ、再現性
よく大量装置で大量に製造できるAgX乳剤の大量製造方
法を提供することにある。That is, an object of the present invention is to provide a mass production method of an AgX emulsion, which can easily produce an AgX emulsion having the same performance as an AgX emulsion produced by a small-capacity reaction apparatus, and can reproducibly produce a large amount in a large-scale apparatus. is there.
(課題を解決するための手段) 本発明の目的は、 (1)少なくとも分散媒とハロゲン化銀粒子を有するハ
ロゲン化銀乳剤を製造する方法において、該粒子の核形
成を中容量のバッチ式又は多段バッチ式反応装置(以
下、中量装置)で行い、生成した核乳剤を大量製造装置
(以下大量装置)へ移液するか該核乳剤を中間容器へ移
液した後に大量製造装置に移液し、該大量製造装置で熟
成及び/または結晶成長を行ない、(該大量製造装置容
量/該中容量装置容量)=yが3〜2000であり、該移液
の回数(n)が2〜2000回であることを特徴とするハロ
ゲン化銀乳剤の製造方法。(Means for Solving the Problems) The object of the present invention is: (1) In a method for producing a silver halide emulsion having at least a dispersion medium and silver halide grains, the nucleation of the grains is carried out in a medium volume batch system or Performed in a multi-stage batch type reaction device (hereinafter, medium amount device), and transfer the produced nuclear emulsion to a mass production device (hereinafter, large amount device) or transfer the nuclear emulsion to an intermediate container and then to a mass production device. Then, aging and / or crystal growth is performed in the mass production apparatus, (volume of the mass production apparatus / volume of the medium volume apparatus) = y is 3 to 2000, and the number of times (n) of the liquid transfer is 2 to 2000. A method for producing a silver halide emulsion, characterized in that the number of times is one.
(2)該中量装置容量が5〜500リットルであり、該y
値が3〜400であり、該n値が3〜400である事を特徴と
する上記(1)のハロゲン化銀乳剤の製造方法。(2) The medium volume device has a capacity of 5 to 500 liters, and the y
The method for producing a silver halide emulsion according to the above (1), wherein the value is 3 to 400 and the n value is 3 to 400.
(3)該中容量の反応装置を2〜30個用い、かつ、該中
間容器の温度を10〜45℃に保ち、該大量装置の温度を40
〜80℃に保つことを特徴とする上記(1)のハロゲン化
銀乳剤の製造方法。(3) Using 2 to 30 of the medium-capacity reactors, keeping the temperature of the intermediate container at 10 to 45 ° C., and keeping the temperature of the large-volume reactor at 40.
The method for producing a silver halide emulsion according to the above (1), characterized in that the method is maintained at -80 ° C.
(4)該y値が3〜50であり、該n値が3〜20であり、
かつ、該核形成を銀塩とハロゲン化物塩水溶液の平衡同
時混合法で行ない、かつ、該平衡同時混合を銀電位制御
法を用いずに、流量制御法で行なうことを特徴とする上
記(1)のハロゲン化銀乳剤の製造方法。(4) The y value is 3 to 50, the n value is 3 to 20,
In addition, the nucleation is performed by an equilibrium simultaneous mixing method of an aqueous solution of a silver salt and a halide salt, and the equilibrium simultaneous mixing is performed by a flow rate controlling method without using a silver potential controlling method. ) A method for producing a silver halide emulsion.
(5)該核形成および結晶成長時の銀塩水溶液とハロゲ
ン化物塩水溶液の添加を1添加溶液あたり孔数が4以上
の多孔体を通して添加することを特徴とする上記(1)
のハロゲン化銀乳剤の製造方法。(5) The addition of the aqueous silver salt solution and the aqueous halide salt solution during the nucleation and crystal growth is performed through a porous body having four or more pores per one added solution.
Of producing a silver halide emulsion.
(6)該ハロゲン化銀乳剤が、ハロゲン化銀粒子の全投
影面積の70%以上が平行双晶面を有する平板状ハロゲン
化銀粒子で構成されていることを特徴とする上記(1)
のハロゲン化銀乳剤の製造によって達成された。(6) The above silver halide emulsion is characterized in that 70% or more of the total projected area of the silver halide grains is composed of tabular silver halide grains having parallel twin planes.
Of silver halide emulsion.
(本発明の基本的な考え方) AgX乳剤の製造スケールを小量スケールから大量スケ
ールにスケールアップすると、両者の性能が一致しない
ことが多い。その主な原因は核形成過程にあると考えら
れる。通常、AgX粒子の核形成期間は、全粒子形成期間
の1/10以下であることが多い。特に平行双晶面を有する
高感度平板状粒子では1/30〜1/300である。従って(核
形成を中量装置でn回行ない、n回分の核乳剤を蓄積す
る時間)<(熟成→結晶成長時間)の関係にある。よっ
て核形成を中量装置でn回行ない、n回分の核乳剤を蓄
積し、次に該蓄積乳剤を大量装置に移液し、熟成→結晶
成長を行なうことにより、該問題を解決する。該蓄積乳
剤は冷蔵庫等にて保存することもできるが、該乳剤の保
存安定性の問題や再溶解等の工程数が増えるという問題
がある。従って大量装置の傍に設けた中間容器中に該乳
剤を蓄積し、蓄積後、すぐさま該乳剤を大量装置に移液
する方法がより好ましい。該中間容器の温度は低温に保
つことが好ましい。一方、大量装置における問題点は我
々の研究によると、主に、添加する銀塩水溶液とハロゲ
ン化物塩水溶液が太い流束で添加されることにある。従
って多孔体を通して添加することにより該問題を解決し
た。更には、あらかじめ調製した超微粒子AgXを添加す
ることにより該問題を解決した。(Basic concept of the present invention) When the production scale of an AgX emulsion is scaled up from a small scale to a large scale, the performances of the two often do not match. The main cause is considered to be the nucleation process. Usually, the nucleation period of AgX particles is often 1/10 or less of the total grain formation period. In particular, it is 1/30 to 1/300 for high-sensitivity tabular grains having parallel twin planes. Therefore, there is a relationship of (time for nucleation to be carried out n times with a medium-volume apparatus and n times of nuclei emulsion accumulation) <(aging → crystal growth time). Therefore, the problem is solved by performing nucleation n times in a medium-weight apparatus, accumulating n times of nuclei emulsion, then transferring the accumulated emulsion to a large-scale apparatus, and performing ripening → crystal growth. The accumulated emulsion can be stored in a refrigerator or the like, but it has a problem of storage stability of the emulsion and a problem of increasing the number of steps such as redissolution. Therefore, it is more preferable to accumulate the emulsion in an intermediate container provided beside the large-scale apparatus and immediately transfer the emulsion to the large-scale apparatus. The temperature of the intermediate container is preferably kept low. On the other hand, according to our research, the problem in the large-scale apparatus is that the silver salt aqueous solution and the halide salt aqueous solution to be added are mainly added in a thick flux. Therefore, the problem was solved by adding through a porous body. Furthermore, the problem was solved by adding ultrafine particle AgX prepared in advance.
(より詳細な説明) 本発明法が適用されるAgX乳剤製造処方は(熟成およ
び/または結晶成長期間)/(核形成期間)=x≧5、
より好ましくはxが10〜300の処方である。(Detailed Description) The AgX emulsion production recipe to which the method of the present invention is applied is (ripening and / or crystal growth period) / (nucleation period) = x ≧ 5,
More preferably, x is a formulation of 10 to 300.
本発明でいう中量装置と大量装置とは、y=(大量装
置容量/中量装置容量)≧3、好ましくは5〜50の関係
にある。中量装置容量は5〜500l、より好ましくは30〜
200lであり、大量装置容量は200l以上、好ましくは500
〜2000lであり、適宜、上記関係に従って、該容量を選
択することができる。本発明でいう中間容器とは該n回
分の核乳剤を収容できる容量の容器を指し、通常は100l
以上、好ましくは200〜1000lの容器を指す。The medium amount device and the large amount device in the present invention have a relation of y = (large amount device capacity / medium amount device capacity) ≧ 3, preferably 5 to 50. Medium volume device capacity is 5-500 l, more preferably 30-
200 l, mass device capacity is 200 l or more, preferably 500
It is up to 2000 l, and the capacity can be appropriately selected according to the above relationship. The term "intermediate container" as used in the present invention refers to a container having a capacity capable of accommodating the n times of the nuclear emulsion, and usually 100 l
Above, preferably refers to a 200-1000l container.
本発明の方法を用いたAgX乳剤の製造過程は核形成過
程、熟成および/または結晶成長過程からなり、新しい
安定核の形成は該核形成過程内で終了する。熟成および
または結晶成長過程中においては実質的に新しい安定核
の形成は生じない。ここでいう実質的とは、該乳剤中の
AgX粒子の全投影面積の20%以下、好ましくは10%以下
を指す。The process of producing an AgX emulsion using the method of the present invention comprises a nucleation process, a ripening process and / or a crystal growth process, and the formation of new stable nuclei ends within the nucleation process. Substantially no new stable nuclei are formed during the aging and / or crystal growth process. The term "substantially" as used herein means that
It refers to 20% or less, preferably 10% or less, of the total projected area of AgX grains.
以下に本発明の装置をAgX乳剤の各製造過程(核形
成、熟成、成長)に沿って詳細に説明する。The apparatus of the present invention will be described below in detail along with each manufacturing process (nucleation, ripening, growth) of an AgX emulsion.
核形成過程 本発明はAgX乳剤粒子の核形成過程を中量装置で行う
ものであるが、その理由は次の通りである。Nucleation Process In the present invention, the nucleation process of AgX emulsion grains is carried out in a medium-weight apparatus for the following reason.
AgX粒子形成において最も過飽和度の精密な制御を要
する工程は、核形成工程である。その理由は次の通りで
ある。核形成工程で一度結晶中に双晶面や転位線等の欠
陥が組み込まれると、それはその後の結晶成長過程で消
滅することがなく、通常、それらの双晶面や転位線も、
結晶成長とともに成長する。そして最終的に得られるAg
X粒子の形成や特性はこれらの欠陥により影響される。
例えば1粒子あたりの双晶面の枚数や双晶面の入り方と
粒子形状の関係についてはE.Klein.H.J.Metz,E.Moisar,
Phot.Korr.,99、99〜102(1963年)、同100、57〜71(1
964年)の記載を参照にすることができる。The process that requires the most precise control of supersaturation in AgX grain formation is the nucleation process. The reason is as follows. Once defects such as twin planes and dislocation lines are incorporated into the crystal in the nucleation step, they do not disappear in the subsequent crystal growth process, and normally, those twin planes and dislocation lines are also
It grows with crystal growth. And finally obtained Ag
The formation and properties of X particles are affected by these defects.
For example, E.Klein.HJMetz, E.Moisar, for the relationship between the number of twin planes per grain and the way twin planes enter and the grain shape,
Phot.Korr., 99 , 99-102 (1963), 100 , 57-71 (1
964) can be referred to.
従って目的とする形状、特性のAgX粒子を作る為に
は、まず、核形成時に種々の過飽和因子を精密に制御
し、生成する核に組み込まれるそれらの欠陥の数を制御
することが重要である。例えば単分散六角平板AgX乳剤
粒子(1つのAgX粒子中に互いに平行な双晶面を2枚有
する六角形状平板粒子)を形成する為には、核形成時の
双晶面形成確率を支配する種々の過飽和因子(例えば、
反応溶液中のBr濃度、gelatine濃度等)を高すぎず、か
つ、低すぎず、1粒子あたり双晶面が2枚組み込まれる
確率を高くするように調節する必要がある。また核形成
期間に対しては0分〜4分の間では、例えば同一条件で
溶質の添加を続けた場合、該期間が長くなるにつれ(双
晶枚数/粒子)の比率が増す為、該核形成期間も含めて
制御する必要がある。Therefore, in order to make AgX particles with the desired shape and properties, it is important to control various supersaturation factors precisely at the time of nucleation and to control the number of those defects incorporated in the generated nuclei. . For example, in order to form a monodisperse hexagonal tabular AgX emulsion grain (hexagonal tabular grain having two twin planes parallel to each other in one AgX grain), various twin crystal plane formation probabilities during nucleation are controlled. Supersaturation factor of (eg,
It is necessary to adjust the Br concentration, the gelatine concentration, etc. in the reaction solution so as not to be too high and not too low so as to increase the probability that two twin planes are incorporated per grain. When the solute addition is continued under the same conditions for 0 to 4 minutes with respect to the nucleation period, the ratio of (twin crystal number / grain) increases as the period becomes longer. It is necessary to control including the formation period.
それらの詳細に関しては特願昭63-315741号、特開昭6
3-92942号の記載を参考にすることができる。また、無
欠陥粒子(双晶面も転位線も含まないAgX粒子)を作る
為には、核形成時に種々の該過飽和条件をできるだけ低
くなるように制御し、双晶面も転位線も含まない核を作
り分ける必要がある。その詳細に関しては特願昭63-223
739号の記載を参考にすることができる。この核形成時
の過飽和度を精密に制御する為には、反応容器は小容量
である方が好ましい。それは反応容器中における反応溶
液の循環頻度が高い為、添加したAgNO3水溶液とハロゲ
ン化物塩水溶液がより迅速に全反応溶液中に均一混合さ
れる為である。For details of these, Japanese Patent Application No. 63-315741 and Japanese Unexamined Patent Publication No.
The description in 3-92942 can be referred to. In order to produce defect-free grains (AgX grains that do not contain twin planes or dislocation lines), various supersaturation conditions are controlled to be as low as possible during nucleation, and twin planes and dislocation lines are not contained. It is necessary to make different nuclei. For details, refer to Japanese Patent Application No. 63-223.
The description of No. 739 can be referred to. In order to precisely control the degree of supersaturation during nucleation, the reaction vessel preferably has a small volume. This is because the reaction solution circulates frequently in the reaction vessel, and thus the added AgNO 3 aqueous solution and the halide salt aqueous solution are more rapidly and uniformly mixed in the entire reaction solution.
通常、AgX乳剤の改良研究は1〜5lの小容器で行われ
る。この小量製造装置で作った安定核、もしくはその約
50倍以内の容量の中量の製造装置で作った安定核をその
まま用いて大量製造化すれば、AgX粒子形成の最も重要
な工程が同じ、もしくはほぼ同じである為、小量製造装
置で製造したAgX乳剤と大量製造装置で製造したAgX乳剤
の性能をよりよく一致させることができる。Usually, the modification studies of AgX emulsions are carried out in 1-5 liter small containers. Stable core made with this small-volume manufacturing device, or about
If a stable nucleus made with a medium-volume manufacturing device with a capacity of 50 times or less is used as it is for mass production, the most important step of AgX particle formation is the same or almost the same, so it is produced with a small-volume manufacturing device. It is possible to better match the performance of the AgX emulsion produced with the AgX emulsion produced by the mass production equipment.
通常、AgX粒子の安定核形成期間は5秒〜10分程度で
あり、全工程期間に比べてかなり短い。特に平板状乳剤
粒子を製造する場合、核形成時の過飽和度が高く、多く
の安定核が生じる為に、また、次に熟成過程が迅速に進
行する為には核のサイズは小さい方が好ましい為に、そ
の核形成期間は通常、5秒〜2分程度であり、大変に短
い。このような場合、該核形成を中量装置で行い、該反
応溶液を中間容器へ移液することを何回も繰り返し行っ
ても、長時間を要しない状況である。従って、本発明の
方法は平板状乳剤粒子を製造する場合に特に適してい
る。Usually, the stable nucleation period of AgX particles is about 5 seconds to 10 minutes, which is considerably shorter than the total process period. In particular, in the case of producing tabular emulsion grains, the size of the nucleus is preferably small because the degree of supersaturation at the time of nucleation is high and many stable nuclei are generated, and the ripening process proceeds rapidly next. Therefore, the nucleation period is usually about 5 seconds to 2 minutes, which is very short. In such a case, a long time is not required even if the nucleation is performed by a medium-volume apparatus and the reaction solution is transferred to an intermediate container many times. Therefore, the method of this invention is particularly suitable for making tabular emulsion grains.
次に本発明でいう核形成用の中量装置について、およ
び該中量装置と大量装置との関係について詳細に説明す
る。該中量装置の態様としては、次に示すバッチ式、多
段バッチ式の2つに分類することができる。Next, the medium amount device for nucleation and the relationship between the medium amount device and the large amount device according to the present invention will be described in detail. The mode of the medium-weight apparatus can be classified into the following two types of batch type and multi-stage batch type.
1)バッチ式。中量装置で核形成し、核形成が終われば
該反応溶液を中間容器へ移す。中量装置の容量が大量装
置容量の1/nである場合、この操作をn回繰り返す。こ
れにより中量装置で調製した時と殆ど同じ核がそのn倍
量だけ、調製できたことになる。即ち、第1図に示すよ
うに中量装置の間に中間容器を1つ設置する。大量装置
で熟成および/または結晶成長を行っている間に、中量
装置で該n回の核形成を行い、該中間容器に核形成の終
わった反応容器を蓄えておく。大量装置での該反応が終
了し、該装置が空になり、洗浄が終わった後、該中間容
器の反応溶液を大量装置へ移液する。次に大量装置で反
応を開始する。この場合、中間容器を1つ設置するだけ
で核形成時の該待ち時間を殆どなくすることができると
いう利点を有する。核形成時に該容器に加えるゼラチン
水溶液は予め核形成温度に恒温された溶液を添加するこ
とが好ましい。該核形成のくり返しを迅速に行なうこと
ができる為である。1) Batch type. Nucleate with a medium-volume apparatus, and when the nucleation is completed, the reaction solution is transferred to an intermediate container. If the capacity of the medium capacity device is 1 / n of the capacity of the large capacity device, this operation is repeated n times. This means that n-fold amount of nuclei that were almost the same as when they were prepared with the medium-volume device could be prepared. That is, as shown in FIG. 1, one intermediate container is installed between the medium quantity devices. While aging and / or crystal growth is performed in a large-scale apparatus, the n-th nucleation is performed in a medium-weight apparatus, and the reaction vessel after the nucleation is stored in the intermediate vessel. After the reaction in the large-scale apparatus is completed, the apparatus is emptied, and the cleaning is completed, the reaction solution in the intermediate container is transferred to the large-scale apparatus. Then, the reaction is started with a large-scale apparatus. In this case, there is an advantage that the waiting time during nucleation can be almost eliminated by installing only one intermediate container. As the gelatin aqueous solution added to the container at the time of nucleation, it is preferable to add a solution that has been previously thermostated to the nucleation temperature. This is because the nucleation can be repeated rapidly.
その他、該工程をより効果的に行なわせる為に次の記
載を参考にすることができる。In addition, the following description can be referred to in order to carry out the step more effectively.
該nの数を小さくする。即ち、研究用小量装置で作っ
た乳剤と同じ特性のAgX乳剤が調製できる範囲内で中量
装置の容量を大きくする。通常、容量100l程度までは該
反応容器容量を大きくしても、容易に同一特性のAgX乳
剤を調製することができる。従って本発明ではnの値と
して2以上の値をとることができるが、好ましくは3〜
30、より好ましくは5〜20の値である。なお、nの最大
値はn=(大量装置容量/研究用小量装置容量)であ
る。なぜなら、中量装置容量を研究用小量装置容量より
小さくすることは、nを大きくし、操作回数を増すだけ
でメリットがない為である。また、nの最小値を2未満
にすると、該小量装置の容量が大きくなり過ぎて、本発
明の効果が小さくなる為に好ましくない。The number of n is reduced. That is, the capacity of the medium weight device is increased within a range in which an AgX emulsion having the same characteristics as the emulsion made by the research small amount device can be prepared. Usually, even if the volume of the reaction vessel is increased up to about 100 l, the AgX emulsion having the same characteristics can be easily prepared. Therefore, in the present invention, the value of n can take a value of 2 or more, but preferably 3 to
The value is 30, more preferably 5 to 20. Note that the maximum value of n is n = (mass device capacity / small research device capacity). This is because making the capacity of the medium-volume device smaller than the capacity of the research small-volume device has no merit only by increasing n and increasing the number of operations. Also, if the minimum value of n is less than 2, the capacity of the small amount device becomes too large, and the effect of the present invention becomes small, which is not preferable.
該中量装置を2つ以上用いる。同一の中量装置を2つ
用いれば、該核形成の操作回数はn/2に減り、同一の中
量装置をm個用いれば、該核形成の操作回数はn/mに減
る。mの値としては好ましくは1〜30、より好ましくは
1〜10を用いることができる。mの値を大きくすればす
る程、該核形成時間は短縮されるが、それだけ設備が多
くなり、製造コストが高くなる為である。Two or more of the medium weight devices are used. The use of two identical medium weight devices reduces the number of nucleation operations to n / 2, and the use of m identical medium weight devices reduces the number of nucleation operations to n / m. The value of m is preferably 1 to 30, more preferably 1 to 10. This is because the larger the value of m, the shorter the nucleation time, but the more equipment and the higher the manufacturing cost.
2)多段バッチ式。第2図に示すような核形成段階をl
段に分け、各段においては各形成期間tの約1/lの期間
の核形成を行う。第2図は該中量装置部のみを記してい
る。A、Bの中量装置は同一である方が好ましい。操作
手順は次の通りである。Aの容器に反応溶液を入れ、約
t/2時間だけ核形成を行う。その後、該溶液をB容器に
移し、Aに新しい反応溶液を入れる。次にAとBでそれ
ぞれ約t/2時間の核形成を行う。その後Bの溶液を中間
容器に移し、Aの溶液をB溶液へ移し、Aに新しい反応
溶液を入れる。あとはそれを順次繰り返して行い、中間
容器に所定量のAgX乳剤がたまるまで行う。なお、この
各工程で、例えば、B溶液を中間容器へ移し、A液をB
溶液へ移した時点でBの核形成反応を開始すればよく、
Aにも反応溶液がセットされるまで該反応の開始を持つ
必要がないことはいうまでもない。2) Multi-stage batch system. The nucleation step as shown in FIG.
In each stage, nucleation is performed for about 1 / l of each formation period t. FIG. 2 shows only the medium weight device section. It is preferable that the medium quantity devices of A and B are the same. The operating procedure is as follows. Put the reaction solution in the container of A and
Nucleate for t / 2 hours. After that, the solution is transferred to a container B, and a new reaction solution is put into A. Next, nucleation is performed on A and B for about t / 2 hours each. After that, the solution of B is transferred to the intermediate container, the solution of A is transferred to the solution B, and a new reaction solution is added to A. After that, it is repeated in order until the predetermined amount of AgX emulsion is accumulated in the intermediate container. In each step, for example, the solution B is transferred to an intermediate container and the solution A is added to the solution B
The nucleation reaction of B may be started at the time of transfer to the solution,
It goes without saying that it is not necessary to have the start of the reaction until the reaction solution is set in A as well.
前記1)項記載の場合に比べて、途中における洗浄工
程が不要になるという利点を有する。例えば該Aを独立
の中量装置として用いた場合、核形成後の該安定核の大
きさは最終核の大きさになっている。該溶液を移液した
後、A容器に溶液が残存した場合、残存した安定核が次
の核形成工程で更に大きく成長し、新しく生じた安定核
のサイズとの差が大きくなる。該安定核のサイズが大き
い場合には、この差は大きくなり、大きな核が混入して
くることになる。従ってその場合には核形成の1回毎
に、洗浄工程を入れる必要がある。しかし、第2図の場
合、Aにおける核形成時間はt/2である為、核形成後の
核のサイズは最終的に得られる核のサイズより小さい。
従って該溶液をBへ移液した後、Aに該溶液が小量だけ
残存しても、そのサイズ分布への影響は小さい。lの値
が大きくなる程、その影響はより小さい。従って途中に
各容器の洗浄工程を入れる必要がない。この方法は核形
成期間が1分間以上、好ましくは2分間以上の処方に対
し有効である。核形成期間が1分間以内の処方に適用し
た場合、核形成期間に対し該溶液のAからBへ、Bから
大量装置への移液時間の割合が多くなり、利点がない。
従ってlの上限値としてはt/l≧30秒が好ましい。な
お、この場合も第2図に示すような多段バッチシステム
を2システム以上設置することができる。通常は10シス
テム以下が好ましい。該システム数が増える程、該核形
成期間が短縮されるが、設備コストが増える為である。Compared with the case described in the above item 1), there is an advantage that a cleaning step in the middle is unnecessary. For example, when the A is used as an independent medium amount device, the size of the stable nucleus after the nucleation is the size of the final nucleus. When the solution remains in the container A after the transfer of the solution, the remaining stable nuclei grow larger in the next nucleation step, and the difference from the size of newly generated stable nuclei becomes large. When the size of the stable nuclei is large, this difference becomes large, and large nuclei are mixed in. Therefore, in that case, it is necessary to insert a washing step for each nucleation. However, in the case of FIG. 2, since the nucleation time in A is t / 2, the size of the nucleus after nucleation is smaller than the size of the finally obtained nucleus.
Therefore, even if only a small amount of the solution remains in A after transferring the solution to B, the influence on the size distribution is small. The larger the value of l, the smaller the effect. Therefore, there is no need to insert a washing process for each container in the middle. This method is effective for formulations in which the nucleation period is 1 minute or longer, preferably 2 minutes or longer. When applied to a formulation with a nucleation period of 1 minute or less, the ratio of the transfer time of the solution from A to B and from B to a large-scale device increases with respect to the nucleation period, which is not advantageous.
Therefore, the upper limit of l is preferably t / l ≧ 30 seconds. Also in this case, two or more multi-stage batch systems as shown in FIG. 2 can be installed. Normally, 10 systems or less are preferable. This is because the nucleation period is shortened as the number of the systems is increased, but the equipment cost is increased.
多段バッチシステムとして他に、第3図の態様のもの
を挙げることができる。第3図の(I)が側面図であ
り、(II)が上面図である。この場合、送液パイプがな
くなり、傾斜がついた容器側壁(a、b)や容器底部が
その役割を兼ねている。送液パイプ中への残液がなくな
り、かつ、迅速に送液できるという利点を有する。操作
手順は第2図の場合と同様である。a、bを上げ下げす
ることにより、もしくは横方向に出し入れすることによ
り、移液の開閉を行う方式でもよく、該側壁(a、b)
の下部に開閉バルブを設けておく方式でもよい。Another example of the multi-stage batch system is the one shown in FIG. FIG. 3 (I) is a side view and (II) is a top view. In this case, the liquid delivery pipe is eliminated, and the inclined container side walls (a, b) and the container bottom also serve as the role. It has the advantages that there is no residual liquid in the liquid delivery pipe and that liquid can be delivered quickly. The operation procedure is the same as in the case of FIG. A method of opening and closing the liquid transfer by raising and lowering a and b, or by taking them in and out in the lateral direction may be used, and the side walls (a and b)
A system in which an opening / closing valve is provided in the lower part of may be used.
本発明においては上記1)〜2)のそれぞれの利点、
欠点を考慮し、それぞれの目的に応じて、単独もしくは
併用して用いることができる。例えば、本発明の方法
は、特に単分散平板乳剤粒子の大量製造装置として利点
があるが、この場合、通常、該核形成期間は3分以内で
あり短い。従ってこのような場合、1)の方式は(移液
時間/核形成時間)を小さくでき、かつ、装置が簡単で
あるという点で最も好ましい。In the present invention, the respective advantages of 1) to 2) above,
In view of the drawbacks, they can be used alone or in combination according to their respective purposes. For example, the method of the present invention is particularly advantageous as a mass production apparatus for monodisperse tabular emulsion grains, but in this case, the nucleation period is usually 3 minutes or less and short. Therefore, in such a case, the method 1) is most preferable in that the (transfer time / nucleation time) can be shortened and the apparatus is simple.
次に上記装置および操作条件に関するその他の好まし
い態様について更に説明する。第1図において、該中量
装置から中間容器または該大量装置への移液は、該中量
装置容器の底のバルブを開け、自然重力により移液する
方式が最も簡単で低コストに行える為に好ましい。第1
図のようなcascade方式の場合、山または岡の斜面を利
用して設置すると、簡単に設置できる。該溶液の移液法
としてはその他、ポンプを用いて移液することもでき
る。各装置を同一フロアーに置き、自然重力を利用でき
ない場合に好ましく用いることができる。また、該溶液
の移液後、該中量装置および該送液パイプを洗浄する工
程を随時入れることもできる。また、該送液時間を短く
する為には該送液パイプの内径を大きくし、長さをでき
るだけ短くすればよいことはいうまでもない。Next, other preferable embodiments relating to the above apparatus and operating conditions will be further described. In FIG. 1, transfer of liquid from the medium-volume device to the intermediate container or the large-volume device is performed by opening the valve at the bottom of the medium-volume device container and transferring the liquid by natural gravity, which is the simplest and cheapest method. Is preferred. First
In the case of the cascade method as shown in the figure, it can be easily installed by using the slope of the mountain or oka. In addition to the method for transferring the solution, it is also possible to transfer the solution using a pump. Each device is placed on the same floor and can be preferably used when natural gravity cannot be used. In addition, after transferring the solution, a step of washing the medium-volume device and the liquid supply pipe can be added at any time. Needless to say, in order to shorten the liquid feeding time, the inner diameter of the liquid feeding pipe may be increased and the length may be shortened as much as possible.
この中量装置で核形成を行い、該反応溶液を中間容器
へ移すという操作をn回繰り返し行っている間に、該中
間容器内で核が物理熟成をうけて変化することは好まし
くない。従って該核の保存中の変化を防止する為に、保
存中の該反応溶液の温度を低く保つことは好ましい。好
ましい保存温度は10〜45℃、より好ましくは15〜40℃で
ある。また、該温度を一定に保つ為に該溶液を攪拌する
こともできる。1)に述べたように中間容器を設置した
場合、この点に関し次のような利点も存在する。平板粒
子形成では核形成後、昇温し、物理熟成させる。従って
該中間容器がない場合、該大量装置を低温に冷やしてお
き、次に昇温させなければならない。しかし、中間容器
を設けた場合は、中間容器を常に低温に保っておけばよ
く、昇温過程は必ずしも必要でなくなる。即ち、大量装
置は移液後、ただちに高温状態からスタートすることが
できる為である。従って、省エネルギー、迅速性の点で
利点がある。通常、該大量装置の温度は40℃以上、好ま
しくは50〜80℃に保たれる。It is not preferable that the nuclei undergo physical aging in the intermediate container while nucleation is performed by this medium-volume apparatus and the operation of transferring the reaction solution to the intermediate container is repeated n times. Therefore, it is preferred to keep the temperature of the reaction solution low during storage to prevent changes during storage of the nuclei. The preferred storage temperature is 10 to 45 ° C, more preferably 15 to 40 ° C. The solution can also be stirred to keep the temperature constant. When the intermediate container is installed as described in 1), there are the following advantages in this respect. In tabular grain formation, the temperature is raised and physical ripening is carried out after nucleation. Therefore, in the absence of the intermediate container, the bulk device must be cooled to a low temperature and then heated. However, when the intermediate container is provided, it is sufficient to keep the intermediate container at a low temperature at all times, and the temperature raising process is not always necessary. That is, the large-scale device can start from a high temperature state immediately after the liquid transfer. Therefore, there are advantages in terms of energy saving and quickness. Generally, the temperature of the bulk device is maintained above 40 ° C, preferably 50-80 ° C.
該小量装置の接液部は水に対して接触角>90°の材質
のもの(例えばテフロンもしくはテフロンで表面コート
したもの)が好ましい。それは、該反応溶液と容器壁等
との相互作用が小さい為、移液の残留溶液量を少なくす
ることができる為である。接液部がテフロンもしくはテ
フロンコートした材質のものは耐酸、耐アルカリ、不純
物金属汚染防止の点からも好ましい。The liquid contact part of the small amount device is preferably made of a material having a contact angle with water of> 90 ° (for example, Teflon or a surface-coated Teflon). This is because the interaction between the reaction solution and the wall of the container is small, so that the amount of residual solution for liquid transfer can be reduced. It is preferable that the liquid contact portion is made of Teflon or a material coated with Teflon from the viewpoint of acid resistance, alkali resistance, and prevention of impurity metal contamination.
従来の装置は、通常、1つの反応容器で核形成反応か
ら結晶成長まで行う。その為、核形成時の反応溶液量は
該容器容量の1/3以下に抑えることが多い。この場合、
激しく攪拌すると、該反応溶液が泡だらけとなり、逆に
攪拌効率が悪くなるが、本発明の中量装置は核形成専用
である為、結晶成長時用のスペースを空けておく必要が
ない。従って、核形成時の反応溶液量を増して用いるこ
とができる為、より激しく攪拌混合することができ、均
一な核形成ができる。また、一回の反応でより多くの核
が形成される。好ましい反応溶液量は該中量装置容器容
量の25〜90%、より好ましくは50〜90%である。The conventional apparatus usually performs nucleation reaction to crystal growth in one reaction vessel. Therefore, the amount of reaction solution at the time of nucleation is often suppressed to 1/3 or less of the capacity of the container. in this case,
When vigorously stirred, the reaction solution becomes full of bubbles and conversely the stirring efficiency deteriorates. However, since the medium-volume apparatus of the present invention is dedicated to nucleation, it is not necessary to leave a space for crystal growth. Therefore, since the reaction solution amount at the time of nucleation can be increased and used, the mixture can be more vigorously stirred and mixed, and uniform nucleation can be performed. Also, more nuclei are formed in one reaction. A preferable reaction solution amount is 25 to 90%, more preferably 50 to 90% of the volume of the medium volume apparatus container.
その他、新核が発生し続けている期間内で核形成期間
を伸ばし、平行双晶粒子核の生成数を増やすことや、核
形成期間を伸ばすことにより平行双晶粒子核数を増やす
こともできる。この場合も、一回の核形成反応でより多
くの該核が形成され、好ましい。In addition, it is also possible to increase the number of parallel twin nuclei generated by extending the nucleation period while the new nuclei continue to be generated, or increasing the number of parallel twin nuclei by extending the nucleation period. . Also in this case, more nuclei are formed in one nucleation reaction, which is preferable.
通常、核形成時の銀塩とハロゲン化物塩水溶液の添加
は銀電位制御方式によるC.D.J.(controlled double je
t)法添加よりも、計算量の銀塩とX-塩水溶液を添加す
ることが好ましい。具体的には例えば1モル/lのAgNO3
水溶液と1.1モル/lのKBr水溶液をともに10ml/分で5分
間、平衡同時混合添加すること等を指す。それは反応容
器中にAgX粒子が存在しないか、少ししか存在しない場
合、該銀電位は不安定である為、精度がよくない為であ
る。また、製造のスケールアップを行なった場合、Ag+
濃度の不均一性がより大きくなる為に、該銀電位の不安
定性はより増加する。従ってその点からも銀電位制御を
用いないで行なうことが好ましい。Normally, the addition of silver salt and halide salt aqueous solution at the time of nucleation is controlled by a silver potential control method such as CDJ (controlled double je
t) method than addition, silver salt and X calculated amount - it is preferred to add the salt solution. Specifically, for example, 1 mol / l AgNO 3
This means that both the aqueous solution and the 1.1 mol / l KBr aqueous solution are added at 10 ml / min for 5 minutes in equilibrium simultaneous mixing. This is because the silver potential is unstable when the AgX particles are absent or only slightly present in the reaction vessel, and therefore the accuracy is not good. In addition, when the production scale is increased, Ag +
The instability of the silver potential is increased due to the greater concentration non-uniformity. Therefore, from that point as well, it is preferable to perform without silver potential control.
該核形成工程は安定核の形成を目的とするが、その為
には結晶成長過程も少し含んでもよい。銀塩水溶液とX-
塩水溶液を等速でdouble jet添加した場合、通常、1〜
4分で新しい安定核の発生が停止し、その後、核の成長
だけが起こり、該核はより安定な核となる。従って本発
明の核形成過程にはこのより安定な核への成長も含まれ
る。従って該核形成は種晶形成ともよぶことがてきる。
それ故、核形成期間としては厳密な範囲はないが、通
常、20分間以下であり、本発明の方法の場合、5秒〜10
分間がより好ましい。The nucleation step is intended to form stable nuclei, but for that purpose, a small amount of crystal growth process may be included. Aqueous silver salt solution and X -
When double jet addition of salt solution at a constant speed,
In 4 minutes the generation of new stable nuclei ceases, after which only nuclei growth occurs, which makes the nuclei more stable. Therefore, the nucleation process of the present invention includes the growth of this more stable nucleus. Therefore, the nucleation can also be called seed crystal formation.
Therefore, there is no strict range for the nucleation period, but it is usually 20 minutes or less, and in the case of the method of the present invention, 5 seconds to 10 seconds.
Minutes are more preferred.
該中量装置および該大量装置において添加された銀塩
水溶液とX-塩水溶液は迅速に該反応溶液中に均一混合さ
れることが好ましい。その為に、銀塩水溶液とX-塩水溶
液は直接に該反応溶液中に添加(即ち、直接液面下添
加)され、添加口近辺に設置された攪拌羽根で激しく攪
拌されることが好ましい。また、該添加を多孔体を通し
て添加することが好ましい。特に大量装置では銀塩とハ
ロゲン化物塩の水溶液の添加流束は太くなり、添加口近
辺の溶質の濃度の不均一性がより大きくなる。これがAg
X乳剤製造をスケールアップした時に生じる性能差の一
因になっている。該溶液の添加を多孔体を通して添加す
ると、該不均一性が大きく改良される。ここで多孔体と
は1添加溶液あたり4個以上、好ましくは10個以上、よ
り好ましくは102〜1015の孔を有し、かつ、該孔径が2mm
φ以下、好ましくは0.5mmφ〜100Å、より好ましくは0.
1mmφ〜0.1μmφの孔を有するものである。特に中空管
型多孔膜は該支持具が簡単であり、使い易さの点で特に
好ましい。It is preferable that the silver salt aqueous solution and the X - salt aqueous solution added in the medium amount apparatus and the large amount apparatus are rapidly and uniformly mixed into the reaction solution. Therefore, it is preferable that the silver salt aqueous solution and the X - salt aqueous solution are directly added to the reaction solution (that is, directly added below the liquid surface) and vigorously stirred by a stirring blade installed near the addition port. Further, it is preferable to add the addition through a porous body. Particularly in a large-scale apparatus, the addition flux of the aqueous solution of silver salt and halide salt becomes thick, and the nonuniformity of the solute concentration near the addition port becomes larger. This is Ag
This contributes to the performance difference that occurs when the X emulsion production is scaled up. Addition of the solution through the porous body greatly improves the non-uniformity. Here, the porous material has 4 or more holes, preferably 10 or more holes, and more preferably 10 2 to 10 15 holes per addition solution, and the hole diameter is 2 mm.
φ or less, preferably 0.5 mmφ to 100Å, more preferably 0.
It has a hole of 1 mmφ to 0.1 μmφ. In particular, the hollow tube type porous membrane is particularly preferable because the support is simple and easy to use.
その詳細に関しては特願平2-78534号の記載を参考に
することができる。For details, the description in Japanese Patent Application No. 2-78534 can be referred to.
また、本発明においては大量装置で結晶成長させる時
に供給する溶質イオンの供給方法としては、あらかじめ
調製した0.1μmφ以下のサイズの超微粒子乳剤(AgC
l、AgBr、AgIおよび/またはそれらの2種以上の混晶)
を供給する方法が特に好ましい。該超微粒子は主に、大
量の乳剤中に均一に混合された後に徐々に溶解し、ま
た、その平衡溶解度以上の溶質の不均一分布を生じな
い。従って大量装置での種晶の均一な結晶成長を可能に
する。該超微粒子は多重双晶粒子(1つのAgX粒子中に
双晶面を2枚以上含む粒子)やらせん転位粒子を実質的
に含まない無欠陥粒子であることが好ましい。ここで実
質的とは該欠陥粒子数の割合が5%以下、好ましくは1
%以下を指す。該超微粒子の調製法の詳細に関しては特
願平1-183417号、特願平2-142635号の記載を参考にする
ことができる。これらの添加系や攪拌機に関しては特願
平2-78534号、米国特許3,897,935号、同3,790,386号、
同3,415,650号、同3,692,283号、同4,289,733号、同3,7
85,777号、特開昭57-92,524号、同60-117,834号の記載
を参考にすることができる。Further, in the present invention, as a method of supplying solute ions for crystal growth in a large-scale apparatus, an ultrafine grain emulsion (AgC
l, AgBr, AgI and / or a mixed crystal of two or more thereof)
Is particularly preferred. The ultrafine particles are mainly mixed in a large amount of emulsion and then gradually dissolved, and do not cause a non-uniform distribution of the solute above the equilibrium solubility thereof. Therefore, it enables uniform crystal growth of seed crystals in a large-scale apparatus. The ultrafine particles are preferably multi-twin grains (grains containing two or more twin planes in one AgX grain) and defect-free grains substantially free of screw dislocation grains. Here, “substantially” means that the ratio of the number of defective particles is 5% or less, preferably 1
% Or less. The details of the method for preparing the ultrafine particles can be referred to the descriptions in Japanese Patent Application No. 1-183417 and Japanese Patent Application No. 2-142635. Regarding these addition systems and agitators, Japanese Patent Application No. 2-78534, U.S. Patents 3,897,935, 3,790,386,
No. 3,415,650, No. 3,692,283, No. 4,289,733, No. 3,7
The descriptions of 85,777, JP-A-57-92,524, and JP-A-60-117,834 can be referred to.
該核形成時に用いられる分散媒としてはAgX乳剤製造
に通常用いられる分散媒を用いることができ、ゼラチン
をはじめ後述の親水性コロイドを用いることができる。
通常はゼラチンが好ましい。分散媒の濃度としては通
常、0.1〜10重量%が用いられる。As the dispersion medium used for the nucleation, a dispersion medium usually used in AgX emulsion production can be used, and gelatin and other hydrophilic colloids described later can be used.
Gelatin is usually preferred. The concentration of the dispersion medium is usually 0.1 to 10% by weight.
銀塩とハロゲン化物塩水溶液の添加方法としては、ハ
ロゲン化物塩水溶液中へ銀塩水溶液を添加するSngle je
t法や、銀塩水溶液中にハロゲン化物水溶液を添加する
逆混法も用いることができるが、核形成中の過飽和度を
一定に保つという点で銀塩とハロゲン化物塩水溶液のdo
uble jet添加法が好ましい。The method for adding the silver salt and the halide salt aqueous solution is to add the silver salt aqueous solution to the halide salt aqueous solution by Sngle je
The t method or the reverse mixing method in which an aqueous solution of a halide is added to an aqueous solution of a silver salt can also be used.
The uble jet addition method is preferred.
銀塩水溶液の添加速度としては反応溶液1当たり2
×10-5〜10-1モル/分を用いることができる。該銀塩水
溶液の添加速度やゼラチン濃度、該反応溶液のpBr、温
度等の好ましい領域は、製造するAgX粒子の種類に依存
する。例えば単分散平行2重双晶AgX乳剤粒子を製造す
る場合には、温度5〜48℃、pBr1〜2.5に保ちながら、
銀塩水溶液とX-塩水溶液を1の反応溶液当たり6×10
-4〜2.9×10-1モル/分でゼラチン水溶液中(ゼラチン
濃度0.1〜3.0重量%)へdouble jet添加して核形成す
る。これに関しては特開昭63-151618号、特願昭63-3157
41号、特願平1-90089号の記載を参考にすることができ
る。The addition rate of the aqueous silver salt solution is 2 per reaction solution.
× 10 -5 to 10 -1 mol / min can be used. The preferable regions such as the addition rate of the silver salt aqueous solution, the gelatin concentration, the pBr of the reaction solution, and the temperature depend on the type of AgX particles to be produced. For example, when producing monodisperse parallel double-twin AgX emulsion grains, while maintaining the temperature at 5 to 48 ° C and pBr1 to 2.5,
Silver salt solution and X - salt solution per reaction solution of 6 x 10
-4 to 2.9 × 10 -1 mol / min in a gelatin aqueous solution (gelatin concentration 0.1 to 3.0% by weight) is added by double jet to form nuclei. Regarding this, Japanese Patent Laid-Open No. 63-151618 and Japanese Patent Application No. 63-3157.
Reference can be made to the descriptions in No. 41 and Japanese Patent Application No. 1-90089.
また、無双晶粒子核のみを形成する場合には、過剰ハ
ロゲンイオン濃度まは過剰銀イオン濃度が0〜10-2.1M/
l、ゼラチン濃度が1.0〜15重量%のもとで、銀塩水溶液
とX-塩水溶液を1の反応溶液あたり2×10-5〜3×10
-2モル/分でdouble jet添加して核形成する。これに関
しては特願昭63-223739号の記載を参考にすることがで
きる。その他の従来のAgX粒子の核形成条件に関しては
特願昭63-223739号、特開昭58-113926号、同58-113927
号、同58-113928号、P.Glafkides,Chimie et Physique
Photographiques,第3部、Fifth Edition,Edition de
l′Usine Nouvelle,Paris,1987年、V.L.Zelikman et a
l.著、Making and Conating Photographic Emulsion(T
he Focal Press刊、1964年)の記載を参考にすることが
できる。Further, when only non-twinned grain nuclei are formed, the excess halogen ion concentration or excess silver ion concentration is 0 to 10 -2.1 M /
l, 2 x 10 -5 to 3 x 10 per reaction solution of silver salt aqueous solution and X - salt aqueous solution under the gelatin concentration of 1.0 to 15% by weight.
Nucleate by adding double jet at -2 mol / min. Regarding this, the description in Japanese Patent Application No. 63-223739 can be referred to. Other conventional nucleation conditions for AgX particles are described in Japanese Patent Application Nos. 63-223739, 58-113926 and 58-113927.
Issue 58-113928, P. Glafkides, Chimie et Physique
Photographiques, Part 3, Fifth Edition, Edition de
l'Usine Nouvelle, Paris, 1987, VL Zelikman et a
L., Making and Conating Photographic Emulsion (T
You can refer to the description in he Focal Press, 1964).
熟成過程(物理熟成過程を指す) AgX乳剤の製造工程において、しばしば熟成工程を加
えることがある。例えば単分散六角平板AgX乳剤粒子を
製造する場合、核形成時に平行2重双晶粒子のみを作り
分けることができず、同時にその他の粒子(無双晶粒
子、一重双晶粒子、非平行2重双晶粒子等)の核も生成
する。従って次の熟成工程において、該その他の粒子を
消滅させる為に熟成工程を加える。その詳細に関しては
特開昭63-151618号、特願昭63-315741号、特願平1-9008
9号の記載を参考にすることができる。Ripening process (refers to physical ripening process) A ripening process is often added to the AgX emulsion manufacturing process. For example, in the case of producing monodisperse hexagonal tabular AgX emulsion grains, it is not possible to make only parallel double twin grains at the time of nucleation, and at the same time, other grains (non-twin grains, single twin grains, non-parallel double twin grains) can be formed. Crystal grains, etc.) are also generated. Therefore, in the next aging step, an aging step is added in order to eliminate the other particles. For details, see Japanese Patent Application Laid-Open No. 63-151618, Japanese Patent Application No. 63-315741, Japanese Patent Application No. 1-9008.
The description in No. 9 can be referred to.
また、正常晶の核を形成した後、核の数を減少させる
為に物理熟成工程を加えることがある。該熟成に関して
はT.G.Boggら、Journal of Photographic Science,24 8
1(1976年)の記載を参考にすることができる。In addition, after forming normal crystal nuclei, a physical ripening step may be added to reduce the number of nuclei. TGBogg et al. With respect to the aged, Journal of Photographic Science, 24 8
The description in 1 (1976) can be referred to.
また結晶成長が終わった後に、該粒子の形状を修飾す
る為に物理熟成工程を加えることがある。これに関して
は特開平1-131541号の記載を参考にすることができる。In addition, a physical ripening step may be added to modify the shape of the particles after the crystal growth is completed. Regarding this, the description in JP-A 1-131541 can be referred to.
この物理熟成工程は、通常、溶質の添加を停止もしく
は低速添加のもとで行われる為、小量製造装置と大量製
造装置間の性能差は小さい。従って本発明では該熟成過
程は大量装置で行われることが好ましい。Since this physical ripening step is usually performed while stopping the addition of solute or at a low speed, the difference in performance between the small-volume manufacturing apparatus and the large-volume manufacturing apparatus is small. Therefore, in the present invention, it is preferable that the ripening process is performed by a large-scale apparatus.
結晶成長過程 結晶成長段階は通常、銀塩とX-塩水溶液の添加速度を
新しい新核が発生するよりも遅く、かつ、オストワルド
熟成が生じるよりも速く添加することが好ましい。それ
は結晶成長期に新核が生成したり、オストワルド熟成が
生じると粒子サイズ分布が広くなる為である。通常、該
溶質は臨界添加速度の30〜99%、好ましくは40〜90%で
添加される。従って結晶成長時の反応溶液に対する過飽
和度の制御精度条件は、核形成時よりもゆるい条件であ
る。従って、十分に各因子が制御された核(種晶)を用
いれば、該結晶成長を大量製造装置で行っても、最終的
に得られるAgX乳剤の性能は、すべての工程を小量装置
で行ったAgX乳剤の性能と大きく異なることはない。従
って本発明では、結晶成長は大量装置で行われる。Crystal growing process the crystal growth stage is usually silver and X - slower than the rate of addition of the aqueous salt solution new new nuclei are generated, and it is preferable to add faster than Ostwald ripening occurs. This is because the grain size distribution becomes wider when new nuclei are generated or Ostwald ripening occurs during the crystal growth period. Usually, the solute is added at 30-99%, preferably 40-90% of the critical addition rate. Therefore, the control accuracy condition of the supersaturation degree with respect to the reaction solution during crystal growth is looser than that during nucleation. Therefore, if nuclei (seed crystals) in which each factor is sufficiently controlled are used, the performance of the finally obtained AgX emulsion will be the same even if the crystal growth is carried out in a large-scale manufacturing apparatus. It does not differ significantly from the performance of the AgX emulsions we have made. Therefore, according to the present invention, the crystal growth is performed in a large-scale apparatus.
通常、反応溶液中の溶質の過飽和度を高くし、AgX粒
子成長を拡散律速成長の寄与の大きい成長機構で成長さ
せると、粒子サイズ分布の狭いAgX粒子が得られる為、
好ましい。Usually, when the supersaturation degree of the solute in the reaction solution is increased and AgX particle growth is grown by a growth mechanism that has a large contribution of diffusion-controlled growth, AgX particles with a narrow particle size distribution can be obtained.
preferable.
結晶成長期に添加する銀イオンとハロゲンイオンの添
加方法としては銀塩水溶液とハロゲン化物塩水溶液を添
加する方法、あらかじめ0.1μmφ以下のサイズの超微
粒子乳剤(AgCl、AgBr、AgIおよび/またはそれらの混
晶)を添加する方法、それらの重ね合せの方法を用いる
ことができる。また、結晶成長中に銀イオン、ハロゲン
イオンの添加速度を増加させる方法を用いることができ
る。その増加させていく方法としては、特公昭48-36890
号、同52-16364号に記載のように、一定濃度の銀塩水溶
液およびX-塩水溶液の添加速度(流速)を上昇させても
よく、また銀塩水溶液およびX-塩水溶液の濃度を増加さ
せてもよい。また、それらの重ね合せでもよい。Ag+お
よびX-の添加速度は段階状に増加させてもよく、また連
続的に増加させてもよく、それぞれの目的に応じて選択
することができる。The silver ion and the halogen ion to be added during the crystal growth period are a method of adding an aqueous solution of silver salt and an aqueous solution of halide salt, and an ultrafine grain emulsion (AgCl, AgBr, AgI and / or their size) having a size of 0.1 μmφ or less in advance. It is possible to use a method of adding mixed crystals) or a method of stacking them. Further, a method of increasing the addition rate of silver ions and halogen ions during crystal growth can be used. As a way to increase it, Japanese Patent Publication No. 48-36890
No. 52-16364, the addition rate (flow rate) of the silver salt aqueous solution and the X - salt aqueous solution having a constant concentration may be increased, or the concentration of the silver salt aqueous solution and the X - salt aqueous solution may be increased. You may let me. Moreover, those may be superposed. The addition rates of Ag + and X − may be increased stepwise or continuously and can be selected according to the respective purpose.
混晶形成時のハロゲンイオンの添加方法としてはC
l-、Br-、I-の2つ以上を含む溶液を添加する方法の
他、Cl-、Br-、I-をそれぞれ独立の添加系として添加す
る方法や、それらの重ね合せ方式をとることができる。
粒子内沃度分布を漸増または漸減型にする場合は結晶成
長とともに、例えば該添加ハロゲン化物水溶液の沃化物
含率を漸増または漸減すればよく、急峻型にする場合に
は、結晶成長とともに、例えば該添加ハロゲン化物水溶
液中の沃化物含率を急増または急激すればよい。これら
の詳細については特願昭63-223739号、特開昭55-142329
号、同58-113926号、同59-45438号、米国特許3,650,757
号、同4,242,445号、英国特許1,335,925号および後述の
文献の記載を参考にすることができる。As a method of adding halogen ions during mixed crystal formation, C
In addition to the method of adding a solution containing two or more of l − , Br − , and I − , the method of adding Cl − , Br − , and I − as independent addition systems, and the superposition method thereof You can
When the iodide distribution in the grains is gradually increased or gradually decreased, the crystal growth may be performed together with, for example, the iodide content of the added halide aqueous solution may be gradually increased or gradually decreased. The iodide content in the added halide aqueous solution may be rapidly increased or rapidly increased. For details of these, Japanese Patent Application No. 63-223739 and JP-A-55-142329.
No. 58-113926, No. 59-45438, U.S. Pat.
No. 4,242,445, British Patent No. 1,335,925, and the descriptions in the following documents can be referred to.
また特願昭63-223739号に記載されているように予め
計算された理論式に従って添加することが最も好まし
い。結晶成長時の温度としては、通常、40〜80℃を用い
ることができる。Further, it is most preferable to add according to a theoretical formula calculated in advance as described in Japanese Patent Application No. 63-223739. The temperature at the time of crystal growth can be usually 40 to 80 ° C.
本発明の装置によるAgX乳剤製造のその他の条件 本発明の方法によるAgX乳剤製造において、各工程に
おける反応溶液のpHは1.6〜10.5領域をそれぞれ目的に
応じて用いることができる。表面かぶらせ型の直接反転
AgX乳剤を製造する場合は、AgX粒子内に還元銀核を含ま
せない方が好ましい。その場合、通常は反応溶液pHを好
ましくは6以下、より好ましくはpH1.6〜5.6を用いるこ
とができる。Other Conditions for AgX Emulsion Production by the Apparatus of the Present Invention In the AgX emulsion production by the method of the present invention, the pH of the reaction solution in each step may be in the range of 1.6 to 10.5 depending on the purpose. Direct surface reversal
When producing an AgX emulsion, it is preferable not to include reduced silver nuclei in AgX grains. In that case, the reaction solution pH is usually preferably 6 or less, more preferably pH 1.6 to 5.6.
また、ネガ型AgX粒子の場合はAgX粒子中に還元増感核
を含ませた方が好ましい。この場合反応溶液のpHは好ま
しくはpH5〜10領域を用いることができる。但し、これ
らの好ましいpH領域は該反応溶液のpBrに依存し、通
常、X-濃度が減少し、Ag+濃度が増えるにつれ、還元性
銀核が発生しはじめるpH領域は低pH側にシフトする。Further, in the case of negative type AgX particles, it is preferable to include reduction sensitizing nuclei in the AgX particles. In this case, the pH of the reaction solution is preferably in the range of pH 5 to 10. However, these preferable pH regions depend on pBr of the reaction solution, and as the X - concentration decreases and the Ag + concentration increases, the pH region in which reducible silver nuclei start to generate shifts to the low pH side. .
本発明の方法を用いてAgX乳剤を製造する場合に用い
られる分散媒としてはAgX乳剤に通常用いられるものを
用いることができ、ゼラチンをはじめ、種々の親水性コ
ロイドを用いることができる。通常はゼラチンが好まし
く、ゼラチンとしてはアルカリ処理ゼラチンの他、酸処
理ゼラチン、フタル化ゼラチンの如き誘導体ゼラチン、
メチオニン含量が50μモル/g以下のゼラチン(特開昭62
-157024の記載を参考にすることができる)、低分子量
ゼラチン(分子量2000〜10万、酵素分解ゼラチン、酸・
アルカリによる加水分解ゼラチン)を用いることができ
るし、それらの混合物を用いることもできる。誘導体ゼ
ラチンとしてはゼラチンと酸ハライド、酸無水物、イソ
シアナート類、ブロモ酢酸、アルカンサルトン類、ビニ
ルスルホンアミド類、マレインイミド化合物類、ポリア
ルキレンオキシド類、エポキシ化合物類等の種々の化合
物を反応させて得られるものが用いられる。その他、ゼ
ラチンと他の高分子とのグラフトポリマー、チオエーテ
ルポリマー、アルブミン、カゼイン等の蛋白質、ヒドロ
キシエチルセルロース、カルボキシメチルセルロース、
セルロース硫酸エステル類の如きセルロース誘導体、ア
ルギン酸ソーダ、でん粉誘導体などの糖誘導体、ポリビ
ニルアルコール、ポリビニルアルコール部分アセター
ル、ポリ−N−ビニルピロリドン、ポリアクリル酸、ポ
リメタクリル酸、ポリアクリルアミド、ポリビニルイミ
ダゾール、ポリビニルピラゾール等の単一あるいは共重
合体の如き多種の合成親水性高分子物質を単独もしくは
混合系で用いることができる。As the dispersion medium used when an AgX emulsion is produced by the method of the present invention, those commonly used for AgX emulsions can be used, and various hydrophilic colloids such as gelatin can be used. Usually, gelatin is preferred, and in addition to alkali-processed gelatin, acid-processed gelatin, derivative gelatin such as phthalated gelatin,
Gelatin with a methionine content of 50 μmol / g or less
-157024 can be referred to), low molecular weight gelatin (molecular weight 2000-100,000, enzyme-degraded gelatin, acid
Alkali hydrolyzed gelatin) can be used, or a mixture thereof can also be used. As derivative gelatin, gelatin is reacted with various compounds such as acid halides, acid anhydrides, isocyanates, bromoacetic acid, alkane sultones, vinyl sulfonamides, maleinimide compounds, polyalkylene oxides, epoxy compounds, etc. What is obtained is used. Others, graft polymers of gelatin and other polymers, thioether polymers, albumin, proteins such as casein, hydroxyethyl cellulose, carboxymethyl cellulose,
Cellulose derivatives such as cellulose sulfates, sodium alginate, sugar derivatives such as starch derivatives, polyvinyl alcohol, polyvinyl alcohol partial acetal, poly-N-vinyl pyrrolidone, polyacrylic acid, polymethacrylic acid, polyacrylamide, polyvinyl imidazole, polyvinyl pyrazole A variety of synthetic hydrophilic polymeric substances such as single or copolymers can be used alone or in a mixed system.
これらの詳細に関しては後述の文献の記載を参考にす
ることができる。For details of these, reference can be made to the descriptions in the literature described below.
該AgX粒子の核形成時に過飽和度を調節する為に、ま
た熟成過程で熟成を促進する為に、また結晶成長過程で
成長を促進する為に、また化学増感時に化学増感を効果
的にならしめる為にハロゲン化銀溶剤を用いることがで
きる。In order to control the degree of supersaturation during nucleation of the AgX grains, to promote ripening in the ripening process, to promote growth in the crystal growth process, and to effectively perform chemical sensitization during chemical sensitization. A silver halide solvent can be used for smoothing.
しばしば用いられるハロゲン化銀溶剤としては、チオ
シアン酸塩、アンモニア、チオエーテル、チオ尿素類な
どを挙げることが出来る。これについては後述の文献の
記載を参考にすることができる。Examples of frequently used silver halide solvents include thiocyanate, ammonia, thioether, and thioureas. About this, the description of the literature mentioned later can be referred to.
本発明の方法によるAgX乳剤の製造時に粒子形成から
塗布時までに添加することのできる添加剤に特に制限は
ない。添加することのできる添加剤はAgX溶剤(熟成促
進剤ともいう)、AgX粒子へのドープ剤〔第8族貴金属
化合物、その他の金属化合物(金、鉄、鉛、カドミウム
等)、カルコゲン化合物、SCN化合物等〕、分散媒、か
ぶり防止剤、安定剤、増感色素(青、緑、赤、赤外、パ
ンクロ、オルソ用等)、強色増感剤、化学増感剤(イオ
ウ、セレン、テルル、金および第8族貴金属化合物、リ
ン化合物の単独およびその組み合わせ添加による化学増
感剤で最も好ましくは金、イオウ、セレン化合物の組み
合わせからなる化学増感剤、塩化第1スズ、二酸化チオ
ウレア、ポリアミンおよびアミンボラン系化合物等の還
元増感剤)、かぶらせ剤(ヒドラジン系化合物等の有機
かぶらせ剤、無機かぶらせ剤)、界面活性剤(消泡剤
等)、乳剤沈降剤、可溶性銀塩(AgSCN、リン酸銀、酢
酸銀等)、乳剤沈降剤、潜像安定剤、圧力減感防止剤、
増粘剤、硬膜剤、現像剤(ハイドロキノン系化合物
等)、現像変性剤等であり、具体的な化合物例および使
用方法等については、下記文献の記載を参考にすること
ができる。There is no particular limitation on the additives that can be added during the production of the AgX emulsion by the method of the present invention from grain formation to coating. Additives that can be added are AgX solvents (also called ripening accelerators), dope agents for AgX particles [Group 8 precious metal compounds, other metal compounds (gold, iron, lead, cadmium, etc.), chalcogen compounds, SCN. Compounds, etc.], dispersion media, antifoggants, stabilizers, sensitizing dyes (for blue, green, red, infrared, panchromatic, ortho etc.), supersensitizers, chemical sensitizers (sulfur, selenium, tellurium) , Gold and Group 8 noble metal compounds, phosphorus compounds alone or in combination thereof, most preferably chemical sensitizers comprising a combination of gold, sulfur and selenium compounds, stannous chloride, thiourea dioxide, polyamines And reduction sensitizers such as amine borane-based compounds), fogging agents (organic fogging agents such as hydrazine-based compounds, inorganic fogging agents), surfactants (defoaming agents, etc.), emulsion precipitants, soluble silver salts ( A gSCN, silver phosphate, silver acetate, etc.), emulsion precipitation agent, latent image stabilizer, pressure desensitizing agent,
They are thickeners, hardeners, developers (hydroquinone-based compounds and the like), development modifiers and the like. Specific examples of compounds and methods of use can be referred to the descriptions in the following documents.
その他、該AgX乳剤は下記文献に記載された既知技
術、既知化合物ときあらゆる組み合わせ構成を用いるこ
とができる。In addition, the AgX emulsion may use any combination of known techniques and known compounds described in the following documents.
Research Disclosure vol.176(item 17643)(Decembe
r,1978)、vol.184(item 18431)(August,1979)、vo
l.216(item 21728)(May,198)、日化協月報1984年、
12月号、p.18〜27、日本写真学会誌、49巻、7(1986
年)、同52巻、144〜166(1989年)、特開昭58-113926
号〜113928号、同59-90842号、同59-142539号、同62-25
3159号、同62-99751号、同63-151618号、同62-6251号、
同62-115035号、同63-305343号、同62-266538、同63-22
0238、同63-78465、特開平1-131541、同1-297649、同2-
146033、特願昭63-315741、同62-208241、同63-31151
8、特公昭59-43727、U.S.4,707,436、U.S.4,705,744
号、同4,707,436号、T.H.James,The Theory of The Pho
tographic Process,Fourth Fdition,Macmillan,New Yor
k,1977年、V.L.Zelkman et al.著、Making and Coating
Photographic Emulsion(The Focal Press刊、1964
年)、P.Glafkides,Chimie et Physique Photographiqu
es,Fifth Edition,Edition de l′ Usine Nouvelle,Par
is,1987年、同Second Edition,Paul Montel,Paris,1957
年、K.R.Hollister,Journsl of Imag,Sic.,31、148〜15
6(1987年)。Research Disclosure vol.176 (item 17643) (Decembe
r, 1978), vol.184 (item 18431) (August, 1979), vo
l.216 (item 21728) (May, 198), JCIA monthly report 1984,
December issue, p.18-27, Journal of the Photographic Society of Japan, Vol. 49, 7 (1986
52), 144-166 (1989), JP-A-58-113926
Issue-113928, 59-90842, 59-142539, 62-25
No. 3159, No. 62-99751, No. 63-151618, No. 62-6251,
62-115035, 63-305343, 62-266538, 63-22
0238, 63-78465, JP-A 1-131541, 1-297649, 2-
146033, Japanese Patent Application 63-315741, 62-208241, 63-31151
8, JP-B-59-43727, US4,707,436, US4,705,744
Issue 4,707,436, THJames, The Theory of The Pho
tographic Process, Fourth Fdition, Macmillan, New Yor
1977, VL Zelkman et al., Making and Coating
Photographic Emulsion (The Focal Press, 1964
Year), P. Glafkides, Chimie et Physique Photographiqu
es, Fifth Edition, Edition de l ′ Usine Nouvelle, Par
is, 1987, Second Edition, Paul Montel, Paris, 1957
Year, KR Hollister, Journsl of Imag, Sic., 31 , 148-15
6 (1987).
(発明の効果) 少なくとも分散媒と水を含む反応溶液中において銀塩
とX-塩溶液を添加してAgX写真乳剤を大量に製造する場
合に、該乳剤の核形成を中量装置で行い、熟成およびま
たは結晶成長を大量装置で行う製造装置を用いると、従
来の核形成から結晶成長までを同一の大量装置で行う方
式の製造装置を用いる場合に比べて、次の特長を有す
る。(Effect of the invention) In the case of producing a large amount of AgX photographic emulsion by adding a silver salt and an X - salt solution in a reaction solution containing at least a dispersion medium and water, nucleation of the emulsion is performed with a medium-weight apparatus, The use of a manufacturing apparatus that performs aging and / or crystal growth in a large-scale apparatus has the following features, compared to the case of using a conventional manufacturing apparatus that performs the process from nucleation to crystal growth in the same large-scale apparatus.
研究用の小量装置で開発したAgX乳剤とほぼ同一の性
能のAgX乳剤を、即座に大量に製造することができる。An AgX emulsion with almost the same performance as the AgX emulsion developed with a small amount of equipment for research can be immediately produced in a large amount.
核形成時の反応溶液中の過飽和度の制御精度は、基本
的には小量装置の方がよい。従ってより核形成の制御さ
れた高性能のAgX乳剤を大量に製造することができる。
特に単分散平行2重双晶平板粒子や、無双晶粒子を製造
する場合に特に効果が大きい。As for the control accuracy of the supersaturation degree in the reaction solution at the time of nucleation, a small amount device is basically better. Therefore, a high-performance AgX emulsion with more controlled nucleation can be produced in a large amount.
In particular, it is particularly effective when producing monodisperse parallel double twinned tabular grains and twin-free grains.
平行双晶面を有する平板状AgX乳剤粒子を製造する場
合、核形成を低温で行い、次の熟成工程を高温で行うこ
とがある。従来の装置では、この場合には大量装置の温
度を上げ下げし、エネルギー消費量が多いが、本発明の
第1図の装置では、該温度の上げ下げ操作がなくなる。
従って省エネルギー型で迅速性の利点を有する。When producing tabular AgX emulsion grains having parallel twin planes, nucleation may be performed at a low temperature and the subsequent ripening step may be performed at a high temperature. In the conventional device, the temperature of a large number of devices is raised and lowered in this case, and the energy consumption is large, but in the device of FIG. 1 of the present invention, the operation of raising and lowering the temperature is eliminated.
Therefore, it has an advantage of energy saving and quickness.
(実施例) 以下に実施例を挙げて本発明を更に説明するが、本発
明の実施態様はこれに限定されるものではない。(Example) Hereinafter, the present invention will be further described with reference to examples, but the embodiments of the present invention are not limited thereto.
実施例1 第1図の製造工程を用いて行った。該中量装置の反応
容器の容量は40l、該中間容器容量と該大量装置の反応
容器の容量は共に960lである。該中量装置と該中間容器
の温度は常に30℃に保ち、該大量装置の温度は常に75℃
に保った。温度設定は恒温水槽により行った。また、該
大量装置と該中量装置で銀塩とハロゲン化物塩水溶液の
添加はすべて中空管型多孔膜を通して添加した。Example 1 The manufacturing process of FIG. 1 was used. The volume of the reaction vessel of the medium-volume apparatus is 40 l, and the volume of the intermediate vessel and the volume of the reaction vessel of the large-volume apparatus are both 960 l. The temperature of the medium volume device and the intermediate container is always kept at 30 ° C, and the temperature of the large volume device is always 75 ° C.
Kept. The temperature was set in a constant temperature water bath. In addition, the addition of the silver salt and halide salt aqueous solution was carried out through the hollow tube type porous membrane in the large-volume apparatus and the medium-volume apparatus.
まず、該中量装置の反応容器にゼラチン水溶液〔H2O
24l、平均分子量()=2万の低分子量ゼラチン168
g、KBr 108g、pH5.5、30℃〕を入れた。攪拌しながらdo
uble jet法でAgNO3水溶液〔100ml中に16gのAgNO3と=
2万のゼラチンを0.7g、HNO3(1N)0.14mlを有する)と
KBr水溶液〔100ml中に12.1gのKBrと=2万のゼラチン
を0.7g有する〕を攪拌しながら、同時にそれぞれ1200ml
/分で1320mlを添加した。1分後に該反応溶液を中間容
器に移液し、中間容器にゼラチン水溶液3360ml〔脱イオ
ン化アルカリ処理ゼラチン640g、pH5.5〕を添加した。
該中量装置を水で1回洗浄し、fより廃水した。次に再
び、該中量装置にゼラチン水溶液を加え、上記と同じ操
作を11回行った。所要時間は66分であった。中間容器に
蓄えられた約350lの該反応溶液を、75℃に保った大量装
置の反応容器に移液した。該反応溶液の温度が75℃にな
ってから、更に12分間、熟成をし、次にAgNO3水溶液(1
5重量%)を1920ml/分で7200ml添加した。First, a gelatin aqueous solution [H 2 O
24 liters, low molecular weight gelatin 168 with average molecular weight () = 20,000
g, KBr 108 g, pH 5.5, 30 ° C.] was added. Do with stirring
By the uble jet method, AgNO 3 aqueous solution [16 g of AgNO 3 in 100 ml =
0.7g of 20,000 gelatin and 0.14ml of HNO 3 (1N))
1200 ml each of KBr aqueous solution [having 12.1 g of KBr and 0.7 g of 20,000 gelatin in 100 ml] at the same time while stirring
1320 ml was added per minute. After 1 minute, the reaction solution was transferred to an intermediate container, and 3360 ml of an aqueous gelatin solution [640 g of deionized alkali-treated gelatin, pH 5.5] was added to the intermediate container.
The medium volume device was washed once with water and drained from f. Then, again, an aqueous gelatin solution was added to the medium weight apparatus, and the same operation as above was performed 11 times. The time required was 66 minutes. About 350 l of the reaction solution stored in the intermediate container was transferred to the reaction container of a large-scale apparatus maintained at 75 ° C. After the temperature of the reaction solution reached 75 ° C., it was aged for another 12 minutes, and then the AgNO 3 aqueous solution (1
5 wt%) was added at 7200 ml at 1920 ml / min.
次にNH3水溶液(25重量%)2256mlとNH4NO3水溶液(5
0重量%)2256mlの混合液を添加し、20分間熟成した。
次に3NのHNO3水溶液を加え、pH5.5に調節した。更にKBr
水溶液(10重量%)を3384ml添加し、AgNO3水溶液(15
重量%)とKBr水溶液を用いて、銀電位−20mV(vs.室温
飽和カロメル電極)でC.D.J添加した。AgNO3水溶液添加
はまず2400ml/分で10分間の添加をし、続けて4320ml/分
で20分間の添加をした。2分後に該反応溶液を沈降水洗
用の容器(温度30℃)に移液し、通常の沈降水洗法で乳
剤を水洗し、ゼラチン12kgを加え、再分散させ、pH6.
4、pAg8.6に調節した。得られたAgX乳剤粒子のレプリカ
の透過型電子顕微鏡写真像(TEM像)を観察した。その
結果は表1の通りであった。Next, 2256 ml of NH 3 aqueous solution (25 wt%) and NH 4 NO 3 aqueous solution (5
0 wt%) 2256 ml of the mixed solution was added, and the mixture was aged for 20 minutes.
Next, 3N HNO 3 aqueous solution was added to adjust the pH to 5.5. Further KBr
3384 ml of an aqueous solution (10% by weight) was added, and an AgNO 3 aqueous solution (15
(% By weight) and a KBr aqueous solution were used to add CDJ at a silver potential of -20 mV (vs. room temperature saturated calomel electrode). The AgNO 3 aqueous solution was added first at 2400 ml / min for 10 minutes, and subsequently at 4320 ml / min for 20 minutes. After 2 minutes, the reaction solution was transferred to a vessel for washing with sedimentation (temperature: 30 ° C.), the emulsion was washed with water by an ordinary sedimentation washing method, and 12 kg of gelatin was added and redispersed to pH 6.
4, adjusted to pAg8.6. A transmission electron microscope photographic image (TEM image) of the obtained replica of the AgX emulsion particles was observed. The results are shown in Table 1.
その製造工程において、該大量装置における熟成、結
晶成長過程の所要時間は72分間であり、該核形成の所要
時間とつり合っており、スムーズに、再現性よく、該乳
剤の製造が自動制御で行われた。なお、この工程ですべ
ての溶液添加は、直接、該混合box(各図中のd)内に
液中添加された。In the production process, the time required for ripening and crystal growth in the large-scale apparatus is 72 minutes, which is in balance with the time required for the nucleation, and the production of the emulsion can be controlled automatically and smoothly with good reproducibility. It was conducted. In addition, in this step, all the solutions were added directly into the mixing box (d in each figure).
比較例1 4lの容積を有する反応容器を用いて実施例1と同じ処
方で核形成→熟成→結晶成長反応を行った。但し、実施
例1に対し、核形成反応は1/20のスケールであり、熟成
と結晶成長反応は1/240のスケールであった。また、各
添加溶液はいずれも実施例1の添加溶液と同じ組成であ
る。即ち、該反応容器に実施例1と同じゼラチン水溶液
を1.2l入れ、30℃に保った。攪拌しながらdouble jet法
でAgNO3水溶液とKBr水溶液を攪拌しながら、同時にそれ
ぞれ60ml/分で66mlを添加した。1分後にゼラチン水溶
液168mlを添加し、均一に混合した後、75℃に昇温し
た。昇温後、12分間の熟成をした後、AgNO3水溶液を8mg
/分で30ml添加した。次にNH3水溶液9.4mlとNH4NO3水溶
液9.4mlの混合液を添加し、20分間の熟成をした。次に3
NのHNO3水溶液を加え、pH5.5にした。次にKBr水溶液14.
1mlを添加し、AgNO3水溶液とKBr水溶液を用いて、銀電
位−20mVでC.D.J.添加した。AgNO3水溶液添加はまず、1
0ml/分で10分間の添加をし、続いて18ml/分で20分間の
添加をした。2分後に温度を30℃に下げ、通常法の沈降
水洗法により乳剤を水洗し、ゼラチン50gを加え、再分
散させ、pH6.4、pAg8.6に調節した。得られたAgX乳剤粒
子のレプリカのTEM像を観察した。その結果を表1に示
した。Comparative Example 1 A reaction vessel having a volume of 4 liters was used to carry out a nucleation → aging → crystal growth reaction with the same formulation as in Example 1. However, in contrast to Example 1, the nucleation reaction was on a 1/20 scale, and the aging and crystal growth reactions were on a 1/240 scale. Further, each additive solution has the same composition as the additive solution of Example 1. That is, 1.2 liters of the same aqueous gelatin solution as in Example 1 was placed in the reaction vessel and kept at 30 ° C. While stirring the AgNO 3 aqueous solution and the KBr aqueous solution by the double jet method, 66 ml of each was simultaneously added at 60 ml / min. After 1 minute, 168 ml of an aqueous gelatin solution was added and uniformly mixed, and then the temperature was raised to 75 ° C. After raising the temperature and aging it for 12 minutes, 8 mg of AgNO 3 aqueous solution was added.
30 ml was added per minute. Next, a mixed solution of 9.4 ml of NH 3 aqueous solution and 9.4 ml of NH 4 NO 3 aqueous solution was added, and the mixture was aged for 20 minutes. Then 3
An aqueous HNO 3 solution of N was added to adjust the pH to 5.5. Then KBr solution 14.
1 ml was added, and CDJ was added using AgNO 3 aqueous solution and KBr aqueous solution at a silver potential of −20 mV. Add the AgNO 3 aqueous solution first
An addition of 0 ml / min for 10 minutes followed by an addition of 18 ml / min for 20 minutes. After 2 minutes, the temperature was lowered to 30 ° C., the emulsion was washed with water by a usual precipitation water washing method, 50 g of gelatin was added and redispersed, and the pH was adjusted to 6.4 and pAg 8.6. The TEM image of the replica of the obtained AgX emulsion grains was observed. The results are shown in Table 1.
比較例2 第1図の大量装置のみを用いて核形成から結晶成長ま
で行った。処方は比較例1の処方を単に240倍にスケー
ル・アップした処方で行った。得られた乳剤粒子の特性
値を表1に示した。Comparative Example 2 From the nucleation to the crystal growth, only the large-scale apparatus shown in FIG. 1 was used. The formulation was carried out by simply scaling up the formulation of Comparative Example 1 by 240 times. The characteristic values of the obtained emulsion grains are shown in Table 1.
表1の結果によると、研究用の小量装置で調製した高
アスペクト比単分散平板粒子の特性値(比較例1)と実
施例1の特性値はほぼ同一であったが、従来法の比較例
2では特性値がかなり悪化したことを示している。従っ
て本発明の効果が実施例1で確認されたといえる。な
お、実施例の核形成反応は比較例1に対し容器容量は10
倍で、反応液容量は20倍量になっている。即ち、該中量
装置容器は核形成専用の為、該容器容量をより有効に利
用している。なお、該中空管型多孔膜はテフロンチュー
ブに鋭利な針をゆっくりさし込むことにより、0.1mmφ
の孔を1個/2.25mm2の割合で開けて製作した。孔数は
小量装置で1添加系あたり100個、中量装置で2000個、
大量装置で24000個を有する。該チューブの一方の端は
栓により封をしている。 According to the results in Table 1, the characteristic values of the high-aspect-ratio monodisperse tabular grains prepared by the small-scale apparatus for research (Comparative Example 1) and the characteristic values of Example 1 were almost the same, but comparison with the conventional method was performed. Example 2 shows that the characteristic values have deteriorated considerably. Therefore, it can be said that the effects of the present invention were confirmed in Example 1. The nucleation reaction of the example has a container capacity of 10 compared with the comparative example 1.
Double the volume of the reaction solution is 20 times. That is, since the medium-volume device container is dedicated to nucleation, the container capacity is used more effectively. In addition, the hollow tube-type porous membrane was prepared by slowly inserting a sharp needle into a Teflon tube,
The holes were made at a rate of 1 / 2.25 mm 2 . The number of holes is 100 per 1 addition system for small volume equipment, 2000 for medium volume equipment,
It has 24,000 pieces in a mass device. One end of the tube is sealed with a stopper.
第1図は本発明の中量装置と中間容器と大量装置の関係
の一例を示す概略図である。Aは中量装置、Eは大量装
置を表し、攪拌装置は特開昭51-72,994号記載の攪拌装
置である。但し各装置の銀塩とハロゲン化物塩水溶液の
添加口は中空管型多孔膜である。その他、Dは大量容
器、F、G、Hは送液パイプ、fは中量装置を洗浄した
時の廃水パイプである。 は硝酸銀水溶液とハロゲン化物塩水溶液の添加系を示
す。iは中空管型多孔添加チューブである。 第2図はカスケード型の多段バッチ式小量装置を示し、
第3図はステップワイズ型の多段バッチ式小量装置を示
す。a、bは可動側壁である。 第4図(a)は中空管型多孔チューブの断面図であり、
(b)は上面図である。jは流出液の流束を示す。 kは微細孔を示す。 また、第1図〜第3図のdは混合boxを示す。FIG. 1 is a schematic diagram showing an example of the relationship between the medium-volume device, the intermediate container and the large-volume device of the present invention. A is a medium-weight apparatus, E is a large-volume apparatus, and the stirring apparatus is the stirring apparatus described in JP-A-51-72,994. However, the addition port of the silver salt and halide salt aqueous solution of each device is a hollow tube type porous membrane. In addition, D is a large-capacity container, F, G, and H are liquid supply pipes, and f is a waste water pipe when the medium-volume device is washed. Indicates an addition system of an aqueous silver nitrate solution and an aqueous halide salt solution. i is a hollow tube type porous addition tube. FIG. 2 shows a cascade type multi-stage batch type small amount apparatus,
FIG. 3 shows a stepwise type multi-stage batch type small amount apparatus. a and b are movable side walls. FIG. 4 (a) is a cross-sectional view of a hollow tubular porous tube,
(B) is a top view. j indicates the flux of the effluent. k indicates a fine hole. Further, d in FIGS. 1 to 3 indicates a mixing box.
Claims (6)
するハロゲン化銀乳剤を製造する方法において、該粒子
の核形成を中容量のバッチ式又は多段バッチ式反応装置
で行い、生成した核乳剤を大量製造装置へ移液するか該
核乳剤を中間容器へ移液した後に大量製造装置に移液
し、該大量製造装置で熟成及び/または結晶成長を行な
い、(該大量製造装置容量/該中容量装置容量)=yが
3〜2000であり、該移液の回数(n)が2〜2000回であ
ることを特徴とするハロゲン化銀乳剤の製造方法。1. A method for producing a silver halide emulsion having at least a dispersion medium and silver halide grains, wherein the nucleation of the grains is carried out in a medium-capacity batch type or multi-stage batch type reaction device, and the produced nucleus emulsion is Transfer to a large-scale manufacturing apparatus or transfer the nuclear emulsion to an intermediate container and then transfer to a large-scale manufacturing apparatus, and perform aging and / or crystal growth in the large-scale manufacturing apparatus, (volume of the large-scale manufacturing apparatus / Capacity device capacity) = y is 3 to 2000, and the number of times of liquid transfer (n) is 2 to 2000 times, a method for producing a silver halide emulsion.
り、該y値が3〜400であり、該n値が3〜400である事
を特徴とする請求項1記載のハロゲン化銀乳剤の製造方
法。2. The silver halide according to claim 1, wherein the capacity of the medium weight device is 5 to 500 liters, the y value is 3 to 400, and the n value is 3 to 400. Emulsion manufacturing method.
つ、該中間容器の温度を10〜45℃に保ち、該大量装置の
温度を40〜80℃に保つことを特徴とする請求項(1)記
載のハロゲン化銀乳剤の製造方法。3. It is characterized in that 2 to 30 reactors of the medium capacity are used, the temperature of the intermediate container is kept at 10 to 45 ° C., and the temperature of the large volume device is kept at 40 to 80 ° C. A method for producing a silver halide emulsion according to claim 1.
あり、かつ、該核形成を銀塩とハロゲン化物塩水溶液の
平衡同時混合法で行ない、かつ、該平衡同時混合を銀電
位制御法を用いずに、流量制御法で行なうことを特徴と
する請求項(1)記載のハロゲン化銀乳剤の製造方法。4. The y value is 3 to 50, the n value is 3 to 20, and the nucleation is performed by an equilibrium simultaneous mixing method of an aqueous solution of a silver salt and a halide salt, and the equilibrium. The method for producing a silver halide emulsion according to claim 1, wherein the simultaneous mixing is performed by a flow rate control method without using a silver potential control method.
ハロゲン化物塩水溶液の添加を1添加溶液あたり孔数が
4以上の多孔体を通して添加することを特徴とする請求
項(1)記載のハロゲン化銀乳剤の製造方法。5. The method according to claim 1, wherein the silver salt aqueous solution and the halide salt aqueous solution are added during the nucleation and crystal growth through a porous body having 4 or more pores per one added solution. Method for producing silver halide emulsion of.
の全投影面積の70%以上が平行双晶面を有する平板状ハ
ロゲン化銀粒子で構成されていることを特徴とする請求
項(1)記載のハロゲン化銀乳剤の製造方法。6. The silver halide emulsion according to claim 1, wherein 70% or more of the total projected area of the silver halide grains is composed of tabular silver halide grains having parallel twin planes. 1) The method for producing a silver halide emulsion described in 1).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2188243A JP2687180B2 (en) | 1989-08-10 | 1990-07-17 | Method for producing silver halide emulsion |
US07/921,604 US5202226A (en) | 1989-08-10 | 1992-08-03 | Process for producing silver halide emulsion |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-207513 | 1989-08-10 | ||
JP20751389 | 1989-08-10 | ||
JP2188243A JP2687180B2 (en) | 1989-08-10 | 1990-07-17 | Method for producing silver halide emulsion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03155539A JPH03155539A (en) | 1991-07-03 |
JP2687180B2 true JP2687180B2 (en) | 1997-12-08 |
Family
ID=26504801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2188243A Expired - Fee Related JP2687180B2 (en) | 1989-08-10 | 1990-07-17 | Method for producing silver halide emulsion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2687180B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0789201B2 (en) * | 1985-09-07 | 1995-09-27 | コニカ株式会社 | Silver halide emulsion, method for producing the same, and silver halide light-sensitive material using the silver halide emulsion |
JPS6433545A (en) * | 1987-07-30 | 1989-02-03 | Fuji Photo Film Co Ltd | Method and apparatus for producing photographic sensitive solution |
-
1990
- 1990-07-17 JP JP2188243A patent/JP2687180B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03155539A (en) | 1991-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6096495A (en) | Method for preparing silver halide emulsion | |
JPS5945132B2 (en) | Method for producing photosensitive silver halide crystals | |
JP2754052B2 (en) | Silver halide emulsion | |
GB1596602A (en) | Preparation of silver halide emulsions | |
US5254454A (en) | Method of preparing silver halide grains for photographic emulsion and light sensitive material containing the same | |
JPS6227008B2 (en) | ||
US5202226A (en) | Process for producing silver halide emulsion | |
JPH04181241A (en) | Method of stabilizing high chloride crystal having corrected crystal habit by using bromide shell | |
JP2699119B2 (en) | Method for producing silver halide emulsion | |
JP2687180B2 (en) | Method for producing silver halide emulsion | |
JPH06507255A (en) | How to obtain monodisperse tabular grains | |
JP2687252B2 (en) | Method for producing silver halide emulsion | |
JP2530843B2 (en) | Method for producing silver halide emulsion | |
JPS5937538A (en) | Manufacture of silver halide emulsion | |
JP2852738B2 (en) | Method for producing silver halide emulsion | |
JPH08248543A (en) | Preparation of silver halide flat platelike emulsion under existence of polar aprotonic solvent and/or alocohol | |
JPH08240872A (en) | Preparation of silver halide flat boardlike emulsion under existence of protonic solvent with dissociation constant smaller than that of water and/or nonaqueous polar aprotonicsolvent | |
JPS62218959A (en) | Production of photographic silver halide emulsion | |
JPH02114256A (en) | Silver halide emulsion | |
JPH04340538A (en) | Production of silver halide emulsion | |
JP2907962B2 (en) | High sensitivity silver halide photographic material | |
JPH055094B2 (en) | ||
JPH11217217A (en) | Device for producing silver halide | |
JP2000187293A (en) | Manufacture of silver halide emulsion | |
JP2919444B2 (en) | Method for producing silver halide emulsion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |