JPH03200875A - Synthetic resin container - Google Patents

Synthetic resin container

Info

Publication number
JPH03200875A
JPH03200875A JP34245289A JP34245289A JPH03200875A JP H03200875 A JPH03200875 A JP H03200875A JP 34245289 A JP34245289 A JP 34245289A JP 34245289 A JP34245289 A JP 34245289A JP H03200875 A JPH03200875 A JP H03200875A
Authority
JP
Japan
Prior art keywords
synthetic resin
container
container according
oxide
aggregate particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34245289A
Other languages
Japanese (ja)
Inventor
Takumi Hirozawa
広沢 拓身
Haruhei Ono
小野 晴平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP34245289A priority Critical patent/JPH03200875A/en
Publication of JPH03200875A publication Critical patent/JPH03200875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Packages (AREA)
  • Wrappers (AREA)
  • Devices For Warming Or Keeping Food Or Tableware Hot (AREA)

Abstract

PURPOSE:To prepare the title container which shows a high adsorptivity against many odorous substances, can easily recover the adsorptivity after satd. adsorption, and is excellent in the safety by compounding a synthetic resin, a specific element, and aggregate particles of an oxide contg. Zn as the main component. CONSTITUTION:A synthetic resin (e.g. a linear low-density polyethylene), at least one element selected from the group consisting of Ti, Al, Mg, Ca, and Si, and aggregate particles of an oxide contg. Zn as the main component (e.g. aggregate particles of ZnO.TiO2.H2O) are compounded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、魚貝類、肉類、野菜類等の生鮮食品や加工食
品の臭気の残らない脱臭性に優れた合成樹脂製容器に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a synthetic resin container that has excellent deodorizing properties and does not leave behind odors of fresh foods such as fish and shellfish, meat, and vegetables and processed foods.

〈従来の技術〉 近年、日常生活において発生する硫化水素、アンモニア
、メルカプタン、アミン、アルデヒド等の各種悪臭ガス
を除去し、快適な環境を作ることを目的として様々な種
類の脱臭剤が開発されている。又、これらを含有した樹
脂組成物も発表されているが、食品包装用容器として使
用する場合には、少なくとも次の様な条件を満たすこと
が望まれている。
<Prior art> In recent years, various types of deodorizers have been developed with the aim of creating a comfortable environment by removing various malodorous gases such as hydrogen sulfide, ammonia, mercaptans, amines, and aldehydes that are generated in daily life. There is. Resin compositions containing these have also been published, but when used as containers for food packaging, it is desired that at least the following conditions be satisfied.

(1)多岐にわたる食品より発生する様々な臭気物質の
臭気が容器に残らず、良好な吸着性能を有するものであ
り、効果に接続性があること。
(1) It does not leave behind the odors of various odorous substances generated by a wide variety of foods in the container, has good adsorption performance, and has a connected effect.

(2)安全性の高いものであること。(2) It must be highly safe.

(3)飽和吸着状態になった後でも、加熱あるいは水洗
等の操作により吸着性能が容易に回復すること。
(3) Even after reaching a saturated adsorption state, the adsorption performance can be easily restored by operations such as heating or washing with water.

(4)合成樹脂の成形加工温度に耐え、変色しにくく、
該樹脂の劣化等を促進しない脱臭剤を用いたものである
こと。
(4) Withstands the molding temperature of synthetic resin and is resistant to discoloration;
Use a deodorizing agent that does not accelerate the deterioration of the resin.

(5)外観が良好であって、着色が容易なものであるこ
と。
(5) Good appearance and easy coloring.

〈発明が解決しようとする課題〉 しかしながら、従来上記のすべての条件を充分に満足す
る合成樹脂容器は存在しなかったし、最近の研究によっ
てもまた開発されていなかった。
<Problems to be Solved by the Invention> However, until now, there has been no synthetic resin container that fully satisfies all of the above conditions, and no synthetic resin container has been developed through recent research.

例えば、脱臭剤として最も一般に使用されている活性炭
はメルカプタン及びアミン等の悪臭ガスの脱臭効果は優
れているものの、硫化水素、アンモニアに対する脱臭性
は劣ったものである。この点を改良する目的で活性炭に
酸、アルカリあるいはある種のハロゲン化物を担持させ
た添着炭と称される製品も作られているが、そのような
処理を行った製品は酸あるいはアルカリそのものと同様
に一種の危険物としての取扱いが必要となる為、食品容
器としての使用には適さない。加うるに活性炭の持つ本
質的な欠点として黒色であることがあげられ、この色調
の為に黒色以外の合成樹脂容器には使用できない。
For example, activated carbon, which is most commonly used as a deodorizing agent, has an excellent deodorizing effect on malodorous gases such as mercaptans and amines, but has poor deodorizing properties against hydrogen sulfide and ammonia. In order to improve this point, a product called impregnated carbon, in which activated carbon is loaded with acid, alkali, or a certain type of halide, is also produced, but products that have undergone such treatment may not contain the acid or alkali itself. Similarly, it is not suitable for use as a food container because it must be treated as a type of hazardous material. In addition, an essential drawback of activated carbon is that it is black, and because of this color, it cannot be used in synthetic resin containers other than black.

また、硫酸第一鉄を使用した消臭剤は、p e ! +
が熱酸化されやすく、すぐ変色するし、またp e Z
 +がポリオレフィン等の熱劣化を促進する欠点が指摘
されており、合成樹脂容器には使用できない。他に有機
酸を用いた脱臭剤は、アンモニア、アミン類等の塩基性
ガスに対する活性はあるものの、硫化水素、メルカプタ
ン類等の酸性ガスに対してはほとんど効果がなかった。
In addition, deodorants using ferrous sulfate are pe! +
is easily thermally oxidized and discolors quickly, and p e Z
It has been pointed out that + has the disadvantage of accelerating thermal deterioration of polyolefins, etc., and cannot be used for synthetic resin containers. Other deodorizing agents using organic acids have activity against basic gases such as ammonia and amines, but have little effect on acidic gases such as hydrogen sulfide and mercaptans.

更に、ミョウバン(A j! K(SOa) z)等の
硫酸塩を用いた脱臭剤も同様にアンモニア、アミン類等
の塩基性ガスに対する活性のみで、酸性ガスに対しては
効果がない。
Furthermore, deodorizing agents using sulfates such as alum (A j! K(SOa) z) are similarly active only against basic gases such as ammonia and amines, and are not effective against acidic gases.

く課題を解決するための手段〉 本発明者等は、この様な状況に鑑み鋭意研究した結果、
チタン、アルミニウム、マグネシウム、カルシウムおよ
び珪素からなる群から選ばれる一種類以上の元素と亜鉛
とを主成分とする酸化物凝集体粒子からなる脱臭剤を含
有させてなる合成樹脂容器は上記の様な欠点がないこと
を見出し、本発明を完成するに至った。
Means for Solving the Problem> As a result of intensive research in view of the above situation, the present inventors have found that
A synthetic resin container containing a deodorizing agent made of oxide aggregate particles whose main components are zinc and one or more elements selected from the group consisting of titanium, aluminum, magnesium, calcium, and silicon is as described above. They found that there were no drawbacks and completed the present invention.

すなわち、本発明は合成樹脂(A)と、チタン、アルミ
ニウム、マグネシウム、カルシウムおよび珪素から選ば
れる一種類以上の元素と亜鉛とを主成分とする酸化物凝
集体粒子(B)とを含有してなることを特徴とする合成
樹脂容器を提供するものである。
That is, the present invention contains a synthetic resin (A) and oxide aggregate particles (B) whose main components are zinc and one or more elements selected from titanium, aluminum, magnesium, calcium, and silicon. The present invention provides a synthetic resin container characterized by the following characteristics.

本発明で用いる合成樹脂(A)としては、特に限定され
るものではなく、例えばポリエチレン、ポリプロピレン
、ポリスチレン、ポリアミド、ポリエステル、ポリビニ
ルアルコール、ポリカーボネート、ポリアセタール、A
BS樹脂、アクリル樹脂、フッ素樹脂、ポリウレタンエ
ラストマーポリエステルエラストマー等の熱可塑性樹脂
、フェノール樹脂、エリア樹脂、メラミン樹脂、不飽和
ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂等の熱
硬化性樹脂、なかでも熱可塑性樹脂、特にオレフィン系
熱可塑性樹脂が好ましい。
The synthetic resin (A) used in the present invention is not particularly limited, and includes, for example, polyethylene, polypropylene, polystyrene, polyamide, polyester, polyvinyl alcohol, polycarbonate, polyacetal,
Thermoplastic resins such as BS resin, acrylic resin, fluororesin, polyurethane elastomer polyester elastomer, thermosetting resin such as phenol resin, area resin, melamine resin, unsaturated polyester resin, epoxy resin, urethane resin, especially thermoplastic resin In particular, olefinic thermoplastic resins are preferred.

本発明で用いる酸化物凝集体粒子(B)の製法としては
、例えば (1)亜鉛の塩と、チタン、アルミニウム、マグネシウ
ム、カルシウムおよび珪素からなる群から選ばれる1種
以上の元素(以下、その他の金属と略す、)の塩の混合
水溶液を酸又はアルカリ性水溶液で加水分解して沈澱物
を生成せしめ、分離、乾燥せしめる方法、 (2)亜鉛の水酸化物とその他の金属の水酸化物を水の
存在下に混練して反応させた後、焼成する方法、 (3)亜鉛又はその他の金属の塩の水溶液に異種の金属
の酸化物を加熱下に浸漬し、必要に応じてアンモニア水
等のアルカリ性水溶液を加え、反応させて沈澱物を生成
せしめ、分離、乾燥、必要に応じて焼成する方法、 (4)珪酸ソーダに亜鉛の塩の水溶液を反応させてイオ
ン交換する方法、 等の多くの製法があり、特に限定されないが、なかでも
(1)の製法が好ましい。
The method for producing the oxide aggregate particles (B) used in the present invention includes, for example, (1) zinc salt and one or more elements selected from the group consisting of titanium, aluminum, magnesium, calcium, and silicon (hereinafter referred to as "other"). A method of hydrolyzing a mixed aqueous solution of salts of metals (hereinafter referred to as metals) with an acid or alkaline aqueous solution to form a precipitate, separating and drying the precipitate. A method in which oxides of different metals are immersed under heating in an aqueous solution of zinc or other metal salts, and aqueous ammonia, etc. are added as necessary. (4) A method of reacting an aqueous solution of zinc salt with sodium silicate to perform ion exchange, etc. There are several manufacturing methods, and the manufacturing method (1) is particularly preferred, although it is not particularly limited.

上記(1)の製法を更に詳しく説明すると、亜鉛の塩の
水溶液とその他の金属の塩のそれぞれの水溶液と、適当
量の酸またはアルカリ性水溶液とを同時に加え、合体液
のpHが常に6〜12の範囲に維持されるように調節し
ながら、混合、合体させ、それによって合体液中に亜鉛
とその他の金属の水酸化物からなる沈澱物を生成せしめ
、次にこの沈澱物を合体液から分離した後、乾燥する製
法である。
To explain the manufacturing method in (1) above in more detail, an aqueous solution of a zinc salt and another metal salt, and an appropriate amount of an acid or alkaline aqueous solution are added simultaneously, and the pH of the combined solution is always 6 to 12. mixing and coalescing, controlling the temperature to be maintained within a range of After that, it is dried.

本発明では、通常酸化亜鉛とその他の金属の酸化物とを
5=95〜95:5のモル比で主成分として含有する酸
化物凝集体粒子を用いるが、なかでも酸化亜鉛と二酸化
チタンとを3ニア〜7:3のモル比で主成分として含有
するもの、および酸化亜鉛と酸化アルミニウムおよび/
又は酸化珪素を4:6〜9:lのモル比で主成分として
含有するものが好ましく、特に色が無色に近く、樹脂中
での安定性および分散性に優れる点で後者の凝集体粒子
が好ましい。
In the present invention, oxide aggregate particles containing zinc oxide and other metal oxides as main components in a molar ratio of 5=95 to 95:5 are usually used, but in particular, zinc oxide and titanium dioxide are used. 3nia to 7:3 molar ratio as main components, and zinc oxide and aluminum oxide and/or
Alternatively, those containing silicon oxide as a main component at a molar ratio of 4:6 to 9:l are preferable, and the latter aggregate particles are particularly preferable because their color is close to colorless and they have excellent stability and dispersibility in the resin. preferable.

本発明の合成樹脂容器に含有される酸化物凝集体粒子(
B)の含有率は、通常0.1〜20重量%、好ましくは
0.2〜5重量%の範囲である。含有率が0.1重量%
未満では脱臭効果が不十分であり、20重量%を超えて
加えても事実上効果は変わらず、不経済である。
Oxide aggregate particles contained in the synthetic resin container of the present invention (
The content of B) is usually in the range of 0.1 to 20% by weight, preferably 0.2 to 5% by weight. Content is 0.1% by weight
If it is less than 20% by weight, the deodorizing effect is insufficient, and even if it is added in an amount exceeding 20% by weight, the effect remains virtually unchanged, which is uneconomical.

又、本発明の合成樹脂容器には、更に必要に応じて各種
の添加剤、例えば酸化防止剤、無機系充填剤、脂肪酸エ
ステル系ワックス、ポリエチレンワックス等を添加混合
してもよい。
Furthermore, various additives such as antioxidants, inorganic fillers, fatty acid ester waxes, polyethylene waxes, etc. may be added to the synthetic resin container of the present invention as needed.

又、酸化物凝集体粒子からなる脱臭剤の合成樹脂中への
分散性向上の手法としては、シリコーン等のエマルジョ
ンの添加が好ましく、カップリング剤等を添加した場合
には、脱臭効果を低下させる恐れがある。
In addition, as a method of improving the dispersibility of a deodorizing agent made of oxide aggregate particles in a synthetic resin, it is preferable to add an emulsion such as silicone, and if a coupling agent or the like is added, the deodorizing effect will be reduced. There is a fear.

合成樹脂(A)として熱可塑性樹脂を用いた場合、成形
に際しては、酸化物凝集体粒子を10〜80重量%配合
してなる熱可塑性樹脂組成物を溶融混練した後、ペレッ
ト化したマスターパッチペレットを熱可塑性樹脂と共に
用いると、作業性に優れる点で好ましい。
When a thermoplastic resin is used as the synthetic resin (A), during molding, a thermoplastic resin composition containing 10 to 80% by weight of oxide aggregate particles is melt-kneaded and then pelletized into master patch pellets. It is preferable to use it together with a thermoplastic resin because it has excellent workability.

このマスターパッチペレットの製法としては、例えば酸
化物凝集体粒子と担体樹脂であるポリエチレン、ポリプ
ロピレン等の熱可塑性樹脂、更に必要に応じてポリエチ
レンワックス、脂肪酸エステル系ワックス、金属石鹸な
どの如き分散剤を混合した後、担体樹脂の軟化点以上の
温度にて溶融混練し、更にペレタイザー等によってベレ
ットに賦型する方法等がある。尚、特に分散性を要求さ
れる場合には、脱臭剤とPEワックスを加熱三本ロール
等の混線機を用いる混練すると好ましい。
The method for producing master patch pellets involves, for example, adding oxide aggregate particles, a thermoplastic resin such as polyethylene or polypropylene as a carrier resin, and, if necessary, a dispersing agent such as polyethylene wax, fatty acid ester wax, or metal soap. After mixing, the mixture is melt-kneaded at a temperature equal to or higher than the softening point of the carrier resin, and further formed into pellets using a pelletizer or the like. In addition, when particularly dispersibility is required, it is preferable to knead the deodorizing agent and PE wax using a mixer such as a heated three-roll mixer.

又、マスターバッチの代わりに脱臭剤と亜鉛、アルミニ
ウム、マグネシウム、カルシウム等の金属のステアリン
酸塩の如き金属石鹸をヘンシェルミキサー等で混合する
ことによりドライカラーを調製してもよい、このドライ
カラー100重量%中には脱臭剤酸化物凝集体粒子を通
常5〜80重量%含有させておく。このようにして得ら
れたマスターパッチペレット又はドライカラーは、熱可
塑性樹脂とを混合し、射出成形、ブロー成形、真空成形
、圧縮成形等の如き成形加工を行なうと、食品の臭いが
容器に残りにくい合成樹脂容器が得られる。しかも、こ
の容器は、−度悪臭ガスで飽和吸着状態になった後も、
80°C〜100°C程度の温度で30〜60分加熱す
ることで吸着力が初期レベルまで回復するという特徴を
もっている。
Alternatively, instead of a masterbatch, a dry color may be prepared by mixing a deodorizer and a metal soap such as a stearate of a metal such as zinc, aluminum, magnesium, or calcium using a Henschel mixer or the like. The deodorant oxide aggregate particles are usually contained in an amount of 5 to 80% by weight. When the master patch pellets or dry color obtained in this way are mixed with thermoplastic resin and subjected to molding processing such as injection molding, blow molding, vacuum molding, compression molding, etc., food odor remains in the container. A synthetic resin container that is difficult to maintain can be obtained. Furthermore, even after this container reaches a saturated adsorption state with -degree foul-smelling gas,
It has the characteristic that the adsorption force is restored to its initial level by heating at a temperature of about 80°C to 100°C for 30 to 60 minutes.

容器の形態に特に制限はないが、家庭用あるいは業務用
のキッチン用プラスチック容器への使用に適している。
Although there are no particular restrictions on the form of the container, it is suitable for use in plastic containers for household or commercial kitchens.

例えば、密閉容器、弁当箱、皿、コツプ、瓶、バケツ、
等である。蓋付きの容器の蓋も容器の一部であることは
言うまでもない。
For example, airtight containers, lunch boxes, plates, cups, bottles, buckets,
etc. It goes without saying that the lid of a container with a lid is also a part of the container.

〈実施例〉 次に本発明を実施例に基づきさらに詳細に説明する。但
しこれらは単に例示の為に記すものであり、発明の範囲
がこれらによって制限されるものではない。
<Examples> Next, the present invention will be described in more detail based on Examples. However, these are merely illustrative, and the scope of the invention is not limited thereto.

参考例1(酸化物凝集体粒子) 51ビーカーに純水l1分取し、攪拌しながら温度60
°Cに加熱保持した。次いで別途用意したTie、とし
て79.90 g及びZnOとして81.37 gを含
む硫酸チタン−硫酸亜鉛混酸水溶液21とアンモニア水
溶液とをこれら合体液のpHが7.5を維持するように
注意しながら30分間かけて前記純水中に同時滴下した
Reference Example 1 (Oxide Aggregate Particles) Take 11 liters of pure water into a 51 beaker and heat to 60 ml while stirring.
Heated and held at °C. Next, titanium sulfate-zinc sulfate mixed acid aqueous solution 21 containing 79.90 g of Tie and 81.37 g of ZnO and ammonia aqueous solution were mixed together, taking care to maintain the pH of the combined solution at 7.5. They were simultaneously dropped into the pure water over a period of 30 minutes.

生成物を濾過・洗浄後200 ’Cで3時間乾燥し、Z
nO・TiO□・H2O系の酸化物凝集体粒子([)を
製造した。この脱臭剤(1)をX線回折により調べたと
ころ非晶質であった。又化学分析による酸化亜鉛と二酸
化チタンのモル比は1:1であった。
After filtering and washing the product, it was dried at 200'C for 3 hours and Z
nO・TiO□・H2O-based oxide aggregate particles ([) were produced. When this deodorizing agent (1) was examined by X-ray diffraction, it was found to be amorphous. Further, the molar ratio of zinc oxide and titanium dioxide was 1:1 according to chemical analysis.

参考例2(同上) 51、ビーカーに純水iNを分散し、攪拌しながら温度
60°Cに加熱保持した。
Reference Example 2 (same as above) 51. Pure water iN was dispersed in a beaker and heated and maintained at a temperature of 60°C while stirring.

次いで別途用意した酸化亜鉛として81.37 g、酸
化アルミニウムとして50.98 gを含む硫酸亜鉛−
硫酸アル5ニウム混合水溶液21とアンモニア水溶液と
をこれらの合体液のptiが7.5を維持するように注
意しながら30分間かけて前記純水中に同時滴下した。
Next, separately prepared zinc sulfate containing 81.37 g as zinc oxide and 50.98 g as aluminum oxide was added.
Al5nium sulfate mixed aqueous solution 21 and ammonia aqueous solution were simultaneously dropped into the pure water over 30 minutes while being careful to maintain the PTI of the combined liquid at 7.5.

生成した沈澱をろ過洗浄後、120°Cで6時間乾燥し
、ZnO・Altos系(モル比ZnO: AI!tO
z =2 : 3)の酸化物凝集体粒子(n)を製造し
た。
After filtering and washing the generated precipitate, it was dried at 120°C for 6 hours, and ZnO/Altos-based (molar ratio ZnO: AI!tO
Oxide aggregate particles (n) with z = 2: 3) were produced.

参考例、3(同上) 51ビーカーに純水11を分取し、攪拌しながら温度6
0℃に加熱保持した。
Reference example, 3 (same as above) 51 Collect 11 pieces of pure water in a beaker and raise the temperature to 6 while stirring.
The temperature was maintained at 0°C.

ついで別途用意した酸化亜鉛として122.05 gを
含む塩化亜鉛水溶液と酸化アルミニウムとして25.4
9 gを含むアルミン酸ナトリウムと水酸化ナトリウム
との混合水溶液11とをこれらの合体液のpHが7.5
を維持するように注意しながら、前記純水中に30分間
かけて同時滴下した。生成した沈澱をろ過洗浄後120
°Cで6時間乾燥してZnO・Altos系(モル比Z
nO: a7!zOs =6 : l)の酸化物凝集体
粒子(III)を製造した。
Next, a zinc chloride aqueous solution containing 122.05 g of zinc oxide and 25.4 g of aluminum oxide were prepared separately.
A mixed aqueous solution 11 of sodium aluminate and sodium hydroxide containing 9 g of sodium aluminate and sodium hydroxide is added to
They were simultaneously dropped into the pure water over a period of 30 minutes while being careful to maintain the same. After filtering and washing the generated precipitate, 120
ZnO/Altos system (molar ratio Z
nO: a7! Oxide aggregate particles (III) with zOs =6:l) were produced.

参考例4(同上) アルミン酸ナトリウム水溶液を酸化珪素として30.0
4 gを含む珪酸ナトリウム水溶液に変えた以外は参考
例3とまったく同様にしてZnO・Si0g系(モル比
ZnO: 5iOt= 3 : I )の酸化物凝集体
粒子(IV)を製造した。
Reference Example 4 (same as above) Sodium aluminate aqueous solution as silicon oxide 30.0
Oxide aggregate particles (IV) of ZnO/Si0g system (molar ratio ZnO: 5iOt=3:I) were produced in exactly the same manner as in Reference Example 3, except that the sodium silicate aqueous solution containing 4g was used.

参考例5 51ビーカーに純水11を分取し、攪拌しながら温度6
0℃に加熱保持した。
Reference example 5 51 Collect 11 pieces of pure water in a beaker and raise the temperature to 6 while stirring.
The temperature was maintained at 0°C.

次いで別途用意した酸化亜鉛として81.37 gを含
む塩化亜鉛水溶液と酸化アルミニウムとして50.98
 gを含むアルくン酸ナトリウムと酸化珪素として30
.04 gを含む珪酸ナトリウム水溶液と水酸化ナトリ
ウムとの混合水溶液11とをこれらの合体液のpHが7
.5を維持するように注意しながら、前記純水中に30
分間かけて同時滴下した。生成した沈澱をろ過洗浄後1
20°Cで6時間乾燥してZnO−5iOz ・^18
0.系(モル比ZnO・Aj!10. ・5iOz=2
 : l : l )の酸化物凝集体粒子(V)を製造
した。
Next, a separately prepared zinc chloride aqueous solution containing 81.37 g as zinc oxide and 50.98 g as aluminum oxide were added.
30 as sodium alkinate and silicon oxide containing g
.. A mixed aqueous solution 11 of sodium silicate aqueous solution containing 0.04 g and sodium hydroxide is added until the pH of the combined solution is 7.
.. 30 in the pure water, being careful to maintain 5
They were simultaneously dropped over a period of minutes. After filtering and washing the generated precipitate 1
Dry at 20°C for 6 hours to produce ZnO-5iOz ・^18
0. System (molar ratio ZnO・Aj!10.・5iOz=2
: l : l) Oxide aggregate particles (V) were produced.

実施例1〜5 参考例1〜5で得た酸化物凝集体粒子(1)、(n)、
(III)、(IV)又は(V)1kgとR−680(
石原産業製 酸化チタン)160gとサンワックス16
1P [三洋化或工業(株)製ポリエチレンワックス]
 1.16kgを混合した後、加熱三本ロールを用いて
、温度約130°Cで溶融混練してロールベースを得た
。次にこのロールベース2kgと1014G  [出光
石油化学(株)製置鎖状低密度ボ、リエチレン]2kg
をヘンシェルミキサーで混合した後、温度170°Cの
押出機を用いて溶融混練後、ベレットに賦型し、白色の
マスターバッチを作成した。このマスターバッチを10
部と1014G 90部とを混合した後、180℃の射
出成形機を用いて肉厚2.5 ms+の箱型の容器を作
成した。これらの容器はいずれも鮮明な白色であった。
Examples 1 to 5 Oxide aggregate particles (1), (n) obtained in Reference Examples 1 to 5,
(III), (IV) or (V) 1 kg and R-680 (
Ishihara Sangyo titanium oxide) 160g and Sunwax 16
1P [Polyethylene wax manufactured by Sanyo Chemical Industry Co., Ltd.]
After mixing 1.16 kg, the mixture was melt-kneaded using a heated triple roll at a temperature of about 130°C to obtain a roll base. Next, 2 kg of this roll base and 2 kg of 1014G [chain low density polyethylene manufactured by Idemitsu Petrochemical Co., Ltd.]
were mixed in a Henschel mixer, melt-kneaded using an extruder at a temperature of 170°C, and then shaped into pellets to create a white masterbatch. 10 pieces of this masterbatch
After mixing 90 parts of 1014G and 90 parts of 1014G, a box-shaped container with a wall thickness of 2.5 ms+ was produced using an injection molding machine at 180°C. All of these containers were bright white.

これら容器からそれぞれ20gの試料を切り取り、それ
ぞれを31テトラ−バックに入れ、密封した後、中の空
気が31!、になる様に空気を充填し、さらにマイクロ
シリンジを使って初期濃度が1100ppとなる様に表
1記載の臭気ガス成分を別々のテトラ−バッグに注入し
た。ガスを注入してから2時間後、テトラ−バッグ内の
ガス濃度を検知管を用いて測定した。結果を表1に示し
た。
Cut out 20g of samples from each of these containers, place each in a 31 Tetra bag, seal it, and the air inside is 31! The bags were filled with air to give an initial concentration of 1100 pp, and the odor gas components listed in Table 1 were injected into separate Tetra bags using a microsyringe so that the initial concentration was 1100 pp. Two hours after the gas was injected, the gas concentration inside the Tetra bag was measured using a detection tube. The results are shown in Table 1.

次に表1の試料について飽和吸着及び加熱乾燥による脱
着再生を繰り返し、吸着性能の回復率を調べた。飽和吸
着は20gの試料を入れた密閉容器内に、高濃度(10
00ppm以上)の悪臭ガスを充填し、濃度変化がなく
なるまで放置した。脱着再生は90°Cのオーブンによ
り30分の加熱により行った。この吸着再生操作を各5
回繰り返した後、表1と同じ測定を行い、除去率の回復
率を求め、この結果を表2にまとめた。
Next, desorption regeneration by saturated adsorption and heat drying was repeated for the samples shown in Table 1, and the recovery rate of adsorption performance was examined. For saturated adsorption, a high concentration (10
00 ppm or more) and left until there was no change in concentration. Desorption and regeneration was performed by heating in a 90°C oven for 30 minutes. This adsorption regeneration operation is repeated 5 times each.
After repeating the test several times, the same measurements as in Table 1 were performed to determine the recovery rate of removal rate, and the results are summarized in Table 2.

比較例1〜2 酸化物凝集体粒子(1)の代わりに天然ゼオライト(比
較例1)、硫酸アル逅ニウムカリウム(比較例2)を用
いた以外は実施例1と同様にして合成樹脂容器を得、次
いで同様の試験を行った。
Comparative Examples 1-2 A synthetic resin container was prepared in the same manner as in Example 1, except that natural zeolite (Comparative Example 1) and potassium aluminum sulfate (Comparative Example 2) were used instead of oxide aggregate particles (1). A similar test was then conducted.

結果を表1および表2に示した。The results are shown in Tables 1 and 2.

比較例3 脱臭剤の添加を省略した以外は実施例1と同様にして合
成樹脂容器を得、次いで同様の試験を行った。結果を表
1および表2に示す。
Comparative Example 3 A synthetic resin container was obtained in the same manner as in Example 1, except that the addition of a deodorizing agent was omitted, and then the same test was conducted. The results are shown in Tables 1 and 2.

実施例6〜8 実施例1.2又は4と同様にして得たロールベース2k
gとチッソポリプロに−5016[チッソ(株)製ポリ
プロピレン]2kgをヘンシェルミキサーで混合した後
、温度240 ’Cの押出機を用いて溶融混練後、ベレ
ットに賦型し、白色のマスターバッチを作成した。この
マスターバッチ10部とチッソポリプロに−50169
0部とを混合した後、260°Cの射出成形機を用いて
厚さ3mmの容器を作成した。これらの容器はいずれも
鮮明な白色であった。
Examples 6-8 Roll base 2k obtained in the same manner as Example 1.2 or 4
After mixing 2 kg of -5016 [polypropylene manufactured by Chisso Co., Ltd.] with Chisso Polypropylene and Chisso Polypropylene in a Henschel mixer, the mixture was melt-kneaded using an extruder at a temperature of 240'C, and then shaped into pellets to create a white masterbatch. did. 10 parts of this masterbatch and Chisso Polypro-50169
After mixing with 0 parts, a container with a thickness of 3 mm was created using an injection molding machine at 260°C. All of these containers were bright white.

次いで、これらの容器からそれぞれ40gの試料を切り
取り、それぞれを用いた以外は実施例1に同様にして試
験を行った。結果を表1および表2に示す。
Next, 40 g of samples were cut from each of these containers, and a test was conducted in the same manner as in Example 1 except that each sample was used. The results are shown in Tables 1 and 2.

/ 627 試験例1 実施例4及び比較例2.3の組成で実際に容器を作威し
表3の食品を2日間穴れて放置した後、水洗し、容器に
付着した臭いの強さを官能検査で評価した。
/ 627 Test Example 1 Containers were actually made with the compositions of Example 4 and Comparative Examples 2.3, and the food items listed in Table 3 were left with holes for 2 days, then washed with water and the strength of the odor attached to the containers was determined. It was evaluated using a sensory test.

モニターは10人で下記の5段階臭気強度分類に基いて
、平均値を求めた。
There were 10 monitors, and the average value was calculated based on the following 5-level odor intensity classification.

臭気強度 0:無臭 l:微かな臭い 2:何のにおいか判る臭い 3:楽に感知出来る臭い 4:強い臭い 表3 〈発明の効果〉 本発明の容器は、広範な臭気物質に対して高い吸着活性
を有し、しかも飽和吸着に達した後には、その機能を初
期レベルまで容易再生させることができるという効果を
有する。又、安全性も高く、食品等を入れ繰返し使用す
る容器としての利用価値が高い。さらに、無色あるいは
白色である為、広い範囲で自由に着色できるという利点
がある。
Odor intensity 0: No odor 1: Slight odor 2: Discernible odor 3: Easily detectable odor 4: Strong odor Table 3 <Effects of the invention> The container of the present invention has high adsorption to a wide range of odorous substances. It has the effect that it has activity and can easily regenerate its function to its initial level after reaching saturated adsorption. In addition, it is highly safe and has high utility value as a container that can be used repeatedly to store food, etc. Furthermore, since it is colorless or white, it has the advantage that it can be colored freely over a wide range.

Claims (1)

【特許請求の範囲】 1、合成樹脂(A)と、チタン、アルミニウム、マグネ
シウム、カルシウムおよび珪素からなる群選ばれる一種
類以上の元素と亜鉛とを主成分とする酸化物凝集体粒子
(B)とを含有してなることを特徴とする合成樹脂容器
。 2、合成樹脂(A)が熱可塑性樹脂である請求項1記載
の合成樹脂容器。 3、合成樹脂(A)がオレフィン系熱可塑性樹脂である
請求項1記載の合成樹脂容器。 4、酸化物凝集体粒子(B)が酸化亜鉛と二酸化チタン
を主成分とするものである請求項1、2又は3記載の合
成樹脂容器。 5、酸化亜鉛と二酸化チタンの割合がモル比で3:7〜
7:3の範囲にある請求項4記載の合成樹脂容器。 6、酸化物凝集体粒子(B)が酸化亜鉛と酸化アルミニ
ウムおよび/又は二酸化珪素を主成分とするものである
請求項1、2又は3記載の合成樹脂容器。 7、酸化亜鉛と酸化アルミニウムおよび/又は二酸化珪
素の割合がモル比で4:6〜9:1の範囲にある請求項
6記載の合成樹脂容器。 8、容器が射出成形されてなるものである請求項1から
7のいずれか1つに記載の合成樹脂容器。 9、容器がブロー成形されてなるものである請求項1か
ら7のいずれか1つに記載の合成樹脂容器。 10、容器が真空成形されてなるものである請求項1か
ら7のいずれか1つに記載の合成樹脂容器。 11、容器が圧縮成形されてなるものである請求項1か
ら7のいずれか1つに記載の合成樹脂容器。 12、容器が食品用容器である請求項1から11のいず
れか1つに記載の合成樹脂容器。13、容器が台所用容
器である請求項1から11のいずれか1つに記載の合成
樹脂容器。14、容器が密閉食品容器、弁当箱、皿、コ
ップ、瓶又はバケツである請求項1から7のいずれか1
つに記載の合成樹脂容器。
[Claims] 1. Oxide aggregate particles (B) whose main components are a synthetic resin (A), one or more elements selected from the group consisting of titanium, aluminum, magnesium, calcium, and silicon, and zinc. A synthetic resin container characterized by containing. 2. The synthetic resin container according to claim 1, wherein the synthetic resin (A) is a thermoplastic resin. 3. The synthetic resin container according to claim 1, wherein the synthetic resin (A) is an olefin thermoplastic resin. 4. The synthetic resin container according to claim 1, 2 or 3, wherein the oxide aggregate particles (B) contain zinc oxide and titanium dioxide as main components. 5. The molar ratio of zinc oxide and titanium dioxide is 3:7~
5. The synthetic resin container according to claim 4, having a ratio of 7:3. 6. The synthetic resin container according to claim 1, 2 or 3, wherein the oxide aggregate particles (B) mainly contain zinc oxide, aluminum oxide and/or silicon dioxide. 7. The synthetic resin container according to claim 6, wherein the molar ratio of zinc oxide to aluminum oxide and/or silicon dioxide is in the range of 4:6 to 9:1. 8. The synthetic resin container according to any one of claims 1 to 7, wherein the container is formed by injection molding. 9. The synthetic resin container according to any one of claims 1 to 7, wherein the container is formed by blow molding. 10. The synthetic resin container according to any one of claims 1 to 7, wherein the container is formed by vacuum forming. 11. The synthetic resin container according to any one of claims 1 to 7, wherein the container is compression molded. 12. The synthetic resin container according to any one of claims 1 to 11, wherein the container is a food container. 13. The synthetic resin container according to any one of claims 1 to 11, wherein the container is a kitchen container. 14. Any one of claims 1 to 7, wherein the container is a closed food container, lunch box, plate, cup, bottle, or bucket.
Synthetic resin containers described in .
JP34245289A 1989-12-28 1989-12-28 Synthetic resin container Pending JPH03200875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34245289A JPH03200875A (en) 1989-12-28 1989-12-28 Synthetic resin container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34245289A JPH03200875A (en) 1989-12-28 1989-12-28 Synthetic resin container

Publications (1)

Publication Number Publication Date
JPH03200875A true JPH03200875A (en) 1991-09-02

Family

ID=18353855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34245289A Pending JPH03200875A (en) 1989-12-28 1989-12-28 Synthetic resin container

Country Status (1)

Country Link
JP (1) JPH03200875A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348028A (en) * 2000-06-06 2001-12-18 Daiwa Can Co Ltd Paper container
JP2002002648A (en) * 2000-06-22 2002-01-09 Inoac Corp Resin container
WO2017209215A1 (en) 2016-05-31 2017-12-07 三井化学株式会社 Thermally-conductive composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348028A (en) * 2000-06-06 2001-12-18 Daiwa Can Co Ltd Paper container
JP2002002648A (en) * 2000-06-22 2002-01-09 Inoac Corp Resin container
JP4554035B2 (en) * 2000-06-22 2010-09-29 株式会社イノアックコーポレーション Resin container and manufacturing method thereof
WO2017209215A1 (en) 2016-05-31 2017-12-07 三井化学株式会社 Thermally-conductive composition
US11807800B2 (en) 2016-05-31 2023-11-07 Mitsui Chemicals, Inc. Thermally conductive composition

Similar Documents

Publication Publication Date Title
CA2373333C (en) Energy-activated compositions for controlled sustained release of a gas
US7273567B1 (en) Energy-activated compositions for controlled sustained release of a gas
CN107073155B (en) Deodorant, deodorant processed product using same, and method for producing deodorant and deodorant processed product
BRPI0615460A2 (en) Metal ion modified materials for odor control and removal
CA2479087A1 (en) Liquid waste absorbing compositions
JPH03200875A (en) Synthetic resin container
KR20170097605A (en) Deodorant and deodorizing product
EP0223928B1 (en) Thermoplastic resin composition
EP0358821B1 (en) White colored deodorizer and process for producing the same
JPS6216356A (en) Functional synthetic resin film
JPS60184558A (en) Fragrant molding
US5110586A (en) White colored deodorizer and process for producing the same
JP2745424B2 (en) Deodorant
CN101195477A (en) Energy-activated compositions for controlled sustained release of a gas
JPH1133100A (en) Photocatalyst fine grain containing solid porous silica particle, using method thereof, and photocatalyst containing polymer solid body
JPS6286052A (en) Deodorizing resin composition and deodorizing molding
US5100659A (en) White colored deodorizer and process for producing the same
JPH01204940A (en) Polypropylene resin molding composition
JPS63159472A (en) Thermoplastic resin composition
JP2007174936A (en) Cooler box
JPS62235363A (en) Deodorizing resin composition and deodorizing molded article
JPH05202227A (en) Resin film having deodorizing function
JPH02139219A (en) Plastic formed body
KR20200131404A (en) Antibacterial pet vessel
JPS63161967A (en) Deodorant composition