JPH03199777A - Joint sheet - Google Patents

Joint sheet

Info

Publication number
JPH03199777A
JPH03199777A JP34035289A JP34035289A JPH03199777A JP H03199777 A JPH03199777 A JP H03199777A JP 34035289 A JP34035289 A JP 34035289A JP 34035289 A JP34035289 A JP 34035289A JP H03199777 A JPH03199777 A JP H03199777A
Authority
JP
Japan
Prior art keywords
fibers
rubber
resistance
asbestos
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34035289A
Other languages
Japanese (ja)
Other versions
JPH0557471B2 (en
Inventor
Tsutomu Yamamoto
勉 山本
Masaaki Ashizawa
芦澤 正明
Michio Machii
道男 町井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP34035289A priority Critical patent/JPH03199777A/en
Publication of JPH03199777A publication Critical patent/JPH03199777A/en
Publication of JPH0557471B2 publication Critical patent/JPH0557471B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gasket Seals (AREA)
  • Sealing Material Composition (AREA)

Abstract

PURPOSE:To improve the qualities of reinforcement, heat resistance, steam resistance, oil resistance and chemicals resistance, by realizing a fibrous condition by containing fluorine resin powder at the rate of a specific weight percent against a joint sheet solid portion. CONSTITUTION:About 18weight% aromatic polyamid fibre material, about 12weight% NBR latex solid portion rubber material, and filler of about 9weight% baryte and about 9weight% clay and about 50weight% fluorine resin powder, and a rubber chemical, are used as compound agents. Loosening treatment is administered to the aromatic polyamid fibre the process of mixing. Compound agents and toluene are thrown into a mixer and mixing is done. A joint sheet is obtained by conducting vulcanization formation on a compoundlike mixing material by means of a calender roll. Hereupon, fluorine resin powder is made to be fibrous by shearing at the times of material mixing and sheeting, and a network is formed within the sheet, and because of this tructure, the qualities of heat resistance, steam resistance and chemicals resistance are remarkably improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ガスゲット基材の補強性、耐熱性、耐水蒸
気性、耐油性、耐薬品性を向上させることを目的とした
ジヨイントシートに関する。
Detailed Description of the Invention (Field of Industrial Application) This invention is a joint sheet for improving the reinforcing properties, heat resistance, water vapor resistance, oil resistance, and chemical resistance of a gas get base material. Regarding.

(従来の技術) 従来のジヨイントシートは、繊維材料、ゴム材料、充填
材、ゴム薬品から構成されており、用途、保管、識別の
うえで必要な場合には、カップリング剤、軟化剤、可塑
剤、水膨潤剤、油膨潤剤、顔料等の少量添加剤が配合さ
れている。 このうち、使用される繊維材料について分
類すると(1)石綿繊維(2)石綿以外の無機繊維(3
)有機繊維に分けられる。
(Prior art) Conventional joint sheets are composed of fiber materials, rubber materials, fillers, and rubber chemicals, and if necessary for purposes of use, storage, and identification, coupling agents, softeners, Contains small amounts of additives such as plasticizers, water swelling agents, oil swelling agents, and pigments. Among these, the fiber materials used can be classified as (1) asbestos fibers (2) inorganic fibers other than asbestos (3)
) divided into organic fibers.

(1)石綿繊維を使用したジヨイントシートは石綿ジヨ
イントシートと呼ばれ、石綿繊維を全く使用しないジヨ
イントシート、すなわち、(2)石綿以外の無機繊維と
、(3)有機繊維の両方またはいずれか一方を使用した
ジヨイントシートは、アスベストフリージヨイントシー
トまたはノンアスベスト(NA)ジョインシートと呼ん
でいる。
(1) Joint sheets that use asbestos fibers are called asbestos joint sheets, and joint sheets that do not use asbestos fibers at all, that is, (2) inorganic fibers other than asbestos, and (3) both or both of organic fibers. A joint sheet using either one of these is called an asbestos-free joint sheet or a non-asbestos (NA) joint sheet.

近年までは、石綿ジヨイントシートのみが使用されてき
たが、石綿繊維が原因とされているじん肺の発生が社会
的問題となり、アスベストフリージヨイントシートが要
求されるようになった。
Until recently, only asbestos joint sheets were used, but as the occurrence of pneumoconiosis, which is thought to be caused by asbestos fibers, has become a social problem, asbestos-free joint sheets are now required.

石綿ジヨイントシートとアスベストフリージヨイントシ
ートの相違点としては、石綿繊維の有無のほかに、ジヨ
イントシートの固形分に対する繊鱈材料の配合比率の相
違が挙げられる。 一般に、石綿ジヨイントシートでは
石綿繊維が50〜90重量%使用され、一方、アスベス
トフリージヨイントシートでは繊維材料が10〜60重
量%使用されている。 このように石綿ジヨイントシー
トの繊維材料の配合比率に比べてアスベストフリージヨ
イントシートのそれが少ないことの最大の理由は、製造
面で問題が発生することである。
Differences between asbestos joint sheets and asbestos-free joint sheets include the presence or absence of asbestos fibers, as well as the difference in the blending ratio of the fiber cod material to the solid content of the joint sheets. Generally, asbestos joint sheets contain 50-90% by weight of asbestos fibers, while asbestos-free joint sheets contain 10-60% by weight of fibrous material. The main reason why the blending ratio of fiber materials in asbestos-free joint sheets is lower than that in asbestos-free joint sheets is that problems occur in manufacturing.

すなわち、アスベストフリージヨイントシートの場合に
は、繊維材料の配合比率が大きくなるに従って、カレン
ダーロールによるシーテイングが困難になる傾向がある
からである。 なお、アスベストフリージヨイントシー
トは繊維材料の配合比率が少なくなった分を充填材で補
っており、石綿ジヨイントシートの充填材配合比率が3
〜50重量%に対し、アスベストフリージヨイントシー
トのそれは10〜80重量%の範囲で使用されている。
That is, in the case of asbestos free joint sheets, sheeting with calender rolls tends to become more difficult as the blending ratio of fiber materials increases. In addition, asbestos-free joint sheets use filler to compensate for the decrease in the blending ratio of fiber materials, and the filler blending ratio of asbestos-free joint sheets is 3.
-50% by weight, while that of asbestos free joint sheets is used in the range of 10-80% by weight.

次に、アスベストフリージヨイントシートに使用したと
きの各繊維材料の特徴について述べる。
Next, we will discuss the characteristics of each fiber material when used in asbestos free joint sheets.

有機繊維の場合、繊維自体が比較的しなやかであるとと
もにゴム材料とSP値(溶解度パラメーター)が近似し
ているので、ゴム材料や充填材との間で絡みや結合・接
合を起こして、補強効果がある。
In the case of organic fibers, the fibers themselves are relatively flexible, and their SP values (solubility parameters) are similar to those of rubber materials, so they can become entangled, bonded, and bonded with rubber materials and fillers, resulting in a reinforcing effect. There is.

特に、最もポピユラーに使用されているアラミド繊維を
フィブリル化させたパルプでは、繊維の枝分かれが著し
く、表面積が大きいのでチョツプド状のものに比ベゴム
材料や充填材との絡みが非常に発達し、このために補強
効果が大きく、引張強度、耐フロー性等の特性値が向上
する。
In particular, pulp made by fibrillating aramid fibers, which is the most commonly used pulp, has significant fiber branching and a large surface area, so the entanglement with rubber materials and fillers is much more developed than in chopped pulp. Therefore, the reinforcing effect is large, and characteristic values such as tensile strength and flow resistance are improved.

石綿以外の無機繊維の場合、一般に有機繊維に比べて剛
直であるるとともにSP値がはなれているので、ゴム材
料や充填材との絡みや接合・結合性が乏しく、補強効果
はあまり期待できない。
In the case of inorganic fibers other than asbestos, they are generally more rigid than organic fibers and have a different SP value, so they have poor entanglement, bonding, and bonding properties with rubber materials and fillers, and cannot be expected to have much of a reinforcing effect.

また、製造性についても、ロール面へのなじみが有機繊
維より劣る傾向にある。 しかしながら、無機繊維の剛
直性は、応力緩和特性が良好であり、有機繊維に比べて
耐熱性、耐水蒸気性が向上することが認められている。
In addition, in terms of manufacturability, they tend to be inferior to organic fibers in conforming to the roll surface. However, it is recognized that inorganic fibers have good stress relaxation properties and have improved heat resistance and water vapor resistance compared to organic fibers.

アスベストフリージヨイントシートは、目的用途に応じ
、これら繊維材料及びゴム材料、充填材、ゴム薬品の検
討がなされ、現在では一部の性能、特に耐熱性を除いて
、石綿ジヨイントシートのレベルに徐々に近づきつつあ
る。
The fiber materials, rubber materials, fillers, and rubber chemicals for asbestos-free joint sheets have been studied depending on the intended use, and now the performance of asbestos-free joint sheets is at the same level as asbestos joint sheets, with the exception of some properties, especially heat resistance. It is gradually approaching.

(発明が解決しようとする課題) しかしながら、このような従来のアスベストフリージヨ
イントシートにあっては、構成している繊維材料が(3
)有機繊維の場合、補強効果はあるが、製造的な面で繊
維の配合量を石綿繊維はど多くすることができない、 
従って、〈3ン有機繊維材料を使用したジヨイントシー
トでは強度的な面で石綿ジヨイントシートのレベルまで
達することが困難である。 また、高熱条件、水蒸気雰
囲気の下で使用すると、ゴム材料とともに、繊維材料も
著しく劣化してしまい、石綿ジョインシートに比べて製
品寿命が著しく低下する。
(Problem to be solved by the invention) However, in such a conventional asbestos-free joint sheet, the constituent fiber material is (3
) In the case of organic fibers, they have a reinforcing effect, but due to manufacturing reasons, it is not possible to increase the amount of fiber blended with asbestos fibers.
Therefore, it is difficult for a joint sheet using an organic fiber material to reach the same level of strength as an asbestos joint sheet. Furthermore, when used under high heat conditions and a steam atmosphere, the fiber material as well as the rubber material deteriorates significantly, resulting in a significantly shorter product life compared to asbestos join sheets.

(2)無機繊維の場合、繊維自体の耐熱性、耐水蒸気性
は高いが、補強効果は有機繊維より著しく低下している
。 また、補強性能も繊維とゴム材料との接着力にほぼ
依存していることとなっているため、高熱条件、水蒸気
雰囲気の下で使用すると繊維自体の劣化こそ少ないが、
ゴム材料が劣化することで繊維の持っていた補強効果が
失われてしまい、やはり石綿ジヨイントシートに比べて
製品寿命は低下する。
(2) In the case of inorganic fibers, the fibers themselves have high heat resistance and water vapor resistance, but their reinforcing effect is significantly lower than that of organic fibers. In addition, since the reinforcing performance is largely dependent on the adhesive strength between the fiber and the rubber material, the fiber itself will not deteriorate much if used under high heat conditions or a steam atmosphere.
As the rubber material deteriorates, the reinforcing effect of the fibers is lost, resulting in a shorter product life compared to asbestos joint sheets.

この他として、弗素樹脂系の繊維を繊維材料として用い
た場合では、この繊維自体とゴム材料との接着力が非常
に小さいことから、ジヨイントシートとしての耐熱性、
耐水蒸気性はほとんど向上しないという問題点があった
In addition, when fluororesin fibers are used as the fiber material, the adhesive strength between the fibers themselves and the rubber material is very small, so the heat resistance as a joint sheet is
There was a problem in that water vapor resistance was hardly improved.

〈課題を解決するための手段と作用〉 この発明は、このような従来の問題点に着目してなされ
たもので、繊維材料、ゴム材料、充填材、ゴム薬品、及
び繊維化可能な弗素樹脂パウダーを含む材料を配合して
なり、該弗素樹脂パウダーがジヨイントシート固形分に
対して0.1〜70重量%の割合に含有されるとともに
、材料がシート化された後に該弗素樹脂パウダーが繊維
化された状態となっていることを特徴とするジヨイント
シートである。
<Means and effects for solving the problems> The present invention has been made by focusing on such conventional problems, and it provides a fiber material, a rubber material, a filler, a rubber chemical, and a fluororesin that can be made into a fiber. The fluororesin powder is contained in a proportion of 0.1 to 70% by weight based on the solid content of the joint sheet, and after the material is formed into a sheet, the fluororesin powder is This joint sheet is characterized by being in a fibrous state.

この発明は、ジヨイントシートの配合中に、繊維化可能
な弗素樹脂パウダーを入れ、材料混線工程時、及びカレ
ンダーロール上でのシーテイング時に剪断力によって該
弗素樹脂パウダーを高度にかつフィブリル状に繊維化し
、シート内部で繊維化した弗素樹脂パウダーの立体的な
、くもの巣状のネットワークを形成して、ジヨイントシ
ートの組成材料のズレによる耐フロー性を向上させると
ともに、弗素樹脂の熱可塑性かゴムバインダーの熱劣化
による硬化を補完してジヨイントシート自体の圧縮弾性
が減じないようにすることにより、上記問題点を解決す
ることかできたものである。
In this invention, a fluororesin powder that can be made into fibers is added to the joint sheet formulation, and the fluororesin powder is highly and fibrillated into fibers by shearing force during the material mixing process and during sheeting on a calendar roll. This forms a three-dimensional, spider web-like network of fibrous fluororesin powder inside the sheet, which improves the resistance to flow due to misalignment of the composition materials of the joint sheet, and also improves the thermoplastic properties of the fluororesin. The above problems can be solved by supplementing the hardening caused by thermal deterioration of the rubber binder so that the compressive elasticity of the joint sheet itself does not decrease.

繊維化した弗素樹脂パウダーの立体的ネットワークは、
単に表面が枝分かれ(フィブリル化〉した弗素樹脂繊維
を混合した場合のネットワークとは異なる。 枝分かれ
(フィブリル化)した弗素樹脂繊維のネットワークでは
、弗素樹脂繊維の平面的な結びつきが支配的であってフ
ィブリル繊維の立体的なネットワークは十分でないのに
対し、繊維化した弗素樹脂パウダーのネットワークでは
、弗素樹脂パウダーが他の組成物と混ざり合った状態で
機械的剪断力を受け、分子が1方向に引き伸ばされかつ
微細分化が同時に起こり、その結果、微細で高強度な繊
維形態物が出現し、あたかも他の組成物を包含した三次
元の網目構造のネットワークが支配的となるからである
The three-dimensional network of fibrous fluororesin powder is
This is different from a network obtained by simply mixing fluororesin fibers whose surface is branched (fibrillated). In a network of branched (fibrillated) fluororesin fibers, planar connections of the fluororesin fibers are dominant, and fibrils form. While the three-dimensional network of fibers is not sufficient, in the network of fibrous fluororesin powder, the fluororesin powder is subjected to mechanical shearing force while mixed with other compositions, and the molecules are stretched in one direction. This is because fine differentiation and fine differentiation occur at the same time, and as a result, fine, high-strength fiber forms appear, as if a three-dimensional mesh structure network containing other compositions becomes dominant.

次に本発明の構成材料について説明する。Next, the constituent materials of the present invention will be explained.

繊維材料としては、無機繊維、有機繊維のいずれもが使
用される。 無機繊維としては、石綿繊維、セピオライ
ト、ワラストナイト等の天然無機繊維、スチールファイ
バー等の金属繊維、ガラスファイバー、ロックウール、
スラグウール、シリカファイバー、セラミックファイバ
ー、アルミナファイバー、ジルコニアファイバー等の酸
化物繊維、炭化物繊維、窒化物繊維、炭素繊維、ボロン
ファイバー、チラノファイバー、チタン酸カリファイバ
ー等が挙げられる。 また有機繊維としては、芳香族ポ
リアミド繊維、ナイロン繊維、アクリル繊維、ポリエス
テル繊維、ポリウレタン系繊維、ポリエチレン繊維、ポ
リ塩化ビニル繊維、フェノール繊維、弗素樹脂繊維等の
合成繊維、レーヨン等の再生繊維、アセテート等の半合
成繊維、木材パルプ、麻パルプ、綿等の天然有機繊維が
挙げられる。 なお、ここで合成有機繊維の例として挙
げた弗素樹脂繊維は、弗素樹脂パウダーではなく、弗素
樹脂の繊維である。
As the fiber material, both inorganic fibers and organic fibers are used. Examples of inorganic fibers include asbestos fibers, natural inorganic fibers such as sepiolite, and wollastonite, metal fibers such as steel fibers, glass fibers, rock wool,
Examples include oxide fibers such as slag wool, silica fibers, ceramic fibers, alumina fibers, and zirconia fibers, carbide fibers, nitride fibers, carbon fibers, boron fibers, tyranno fibers, and potassium titanate fibers. Examples of organic fibers include synthetic fibers such as aromatic polyamide fibers, nylon fibers, acrylic fibers, polyester fibers, polyurethane fibers, polyethylene fibers, polyvinyl chloride fibers, phenolic fibers, and fluororesin fibers, recycled fibers such as rayon, and acetate fibers. Examples include semi-synthetic fibers such as wood pulp, hemp pulp, and natural organic fibers such as cotton. Note that the fluororesin fibers mentioned here as examples of synthetic organic fibers are not fluororesin powders but fluororesin fibers.

繊維材料の配合量は、従来のジヨイントシートにおける
配合量と同様、石綿ジヨイントシートで50〜90重量
%、アスベストフリージヨイントシートで10〜60重
量%の範囲が適当である。
The blending amount of the fiber material is suitably in the range of 50 to 90% by weight for asbestos joint sheets and 10 to 60% by weight for asbestos-free joint sheets, similar to the blending amount in conventional joint sheets.

ゴム材料としては、NR(天然ゴム>、IR〈合成イン
プレンゴム)、5BR(スチレンブタジェンゴム)、N
BR(アクリロニトリルブタジェンゴム)、BR(ブタ
ジェンゴム)、CR(クロロブレンゴム)、IIR(ブ
チルゴム)、EPR(エチレンプロピレンゴム)、BP
DM(不飽和結合含有エチレンプロピレンゴム)、EV
A(エチレン酢ビゴム)、PIB(ポリイソブチレンゴ
ム)、Eco(エピクロルヒドリンゴム)、NIR(ア
クリロニトリルイソプレンゴム〉、水添加NBR、アク
リルゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム
、塩素化ブチルゴム、クロロスルホン化ポリエチレンゴ
ム、塩素化ポリエチレンゴム、ポリイソブチレンゴム、
ポリエステルゴム等が使用される。 ゴム材料の配合量
は5〜50重量%で用いられることが好ましい。
Rubber materials include NR (natural rubber), IR (synthetic imprene rubber), 5BR (styrene butadiene rubber), N
BR (acrylonitrile butadiene rubber), BR (butadiene rubber), CR (chlorobrene rubber), IIR (butyl rubber), EPR (ethylene propylene rubber), BP
DM (ethylene propylene rubber containing unsaturated bonds), EV
A (ethylene acetate rubber), PIB (polyisobutylene rubber), Eco (epichlorohydrin rubber), NIR (acrylonitrile isoprene rubber), water-added NBR, acrylic rubber, urethane rubber, silicone rubber, fluororubber, chlorinated butyl rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, polyisobutylene rubber,
Polyester rubber etc. are used. The rubber material is preferably used in an amount of 5 to 50% by weight.

充填材には、クレー、陶石、タルク、マイカ、セリサイ
ト、シリカ、珪藻土、パーライト、バーミキュライト、
パライト、炭酸カルシウム、ベントナイト、カオリナイ
ト、焼成カオリナイト、カーボン、ホワイトカーボン、
黒鉛、弾性黒鉛等が使用される。
Filling materials include clay, pottery stone, talc, mica, sericite, silica, diatomaceous earth, perlite, vermiculite,
pallite, calcium carbonate, bentonite, kaolinite, calcined kaolinite, carbon, white carbon,
Graphite, elastic graphite, etc. are used.

充填材の配合量は、一般的に石綿ジヨイントシートで3
〜50重量%、アスベストフリージヨイントシートで1
0〜80重量%の範囲で使用されており、本発明におい
てもこの範囲で使用することが好ましい。
The amount of filler mixed is generally 3 for asbestos joint sheets.
~50% by weight, asbestos free joint sheet 1
It is used in a range of 0 to 80% by weight, and it is preferable to use this range in the present invention as well.

本発明で配合する繊維化可能な弗素樹脂パウダーとして
は、ポリテトラフルオロエチレン、テトラフルオロエチ
レン−へキサフルオロプロピレン共重合体、テトラフル
オロエチレン−パーフルオロアルキルビニルエーテル共
重合体、テトラフルオロエチレン−エチレン共重合体、
ポリクロロトリフルオロエチレン、低分子量ポリテトラ
フルオロエチレン等が挙げられるが、なかでも乳化重合
により得られる分子間凝集力の小さいポリテトラフルオ
ロエチレンが望ましい。
Examples of the fibrous resin powder to be blended in the present invention include polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and tetrafluoroethylene-ethylene copolymer. polymer,
Examples include polychlorotrifluoroethylene and low molecular weight polytetrafluoroethylene, among which polytetrafluoroethylene, which is obtained by emulsion polymerization and has a small intermolecular cohesive force, is desirable.

弗素樹脂パウダーの配合量は、ジヨイントシート固形分
に対して 0.1〜70重量%の範囲とする。
The blending amount of the fluororesin powder is in the range of 0.1 to 70% by weight based on the solid content of the joint sheet.

70重量%を超えて弗素樹脂パウダーの量が多いと、弗
素樹脂パウダーを練り込んだ後のゴムが溶剤に膨潤しに
くくなるので、好ましくない。
If the amount of the fluororesin powder exceeds 70% by weight, the rubber after kneading the fluororesin powder becomes difficult to swell in the solvent, which is not preferable.

次に加工工程について述べる。Next, we will discuss the processing process.

上記配合材料はコンパウンド状に混練されるか、混練に
先たち繊維材料の開綿処理を施すと分散が良くなるので
好ましく、また必要に応じては繊維材料にはカップリン
グ剤等の表面処理剤を散布しても良い。
It is preferable that the above-mentioned compounded materials are kneaded into a compound, or that the fiber material is opened before kneading to improve dispersion, and if necessary, a surface treatment agent such as a coupling agent may be added to the fiber material. may be sprayed.

ゴム材料は、ドライラバーを使用する場合、トルエン等
の溶剤に浸漬し、膨潤させた状態で混練する必要がある
。 ただし、粉末ゴムやラテックスの場合には、溶剤に
よる膨潤が著しく速いので、混練工程中に溶剤を投入す
ることで膨潤させることが可能である。 またドライラ
バーではあらかじめ適量の繊維材料、充填材、ゴム薬品
、弗素樹脂パウダーを、ゴム素線りロールあるいは加圧
ニーダ−等を用いて練り込みを行っても良い。
When using dry rubber, the rubber material needs to be immersed in a solvent such as toluene and kneaded in a swollen state. However, in the case of powdered rubber or latex, swelling by solvent is extremely fast, so swelling can be caused by adding a solvent during the kneading process. For dry rubber, appropriate amounts of fiber material, filler, rubber chemicals, and fluororesin powder may be kneaded in advance using a rubber wire drawing roll, a pressure kneader, or the like.

充填材についても、必要に応じて混線工程に入れる前に
カップリング剤等の表面処理剤を散布して用いる場合が
ある。 また、混練工程前に充填材と弗素樹脂パウダー
をドライ混合させると、混線材料中での分散がより向上
する。
As for the filler, if necessary, a surface treatment agent such as a coupling agent may be sprayed on the filler before entering the crosstalk process. Further, if the filler and the fluororesin powder are dry mixed before the kneading step, the dispersion in the mixed wire material is further improved.

使用する混練機は、ヘンシェルミキサー、ニーダ−パド
ル型ミキサー等が用いられるが、弗素樹脂パウダーが繊
維化できるだけの剪断力を与えられるものが必要である
。 混練工程における弗素樹脂パウダーの繊維化は、必
らずしも100%繊維化させる必要はなく、繊維化して
いない弗素樹脂パウダーが残っていても差しつかえない
。 混線工程を経たコンパウンドは、次に成形加工工程
により、ジヨイントシートに成形される。
The kneading machine used may be a Henschel mixer, a kneader-paddle type mixer, etc., but it is necessary to be able to apply a shearing force sufficient to fiberize the fluororesin powder. The fibrosis of the fluororesin powder in the kneading step does not necessarily require 100% fibrosis, and it is fine if some fluororesin powder remains that has not been fibrousized. The compound that has undergone the cross-wire process is then molded into a joint sheet in a molding process.

ジヨイントシートの成形加工にはカレンダーロールが用
いられ、この加熱ロールと冷却ロールの2本のロール間
で混線材料は薄く延ばされるように通過し、加熱ロール
上に巻きつけられて、加硫成形される。 この2本のロ
ール間には、強い剪断力がかかっており、混練工程で繊
維化していない弗素樹脂パウダーも、はぼ完全に繊維化
されることになり、繊維材料、バインダー(加硫ゴム)
及び充填材は繊維化された弗素樹脂パウダーのネッl〜
ワークと密に絡み合った構造となる。
Calendar rolls are used to form joint sheets, and the cross-wire material is passed through two rolls, a heating roll and a cooling roll, so as to be thinly stretched, then wound onto the heating rolls, and then vulcanized and formed. be done. A strong shearing force is applied between these two rolls, and even the fluororesin powder that has not been turned into fibers during the kneading process is almost completely turned into fibers, and the fiber material, binder (vulcanized rubber)
And the filler is a network of fibrous fluororesin powder.
The structure is closely intertwined with the workpiece.

(実施例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 l 配合材料として、繊維材料に芳香族ポリアミド繊維(デ
ュポン社製ケブラーパルプIF502)を18重量%、
ゴム材料にNBRラテックスを固形分量で12重量%、
充填材にパライトを9重量%、クレーを9重量%、及び
弗素樹脂パウダー(旭硝子社製CD−1>を50重量%
、更にはゴム薬品を用いた。 なお、芳香族ポリアミド
繊維については混練工程前にハンマーミルによって開綿
処理を施した。 混練機にはヘンシェルミキサーを使用
し、前記配合材料及び溶剤としてI!1量のトルエンを
投入し、混練を行った。 これにより得られたコンパウ
ンド状の混線材料をカレンダーロール(加熱ロールの温
度140℃前後)によって加硫成形し、厚さ1゜51の
ジヨイントシートを得た。
Example 1 As a compounding material, 18% by weight of aromatic polyamide fiber (Kevlar pulp IF502 manufactured by DuPont) was added to the fiber material.
12% by weight solid content of NBR latex as rubber material.
Fillers include 9% by weight of pallite, 9% by weight of clay, and 50% by weight of fluororesin powder (CD-1 manufactured by Asahi Glass Co., Ltd.).
, and even used rubber chemicals. Note that the aromatic polyamide fibers were subjected to an opening treatment using a hammer mill before the kneading step. A Henschel mixer was used as a kneader, and I! was used as the compounding material and solvent. One amount of toluene was added and kneaded. The compound-like mixed wire material thus obtained was vulcanized and molded using calender rolls (temperature of heating rolls was approximately 140°C) to obtain a joint sheet with a thickness of 1°51.

実施例 2 配合材料として、繊維材料に芳香族ポリアミド繊維(デ
ュポン社製ケブラーパルプIF502)を18重量%、
ゴム材料にNBRラテックスを固形分量で12重量%、
充填材にパライトを29重量%、クレーを29重量%、
及び弗素樹脂パウダー(旭硝子社製CD−1)を10f
!量%、更にはゴム薬品を用いた。 なお、混練方法、
シーテイング方法は実施例1と同じにして実施例2のジ
ヨイントシートを得た。
Example 2 As a compounding material, 18% by weight of aromatic polyamide fiber (Kevlar pulp IF502 manufactured by DuPont) was added to the fiber material.
12% by weight solid content of NBR latex as rubber material.
29% by weight of pallite and 29% by weight of clay as fillers.
and 10f of fluororesin powder (CD-1 manufactured by Asahi Glass Co., Ltd.)
! % and further rubber chemicals were used. In addition, the kneading method,
The joint sheet of Example 2 was obtained using the same sheeting method as in Example 1.

比較例 1 実施例2の配合のうち、弗素樹脂パウター10重量%の
代わりに、パライトとクレーを追加して、パライト34
重量%、クレー34重量%とした。 その他の配合、混
練方法、シーテイング方法は実施例2と同じにして比較
例1のジヨイントシートを得た。
Comparative Example 1 In the formulation of Example 2, Palite and clay were added instead of 10% by weight of fluororesin powder to create Palite 34.
The clay content was 34% by weight. Other formulations, kneading methods, and sheeting methods were the same as in Example 2 to obtain a joint sheet of Comparative Example 1.

実施例1.2と比較例1の特性値を第1表に示す。Table 1 shows the characteristic values of Example 1.2 and Comparative Example 1.

なお、耐油特性は、No3オイルに対するものであり、
耐水蒸気特性の引張強さ減少率は、蒸気圧18kof/
an’下100時間曝露後の繊維垂直方向の引張強さの
減少率であり、洩れ性は、蒸気圧18kgf/an2、
蒸気温度280℃の蒸気ラインで、1日10時間通気、
14時間停止のサイクルをした場合の洩れ発生日数であ
る。 耐薬品特性の酸浸漬引張強さ減少率は、0.1N
のHCIに24時間浸漬後の繊維垂直方向における結果
であり、アルカリ浸漬引張強さ減少率は0.1NのNa
OH液に24時間浸漬後の繊維垂直方向における結果で
ある。
Note that the oil resistance properties are for No. 3 oil.
The rate of decrease in tensile strength of water vapor resistance is determined by the vapor pressure of 18kof/
It is the reduction rate of the tensile strength in the vertical direction of the fiber after 100 hours of exposure under an', and the leakage property is the vapor pressure of 18 kgf/an2,
Steam line with steam temperature of 280℃, ventilation for 10 hours a day,
This is the number of days in which a leak occurs when a 14-hour stop cycle is performed. The acid immersion tensile strength reduction rate for chemical resistance is 0.1N.
These are the results in the vertical direction of the fiber after immersion in HCI for 24 hours, and the alkali immersion tensile strength reduction rate is 0.1N Na
This is the result in the vertical direction of the fiber after being immersed in the OH solution for 24 hours.

実施例1,2と比較例1との比較結果から、本発明は、
従来のジヨイントシートの引張強さ、耐油性、耐水蒸気
性を著しく向上させる効果のあることが判る。
From the comparison results between Examples 1 and 2 and Comparative Example 1, the present invention
It can be seen that this has the effect of significantly improving the tensile strength, oil resistance, and water vapor resistance of conventional joint sheets.

実施例 3 配合材料として、繊維材料に芳香族ポリアミド繊維(デ
ュポン社製ゲブラーバルプl F2O3>を18重量%
、ゴム材料にNBRラテックスをゴム固形分量で12重
量%、充填材にクレーを68重量%、弗素樹脂パウダー
(旭硝子社製CD−1>を0.5重量%、及びゴム薬品
を使用した。 なお、芳香族ポリアミド繊維については
、混練前にハンマーミルによって開綿処理を艙した。 
混練機には、ヘンシェルミキサーを使用し、前記配合材
料及び溶剤として適量のトルエンを投入し、混練を行っ
た。 これにより得られたコンパウンド状の混線材料を
カレンターロール(加熱ロールの温度140℃前後)に
よって加硫成形しジヨイントシートを得た。
Example 3 As a compounding material, 18% by weight of aromatic polyamide fiber (Gebler Valp 1 F2O3 manufactured by DuPont) was added to the fiber material.
The rubber material used was 12% by weight of NBR latex in terms of rubber solid content, 68% by weight of clay as the filler, 0.5% by weight of fluororesin powder (CD-1 manufactured by Asahi Glass Co., Ltd.), and rubber chemicals. The aromatic polyamide fibers were subjected to opening treatment using a hammer mill before kneading.
A Henschel mixer was used as a kneader, and the above compounded materials and an appropriate amount of toluene as a solvent were charged and kneaded. The compound-like mixed wire material thus obtained was vulcanized and molded using a calendar roll (temperature of the heated roll was around 140°C) to obtain a joint sheet.

比較例 2 実施例3の配合材料のうち、弗素樹脂パウダー0.5重
量%に代えて、同量のクレーを追加して68.5重量%
とする。 混練方法、シーテイング方法は、実施例3と
同様に行い、ジヨイントシートを得た。 実施例3と比
較例2の特性値を第1表に併記する。
Comparative Example 2 Of the compounded materials in Example 3, instead of 0.5% by weight of fluororesin powder, the same amount of clay was added to make 68.5% by weight.
shall be. The kneading method and sheeting method were performed in the same manner as in Example 3 to obtain a joint sheet. The characteristic values of Example 3 and Comparative Example 2 are also listed in Table 1.

実施例3の結果から、弗素樹脂パウダー0.5重量%を
添加することで、引張強さ(繊維方向)、耐薬品性(耐
酸性、耐アルカリ性)が向上することが判る。
The results of Example 3 show that adding 0.5% by weight of fluororesin powder improves tensile strength (fiber direction) and chemical resistance (acid resistance, alkali resistance).

(発明の効果) 以上説明してきたように、この発明によれば、弗素樹脂
パウダーを配合剤として添加し、材料の混練時及びシー
テイング時に剪断力によって弗素樹脂パウダーを繊維化
し、シート内部でネットワークを形成させる構造である
ため、従来のジヨイントシートに比べて引張強さ、画然
性、耐水蒸気性、耐薬品性が著しく向上できるという効
果が得られる。 さらに、摩擦係数の低下、フランジへ
の焼きつき性低下の効果もみちれる。
(Effects of the Invention) As explained above, according to the present invention, fluororesin powder is added as a compounding agent, the fluororesin powder is made into fibers by shearing force during material kneading and sheeting, and a network is formed inside the sheet. Because of its structure, it has the advantage of significantly improving tensile strength, sharpness, water vapor resistance, and chemical resistance compared to conventional joint sheets. Furthermore, the effect of lowering the coefficient of friction and reducing the tendency to seize on the flange is also seen.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維材料、ゴム材料、充填材、ゴム薬品、及び繊維
化可能な弗素樹脂パウダーを含む材料を配合してなり、
該弗素樹脂パウダーがジョイントシート固形分に対して
0.1〜70重量%の割合に含有されるとともに、材料
がシート化された後に該弗素樹脂パウダーが繊維化され
た状態となっていることを特徴とするジョイントシート
1 Compounded with materials containing fiber materials, rubber materials, fillers, rubber chemicals, and fluororesin powder that can be made into fibers,
The fluororesin powder is contained in a proportion of 0.1 to 70% by weight based on the solid content of the joint sheet, and the fluororesin powder is in a fiberized state after the material is formed into a sheet. Features a joint seat.
JP34035289A 1989-12-28 1989-12-28 Joint sheet Granted JPH03199777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34035289A JPH03199777A (en) 1989-12-28 1989-12-28 Joint sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34035289A JPH03199777A (en) 1989-12-28 1989-12-28 Joint sheet

Publications (2)

Publication Number Publication Date
JPH03199777A true JPH03199777A (en) 1991-08-30
JPH0557471B2 JPH0557471B2 (en) 1993-08-24

Family

ID=18336115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34035289A Granted JPH03199777A (en) 1989-12-28 1989-12-28 Joint sheet

Country Status (1)

Country Link
JP (1) JPH03199777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040887A (en) * 2012-08-23 2014-03-06 Nippon Pillar Packing Co Ltd Gasket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040887A (en) * 2012-08-23 2014-03-06 Nippon Pillar Packing Co Ltd Gasket

Also Published As

Publication number Publication date
JPH0557471B2 (en) 1993-08-24

Similar Documents

Publication Publication Date Title
JP4746879B2 (en) Non-asbestos-based sheet gasket
JP2670855B2 (en) Silicone composite rubber composition and use thereof
JP2007239901A (en) Method of manufacturing sheet like gasket
CN105972211B (en) A kind of carbon fiber core-spun gasket seal and preparation method thereof
JPH06340868A (en) Nonasbestos microdenier acrylic-fiber reinforcement for gasket, etc.
JPH01295839A (en) High-temperature compression non-asbestos-sheet
JPH03199777A (en) Joint sheet
EP0581893A1 (en) Industrial gasket for steam application
AU702352B2 (en) Asbestos-free gaskets and the like containing blends of organic fibrous and particulate components
JP2002194331A (en) Gasket
JPH05239439A (en) Sealing composition
JPH05179230A (en) Composition for sealing
JP2001262126A (en) Joint sheet
JPH10140138A (en) Joint sheet
JP2700830B2 (en) Rubber laminate
JP2901699B2 (en) Non-asbestos joint sheet
JP2927699B2 (en) Joint sheet
JPS6335176B2 (en)
JP2000104043A (en) Joint sheet-forming composition, joint sheet and preparation thereof
JPH10168429A (en) Joint sheet and its production
JP3563884B2 (en) Packing
JPH05162157A (en) Manufacture of joint sheet
JP2853060B2 (en) Heat resistant rubber composition
JPH1129761A (en) Joint sheet and its preparation
JP2002201459A (en) Joint sheet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 17