JPH03198797A - Analyzing method - Google Patents

Analyzing method

Info

Publication number
JPH03198797A
JPH03198797A JP1859090A JP1859090A JPH03198797A JP H03198797 A JPH03198797 A JP H03198797A JP 1859090 A JP1859090 A JP 1859090A JP 1859090 A JP1859090 A JP 1859090A JP H03198797 A JPH03198797 A JP H03198797A
Authority
JP
Japan
Prior art keywords
reaction
sample
reagent
physical quantity
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1859090A
Other languages
Japanese (ja)
Inventor
Yoshiteru Furuta
古田 芳輝
Katsuji Yamashita
山下 勝治
Yasushi Nomura
靖 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10590679A external-priority patent/JPS5630644A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1859090A priority Critical patent/JPH03198797A/en
Publication of JPH03198797A publication Critical patent/JPH03198797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To accurately determine an aimed component by correcting a measured time variation rate as a physical quantity after mixing a reagent containing residual components necessary for an aimed reaction with a sample by the time variation rate after additionally mixing an auxiliary reagent for the reaction lacking said necessary residual components. CONSTITUTION:A reaction auxiliary reagent lacking at least one of components necessary for the aimed reaction is mixed with a sample and a time variation rate of a first physical quantity is measured. Next, a reagent containing residual components necessary for the aimed reaction not contained in said reaction auxiliary reagent is mixed with the first auxiliary reagent and a time variation of a second physical quantity is measured. Then, the time variation of the second physical quantity is corrected with said variation of the above-mentioned first physical quantity. By this method, an activating value of the aimed substance in a sample is able to be determined by a time variation rate of a physical quantity generated by an induced chemical reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分析方法に係り、特に、血清等の多数の物質
の混在する試料中に含まれる目的成分を定量する自動化
学分析装置に用いるに好適な、分析すべき試料に反応試
薬を添加して、誘起される化学反応によって生じる物理
量の変化から試料中の目的成分を定量する分析方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an analysis method, and in particular to an automatic chemical analyzer for quantifying target components contained in a sample containing a large number of substances such as serum. The present invention relates to an analysis method suitable for adding a reaction reagent to a sample to be analyzed and quantifying a target component in the sample from changes in physical quantities caused by the induced chemical reaction.

〔従来の技術〕[Conventional technology]

従来の主に臨床検査に使用される自動化学分析装置では
、2つの測定方式が行なわれてきた。即ち、(1)コレ
ステロールの酵素法による分析や総蛋白のビユレット法
による分析のように、試料と試薬の混合後、反応を生じ
させ一定時間後に吸光度を測定する方式で、一般に比色
分析法あるし1はワンポイント法、エンドポイント法を
呼ばれるものと、(2)グルタミン酸オキザロ酢酸トラ
ンスアミナーゼや乳酸脱水酵素の反応速度追跡法による
分析のように、トリガー試薬添加後の吸光度変化を追跡
する方式で、一般に反応速度測定法、初速変法、レート
分析法あるいはカイネテイツク法と呼ばれるものである
Two measurement methods have been used in conventional automatic chemical analyzers mainly used for clinical tests. In other words, (1) As in the enzymatic analysis of cholesterol and the analysis of total protein by the Biulet method, this is a method in which a sample and reagent are mixed, a reaction is caused, and the absorbance is measured after a certain period of time; generally, there is a colorimetric analysis method. (1) There are two methods called one-point method and end-point method, and (2) a method that tracks the change in absorbance after the addition of a trigger reagent, such as the reaction rate tracking method for glutamate oxaloacetate transaminase and lactate dehydratase. This method is generally called the reaction rate measurement method, initial velocity modification method, rate analysis method, or kinetic method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこれらの従来の方式では、ビリルビンのア
ゾビリルビン法、グルコースのへキラキナーゼ法、トリ
グリセライ1−のUV法や尿酵窒素のUV法のような分
析化学に適用した場合、試料中に混在する他物質の影響
を簡単には除去できず、それらの影響を除くためには、
その大きさを測らなければならないので、2倍の設備、
2倍の試料と試薬を必要とした。
However, when these conventional methods are applied to analytical chemistry such as the azobilirubin method for bilirubin, the hechirakinase method for glucose, the UV method for triglyceride 1-, and the UV method for urine enzyme nitrogen, other The effects of substances cannot be easily removed, and in order to remove them,
We had to measure its size, so we needed twice as much equipment,
Required twice as much sample and reagents.

ここで更に詳しく例をあげて述べると、血清中の分析で
最も特異性の高い分析法であるヘキソキナーゼ法による
分析では、次の(1)式、(2)式の化学反応が進行す
る。
To give a more detailed example, in analysis using the hexokinase method, which is the most specific analysis method for serum analysis, chemical reactions of the following formulas (1) and (2) proceed.

ヘキソキナーゼ グルコース+鼎□−→  グルコース−6−リン酸+A
DP・・(1)グルっ−オー6−リツ酸+NADP甲な
チシ、4話4.−7オユ、オ卿。、酸0.(2)ここで
、ATPはアデノシン1〜リリン酸、ADPは、アデノ
シンジリン酸、NADPは、ニコチンアミドアデニンデ
ヌクレオチ1へリン酸エステル、06 P −D Hは
、グルコース6フオスフエイトデヒドロゲナーゼ、N 
A I) PHは、還元型ニコチンアミドアデニンデヌ
クレオチドリン酸エステルである。
Hexokinase glucose + 鼎□-→ glucose-6-phosphate + A
DP... (1) Glu-o-6-lithic acid + NADP, episode 4 4. -7 Oyu, Lord O. , acid 0. (2) Here, ATP is adenosine 1-lyphosphate, ADP is adenosine diphosphate, NADP is nicotinamide adenine denucleotide 1-phosphate, 06P-D H is glucose 6-phosphate dehydrogenase, N
A I) PH is reduced nicotinamide adenine denucleotide phosphate ester.

この分析化学において、NADPとN A D P I
(の吸収の相違、即ちN A、 D P Hが340n
mの吸収ピークを持ち、NADPが当該波長において吸
収をもたない事実により、この系での340nmでの吸
光度の変化量はグルコース量に比例する。
In this analytical chemistry, NADP and NADP I
(The difference in absorption of
The change in absorbance at 340 nm in this system is proportional to the amount of glucose due to the fact that NADP has an absorption peak at 340 nm and has no absorption at that wavelength.

ここで、この分析化学を前記(1)の比色分析法に適用
した場合、一般の血清試料ではビリルビン等の色素や濁
りの成分等の34− On mに吸収をもつ物質が混在
し、それらの影響が大きいため、正確なグルコースの定
量ができない。そこで従来の技術では前記混在物質の影
響の大きさを次のようにして測定し、除去していた。即
ち主分析チャンネルの他にもう1つ検体ブランク用の副
チャンネルを設け、副チャンネルで妨害物質の影響の大
きさを測定し、それで主チャンネルのデータを補正する
方式がとられてきた。この場合、機械的に2倍の設備と
、試料量が2倍、その地検体ブランク用の試薬が必要で
あった。又、前にあげた従来技術(2)のレート分析法
では当該反応、前記(1)式、(2)式の化学反応は非
常に速い速度で進み、又温度の影響も強く受けるために
精度よく定量するのがむずかしいという欠点があった。
When this analytical chemistry is applied to the colorimetric analysis method described in (1) above, ordinary serum samples contain substances that absorb at 34-On m, such as pigments such as bilirubin and turbidity components, and these Accurate glucose quantification is not possible due to the large influence of Therefore, in the conventional technology, the magnitude of the influence of the mixed substances was measured and removed as follows. That is, a method has been adopted in which a sub-channel for a sample blank is provided in addition to the main analysis channel, the magnitude of the influence of interfering substances is measured in the sub-channel, and the data of the main channel is corrected accordingly. In this case, twice the mechanical equipment, double the amount of sample, and reagents for the ground specimen blank were required. In addition, in the rate analysis method of conventional technology (2) mentioned above, the reaction, the chemical reactions of equations (1) and (2) above, proceed at a very fast rate and are also strongly affected by temperature, so the accuracy is low. The drawback was that it was difficult to quantify accurately.

本発明は、前記従来の欠点を解消するべくなされたもの
で、試料中に混在する目的成分以外の成分による妨害の
影響を簡単に除去できる分析方法を提供することを目的
をする。
The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide an analysis method that can easily eliminate the interfering influence of components other than the target component mixed in a sample.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、分析すにき試料に反応試薬を添加して、誘起
される化学反応によって生じる物性値の変化から試料中
の目的成分を定量する分析方法において、まず、目的と
する反応に必要な成分のうち、少なくとも1つを欠いて
いる反応補助試薬を試料に添加して、第1の物性値を測
定し、次いで、前記反応補助試薬中に含まれなかった、
目的とする反応に必要な残成分を含む1−リガー試薬を
試料に添加して、第2の物性値を測定し、該第2の物性
値を前記第]の物性値で補正して、反応補助試薬と試料
中の目的成分以外との反応による影響を除くようにして
、前記目的を達成したものである。
The present invention is an analysis method in which a reaction reagent is added to a sample to be analyzed, and a target component in the sample is quantified from changes in physical property values caused by the induced chemical reaction. A reaction auxiliary reagent lacking at least one of the components is added to the sample to measure the first physical property value, and then, the reaction auxiliary reagent lacking at least one component not included in the reaction auxiliary reagent is added to the sample.
A 1-Riger reagent containing residual components necessary for the desired reaction is added to the sample, a second physical property value is measured, and the second physical property value is corrected by the physical property value of the above-mentioned physical property value, and the reaction is performed. The above objective is achieved by eliminating the effects of reactions between the auxiliary reagent and components other than the target components in the sample.

− 本発明は、ある種の化学分析法では、共存物質の妨害が
大きいことを実験的に確認し、この妨害を除去する手段
として、1−リガー試薬添加前と添加後のトリガーによ
る反応終了後の物性値、例えば吸光度の差が、他の共存
物質に起因しない目的反応のみによる変化量であること
に着目してなされたものである。
- The present invention has experimentally confirmed that in certain chemical analysis methods, there is a large interference from coexisting substances, and as a means to remove this interference, 1- After the reaction is completed by triggering before and after the addition of Riger reagent. This was done by focusing on the fact that the difference in physical property values, such as absorbance, is due only to the desired reaction and is not caused by other coexisting substances.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき詳細に説明する。 Hereinafter, the present invention will be explained in detail based on examples.

第1図は、本発明の実施例の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of an embodiment of the present invention.

反応テーブル1はその円周上に複数個(例えば40個)
の測定セルを兼ねた反応容器2を有し、回転軸3を中心
に自由に回転できる。試料テーブル4はその円周上に複
数個の試料容器5を有し、回転軸6を中心に自由に回転
できる。試料のピペッティングはピペッタ7およびサン
プリングプローブ8によって行なわれ、試薬の分注は分
注器9および10によって行なわれる。分光器11は複
数検知器による多波長同時測光形であり、光源ランプ1
2と相対し、反応テーブル1が回転状態にある時に反応
容器2の列が光源ランプ12からの光束13を通過する
ように設置しである。光束13は反応テーブル1が停止
状態にあるときに吐出位置25から時計方向に数えて、
例えば30番目の反応容器2の中心を透過するように配
置されている。光束1.3の位置と吐出位置25の間に
は排液管26および洗浄液吐出管27が配置され、それ
ぞれ、排液装置28および洗浄装置29に接続されてい
る。
The reaction table 1 has multiple pieces (for example, 40 pieces) on its circumference.
It has a reaction vessel 2 that also serves as a measurement cell, and can freely rotate around a rotation shaft 3. The sample table 4 has a plurality of sample containers 5 on its circumference and can freely rotate around a rotation axis 6. Pipetting of the sample is performed using a pipetter 7 and sampling probe 8, and dispensing of reagents is performed using dispensers 9 and 10. The spectrometer 11 is a multi-wavelength simultaneous photometry type using multiple detectors, and the light source lamp 1
2, the row of reaction vessels 2 is disposed so that a light beam 13 from a light source lamp 12 passes through the row of reaction vessels 2 when the reaction table 1 is in a rotating state. The luminous flux 13 is counted clockwise from the discharge position 25 when the reaction table 1 is in a stopped state,
For example, it is arranged so that it passes through the center of the 30th reaction vessel 2. A drain pipe 26 and a cleaning liquid discharge pipe 27 are arranged between the position of the light beam 1.3 and the discharge position 25, and are connected to a drain device 28 and a cleaning device 29, respectively.

第2図は本実施例の電気系統を示すブロック線図である
。電気系全体の構成はマルチプレクサ14、対数変換増
幅器15、A / I)変換器16、中央処理装置17
、読出専用記憶装置18、続出書込記憶装置」−9、プ
リンタ20、操作パネル21、機構部即動回路22から
成り立ち、パスライン23で接続されている。
FIG. 2 is a block diagram showing the electrical system of this embodiment. The entire electrical system consists of a multiplexer 14, a logarithmic conversion amplifier 15, an A/I) converter 16, and a central processing unit 17.
, a read-only storage device 18, a continuous write storage device 9, a printer 20, an operation panel 21, and a mechanical quick-acting circuit 22, which are connected by a pass line 23.

以下、図に従って動作原理を説明する。被測定試料、例
えば血清を収容した試料容器5がサンプリング位置31
に供給されるとピペッタ7のプローブ8の先端が上記試
薬容器5内に浸漬され、血清の一定量を吸入し、プロー
ブ8内に保持する。
The operating principle will be explained below according to the figures. A sample container 5 containing a sample to be measured, for example, serum, is located at a sampling position 31.
When the serum is supplied, the tip of the probe 8 of the pipetter 7 is immersed into the reagent container 5, and a certain amount of serum is aspirated and retained within the probe 8.

このとき同時に分注器9は試料収納容器24がら反応補
助試薬を一定量吸入する。その後、プローブ8は反応テ
ーブル1の吐出位置25まで移動し、吐出位置25に移
送されている反応容器2内にプローブ8で保持していた
血清を吐出し、同時に分注器9により上記反応補助試薬
を吐出する。上記の動作により、被測定試料は反応容器
2内で反応補助試薬と混和して第1の反応を開始する。
At the same time, the dispenser 9 sucks a certain amount of the reaction auxiliary reagent from the sample storage container 24. Thereafter, the probe 8 moves to the discharge position 25 of the reaction table 1, and discharges the serum held by the probe 8 into the reaction container 2 that has been transferred to the discharge position 25, and at the same time, the dispenser 9 is used to assist the reaction. Dispense the reagent. By the above operation, the sample to be measured is mixed with the reaction auxiliary reagent in the reaction container 2, and the first reaction is started.

上記サンプリング動作が終ると反応テーブル1は時計方
向に間欠的な回転移動を開始し、反応テーブル]上に反
応容器2の全数より1つ多い数の反応容器2、例えば4
1個の反応容器2が吐出位置25を通過するに必要な角
度だけ、即ち369度だけ回転して停止する。上記反応
テーブル1の回転によって上記サンプリング動作でサン
プリングされた試料と反応補助試薬の入った反応容器2
は吐出位置25より反応容器1ピッチ分即ち角度9度だ
け時計方向に進んだ位置に来て停止していることになる
。上記反応テーブル1の回転中に反応チー7−ブ ル る。従って、それぞれの反応容器2が光束13を通過す
るときには分光器11により光吸収測定がなされ、分光
器11の出力はマルチプレクサ14により現在必要な測
定波長の信号が選択され、A/D変換器16により中央
処理装置17に取り込まれて続出書込記憶装置19に記
憶される。上記の反応テーブル1の回転および停止して
いる間の時間を例えば30秒とすると、30秒を1サイ
クルとして上記動作を繰返す。上記サイクルが進むにつ
れてサンプリングされた特定の被測定試料は、反応テー
ブル1が停止している状態での位置が、反応容器1ピッ
チ分ずつ時計方向に進んで行く。分注器10の配管は例
えば反応テーブル1の停止状態において、吐出位置25
より数えて時計方向に15番目の反応容器2の上に設置
されており,特定の被測定試料について見ると吐出位置
25における補助反応開始より15サイクル目に分注器
10によりトリガー試薬が添加され目的とする主反応が
開始される。さらにサイクルが進み、反応テーブル」、
が停止している状態における反応容器2の位置が光束1
3を越えて光束13と吐出位置25の間にある反応容器
2内の試料は測定終了の試料であり、排液管26を通し
て排液装置28により吸引排液される。また洗浄液吐出
管27を通じて洗浄装置29より洗浄液(通常は蒸留水
)が吐出される。次の反応テーブル1の停止時にこの反
応容器2の洗浄液は上記と同様にして最後の排液が行な
われ、さらにサイクルが進んで吐出位置25より再度反
応容器2として使用される。以上の動作は読出専用記憶
装置18内のプログラムに従って中央処理装置17より
機構部暉動回路22を通じて各機構部が制御される。操
作パネル21は測定条件の入力、測定開始、および測定
停止等の操作に使用される。
When the above-mentioned sampling operation is completed, the reaction table 1 starts to rotate intermittently in the clockwise direction, and a number of reaction vessels 2, for example 4 reaction vessels 2, which is one more than the total number of reaction vessels 2,
One reaction vessel 2 rotates by an angle necessary for passing through the discharge position 25, that is, 369 degrees, and then stops. A reaction container 2 containing a sample sampled in the sampling operation by the rotation of the reaction table 1 and a reaction auxiliary reagent
It comes to a position that has advanced clockwise from the discharge position 25 by one pitch of the reaction container, that is, an angle of 9 degrees, and has stopped. While the reaction table 1 is rotating, the reaction table 1 is rotated. Therefore, when each reaction container 2 passes through the light beam 13, light absorption is measured by the spectrometer 11, and from the output of the spectrometer 11, a signal of the currently required measurement wavelength is selected by the multiplexer 14, and the A/D converter 16 The data is taken into the central processing unit 17 and stored in the continuous write storage device 19. If the time period during which the reaction table 1 is rotated and stopped is, for example, 30 seconds, the above operation is repeated with 30 seconds as one cycle. As the cycle progresses, the position of the sampled sample to be measured advances clockwise by one pitch of the reaction container when the reaction table 1 is stopped. For example, when the reaction table 1 is in a stopped state, the piping of the dispenser 10 is connected to the discharge position 25.
The trigger reagent is placed on top of the 15th reaction vessel 2 in the clockwise direction, and when looking at a specific sample to be measured, the trigger reagent is added by the dispenser 10 at the 15th cycle from the start of the auxiliary reaction at the discharge position 25. The desired main reaction is initiated. The cycle continues and the reaction table',
The position of the reaction vessel 2 when the light is stopped is the luminous flux 1.
The sample in the reaction container 2 which is between the light beam 13 and the discharge position 25 beyond 3 is the sample whose measurement has been completed, and is suctioned and drained by the liquid drain device 28 through the liquid drain pipe 26. Further, a cleaning liquid (usually distilled water) is discharged from the cleaning device 29 through the cleaning liquid discharge pipe 27 . When the reaction table 1 is next stopped, the cleaning liquid in the reaction container 2 is drained for the last time in the same manner as described above, and the cycle is further advanced to be used again as the reaction container 2 from the discharge position 25. The above-mentioned operations are controlled by the central processing unit 17 through the mechanism stirring circuit 22 in accordance with the program in the read-only storage device 18. The operation panel 21 is used for operations such as inputting measurement conditions, starting measurement, and stopping measurement.

以上の動作で1サイクルにおける反応テーブル1の停止
時間を9.5秒、回転時間20.5秒とすると、特定試
料に着目した場合、その特定試料の反応過程は29.5
秒毎に30回測定され、合計14分45秒間の測定デー
タが読出書込記憶装置19内に記憶されている。中央処
理装置17は、読出専用記憶装置18内のプログラムに
従って作動し、読出書込記憶装置19内の30個の測定
データから予定のプログラムに従って必要なデータを抽
出し、濃度演算等の処理を行ってプリンタ20に出力す
る。
Assuming that the stop time of reaction table 1 in one cycle is 9.5 seconds and the rotation time is 20.5 seconds in the above operation, when focusing on a specific sample, the reaction process of that specific sample is 29.5 seconds.
Measurements are taken 30 times every second, and measurement data for a total of 14 minutes and 45 seconds is stored in the read/write storage device 19. The central processing unit 17 operates according to the program in the read-only storage device 18, extracts necessary data from the 30 measurement data in the read/write storage device 19 according to the scheduled program, and performs processing such as concentration calculation. and output it to the printer 20.

実施例1 ここで、前記実施例による装置を、グルコースのへキラ
キナーゼ法の分析に適用した場合について述べる。実験
結果によれば血清中のグルコースのへキラキナーゼ法に
よる分析の反応経過は第3図に示すごとく進行する。こ
こでl・リガー試薬はへキソキナーゼ溶液で、反応補助
試薬は、前出(1)と(2)式におけるATP、NAD
P、06P−DHを含む溶液である。
Example 1 Here, a case will be described in which the apparatus according to the above example is applied to analysis of glucose by the hekyrakinase method. According to the experimental results, the reaction process in the analysis of glucose in serum by the Hekyrakinase method proceeds as shown in FIG. Here, the l.Riger reagent is a hexokinase solution, and the reaction auxiliary reagents are ATP and NAD in the above formulas (1) and (2).
This is a solution containing P, 06P-DH.

第3図において示したように、反応液の吸光度の経時変
化は反応時間0点においては試薬のみの吸光度すなわち
試薬ブランクの吸光度aに加えて、血清自身のもつ共存
物質の加わった吸収を示す。
As shown in FIG. 3, the change in the absorbance of the reaction solution over time shows the absorbance of only the reagent, i.e., the absorbance a of the reagent blank, at the zero point of the reaction time, plus the absorption of the coexisting substances of the serum itself.

さらにやはり共存物質により試薬中のNADPをNAD
PHに変えるような副反応が短時間起り、一定の吸光度
すに達する。そこで反応時間7.5分の点で分注器10
によりトリガー試薬を添加すると、前記(1)式、(2
)式の反応が起り急速に進行して、1乃至2分後ではほ
ぼ終了して吸光度Cに達する。ここで分析化学的にトリ
ガーであるヘキソキナーゼは特異性が高く、グルコース
のみに作用する事実があり、吸光度差(c −b )は
血清中の真のグルコース量に比例する。又、前に述へた
装置にこの反応を適用した場合、試料移送から29.5
秒ごとに30回測定され、メモリーに記憶される。そこ
で最も簡単には(c−b)は14回目のデータbと30
回目のデータCの差として求められる。(b −c )
に予定のプログラムにより濃度換算係数をかけ、プリン
ター20に出力することができる。
Furthermore, NADP in the reagent can be converted to NAD by coexisting substances.
A side reaction that changes the pH occurs briefly and a certain absorbance is reached. Therefore, at the reaction time of 7.5 minutes, the pipettor 10
When the trigger reagent is added according to the formula (1), (2
) The reaction of the formula occurs and rapidly progresses, almost completing after 1 to 2 minutes and reaching absorbance C. Hexokinase, which is an analytical chemical trigger, has high specificity and acts only on glucose, and the absorbance difference (c-b) is proportional to the true amount of glucose in serum. Moreover, when this reaction is applied to the apparatus mentioned above, it takes 29.5 minutes from sample transfer.
Thirty measurements are taken every second and stored in memory. Therefore, the simplest way is (c-b) is the 14th data b and 30
It is obtained as the difference between the data C for the second time. (b-c)
can be multiplied by a density conversion coefficient according to a predetermined program and output to the printer 20.

本実施例によれば血清中のグルコースが混在成分の妨害
なく簡単に定量できる。
According to this example, glucose in serum can be easily quantified without interference from mixed components.

実施例2 ここで前記実施例による装置を、グルタミン酸1− 2− オキザル酢酸トランスアミナーゼ(G○′F)のレー1
へ法による分析に適用した場合について述べる。
Example 2 Here, the apparatus according to the above example was used for the reaction of glutamic acid 1-2-oxalacetic acid transaminase (G○'F).
We will discuss the case where this method is applied to analysis using the method.

GOTのレート法による分析の反応は次の化学式(3)
式と(4)式で表わされ、又実験結果によれば血清GO
Tの反応は第4図に示すごとく進行する。
The reaction of GOT analysis using the rate method is the following chemical formula (3)
It is expressed by the formula and (4), and according to the experimental results, serum GO
The reaction of T proceeds as shown in FIG.

オキザル酢酸十NADHY旦耶すンゴ酸+NAD   
     ・・(4)ここでM D Hは、マレイン酸
デイヒドロゲナーゼである。
Oxalacetic acid + NAD
...(4) Here, M D H is maleate dehydrogenase.

ここでトリガー試薬はα−ヶ1〜グルタル酸であり、反
応補助試薬は(3)式と(4)式におけるL−アスパラ
ギン酸、NADH,MDHを含む溶液である。
Here, the trigger reagent is α-glutaric acid, and the reaction auxiliary reagent is a solution containing L-aspartic acid, NADH, and MDH in formulas (3) and (4).

第4図において示したように反応液の吸光度は反応時間
0点直後においては、第1試薬と血清の重なった吸光度
を示す。その後血清中のオキザル酢酸による(4)式の
進行やその他血清中にGOT意外にN A D Hを酸
化してNADに変える物質が混在している場合があり、
それらのG OT以外の反応が起り第4図に示すごとく
進行する。これらの反応は検体固有の大きさをもつ、す
なわち患者により種々の大きさをもつ。そこで反応時間
7゜5分の点で分注器10により1−リガー試薬を添加
すると、前記のGOT反応(3)式とそれに共役してM
DH反応(4)式が起り、第4図に示すごとく吸光度の
降下が起る。ここで従来の方法ではトリガー試薬添加後
の吸光度の単位時間あたりの変化量からGOTの活性値
を求めていたが、血清中にN A D HからNADへ
変化させるGOT以外の物質が混在している場合には、
それらの副反応が測定値の誤差となっていた。本実施例
では10回目の吸光度データd、14回目の吸光度デー
タをe、16@口の吸光度データをf、20@目の吸光
度データをgとして((f  g)−(d −e))を
求め、予定のプログラムにより単位換算係数をかけ、プ
リンタ20に出力することができる。
As shown in FIG. 4, the absorbance of the reaction solution shows the overlapped absorbance of the first reagent and serum immediately after the 0 point of reaction time. After that, formula (4) may proceed due to oxalacetic acid in the serum, and other substances other than GOT that oxidize NAD H to NAD may be mixed in the serum.
Reactions other than GOT occur and proceed as shown in Figure 4. These reactions have sample-specific magnitudes, ie, they vary in magnitude from patient to patient. Therefore, when the 1-Riger reagent is added using the dispenser 10 at the reaction time of 7.5 minutes, the GOT reaction formula (3) and the M
The DH reaction (4) occurs, and the absorbance decreases as shown in FIG. Here, in the conventional method, the activity value of GOT was determined from the change in absorbance per unit time after the addition of the trigger reagent, but the serum contains substances other than GOT that convert NAD H to NAD. If there is
These side reactions caused errors in the measured values. In this example, the 10th absorbance data is d, the 14th absorbance data is e, the 16th mouth absorbance data is f, and the 20th absorbance data is g, ((f g) - (d - e)). It can be calculated, multiplied by a unit conversion coefficient using a scheduled program, and output to the printer 20.

本実施例によれば血清中のGOTが混在成分の妨害なく
簡単に定量できる。酸素活性を自動分析装置で測定する
場合、第4図に示した吸光度の変化率すなわち勾配をト
リガー試薬添加の前後でそれぞれ求めるに際し、ノイズ
的なデータが含まれていると、そのノイズデータを含め
て求められた勾配は本来の勾配と大きくずれる恐れがあ
る。そこでそのようなデータは勾配を求める際に捨てて
、計算する必要がある。第2図に示した如く、読出書込
記憶装置19に記憶されている第1の物性値に対応する
データおよび上記第2の物性値に対応するデータを抽出
して、読出専用記憶装置18内のプログラムに従って計
算する際、前記抽出されたデータは、メモリーに記憶さ
れたデータであるため、そのデータ中のノイズデータは
除いて計算することが可能となり、測定結果の信頼性を
向上することができる。
According to this example, GOT in serum can be easily quantified without interference from mixed components. When measuring oxygen activity with an automatic analyzer, if noise data is included when determining the rate of change in absorbance, or slope, shown in Figure 4 before and after adding the trigger reagent, it is necessary to include the noise data. There is a possibility that the slope obtained by this method will deviate greatly from the original slope. Therefore, it is necessary to discard such data when calculating the slope. As shown in FIG. 2, the data corresponding to the first physical property value and the data corresponding to the second physical property value stored in the read/write storage device 19 are extracted and stored in the read-only storage device 18. When calculating according to the program, since the extracted data is the data stored in memory, it is possible to remove noise data from the data and improve the reliability of the measurement results. can.

なお前記実施例においては、いずれも、本発明がターン
テーブルを有する自動化学分析装置に適用されていたた
め、従来と同様の自動化学分析装置において、測定器を
追加することなく、単に分析工程を若干変更するのみで
本発明が実施できたが、本発明の適用範囲はこれに限定
されず、フローセル方式の自動化学分析装置あるいはベ
ルトコンベア方式の自動化学分析装置にも同様に適用で
きることは明らかである。
In each of the above embodiments, the present invention was applied to an automatic chemical analyzer having a turntable, so in a conventional automatic chemical analyzer, the analysis process was simply slightly changed without adding any measuring instruments. Although the present invention was able to be carried out by only making changes, it is clear that the scope of application of the present invention is not limited to this, and can be similarly applied to a flow cell type automatic chemical analyzer or a belt conveyor type automatic chemical analyzer. .

又、前記実施例においては、いずれも、本発明が、吸光
度による分析に適用されていたが、本発明の適用範囲は
これに限定されず、一般の物性値を測定して分析する分
析方法にも同様に適用できることは明らかである。
In addition, in all of the above examples, the present invention was applied to analysis using absorbance, but the scope of application of the present invention is not limited to this, and is applicable to analysis methods that measure and analyze general physical property values. It is clear that the same applies.

以上説明した通り、本発明によれば、目的成分に特異性
のあるトリガー試薬の添加前と、当該トリガー試薬添加
後の反応状態から分析するようにしたので、目的成分の
定量が、混在成分の妨害を受けることなく簡単に且つ精
度良く行なうことができるという優れた効果を有する。
As explained above, according to the present invention, analysis is performed from the reaction state before the addition of a trigger reagent specific to the target component and after the addition of the trigger reagent. It has the excellent effect of being able to be easily and accurately carried out without interference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る分析方法の実施例が適用される自
動化学分析装置の構成を示す平面図、第2図は前記自動
化学分析装置における電気系統を示すブロック線図、第
3図は本発明が適用されるヘキソキナーゼ法によるグル
コース分析の反応過15− 16 程を示す線図、第4図は同じく本発明が適用されるレー
ト法によるグルタミン酸オキザロ酢酸トランスアミナー
ゼ分析の反応過程を示す線図である。 1・・・反応テーブル、2・・・反応容器、4・・・試
料テーブル、5・・・試料容器、7・・・ピペッタ、8
・・プローブ、9,10・・・分注器、11・・・分光
器、12・・・光源ランプ、13・・・光束。
FIG. 1 is a plan view showing the configuration of an automatic chemical analyzer to which an embodiment of the analysis method according to the present invention is applied, FIG. 2 is a block diagram showing the electrical system in the automatic chemical analyzer, and FIG. FIG. 4 is a diagram showing the reaction process of glucose analysis by the hexokinase method to which the present invention is applied; FIG. be. DESCRIPTION OF SYMBOLS 1... Reaction table, 2... Reaction container, 4... Sample table, 5... Sample container, 7... Pipettor, 8
... Probe, 9, 10... Dispenser, 11... Spectrometer, 12... Light source lamp, 13... Luminous flux.

Claims (1)

【特許請求の範囲】[Claims] 1、分析すべき試料に反応試薬を添加して、誘起される
化学反応によって生じる物理量の時間変化率から試料中
の目的物質の活性値の測定をする分析方法において、ま
ず、目的とする反応に必要な成分のうち、少なくとも1
つを欠いている反応補助試薬と試料を混和して、第1の
物理量の時間変化率を測定し、次いで、前記反応補助試
薬中に含まれなかった、目的とする反応に必要な残成分
を含む試薬を混和して、第2の物理量の時間変化率を測
定し、該第2の物理量の時間変化率を前記第1の物理量
の変化率で補正することを特徴とする分析方法。
1. In an analysis method in which a reaction reagent is added to a sample to be analyzed and the activity value of a target substance in the sample is measured from the time rate of change of a physical quantity generated by the induced chemical reaction, first, the reaction reagent is added to the sample to be analyzed. At least one of the necessary ingredients
The rate of change over time of the first physical quantity is measured by mixing the sample with a reaction auxiliary reagent that lacks the reaction auxiliary reagent. 1. An analysis method comprising: mixing reagents containing reagents; measuring the rate of change over time of a second physical quantity; and correcting the rate of change over time of the second physical quantity by the rate of change of the first physical quantity.
JP1859090A 1979-08-22 1990-01-29 Analyzing method Pending JPH03198797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1859090A JPH03198797A (en) 1979-08-22 1990-01-29 Analyzing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10590679A JPS5630644A (en) 1979-08-22 1979-08-22 Method of analysis
JP1859090A JPH03198797A (en) 1979-08-22 1990-01-29 Analyzing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10590679A Division JPS5630644A (en) 1979-08-22 1979-08-22 Method of analysis

Publications (1)

Publication Number Publication Date
JPH03198797A true JPH03198797A (en) 1991-08-29

Family

ID=26355286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1859090A Pending JPH03198797A (en) 1979-08-22 1990-01-29 Analyzing method

Country Status (1)

Country Link
JP (1) JPH03198797A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240189A (en) * 1975-09-26 1977-03-28 Hitachi Ltd Method and apparatus for chemical analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240189A (en) * 1975-09-26 1977-03-28 Hitachi Ltd Method and apparatus for chemical analysis

Similar Documents

Publication Publication Date Title
JPS649572B2 (en)
EP0041366B1 (en) Method for operating an apparatus for analysing samples optically
JPH0232581B2 (en)
JPH0224337B2 (en)
JPH0746111B2 (en) Sample analysis method and automatic analyzer using the same
JPS5936227B2 (en) Chemical analysis methods
JPH03198797A (en) Analyzing method
JPS649571B2 (en)
Halls et al. Faster determination of chromium in urine by electrothermal atomisation atomic absorption spectrometry
JPS647343B2 (en)
JP2727510B2 (en) Rate analysis method
JPH01182740A (en) Method for analyzing reaction speed in chemical analysis
JPH0547782B2 (en)
JPS6118982B2 (en)
JPS6345055B2 (en)
JP2001235422A (en) Automatic analyzer
JPH0146113B2 (en)
Anderson The Developnlent of Fast Analyzers
JPH0154667B2 (en)
JPS6243490B2 (en)
Šperlingová et al. Preparation of a reference material “Creatinine in Human Urine”
JPS63129998A (en) Determination of alakaline phosphatase
JPS6240655B2 (en)
JPS60224069A (en) Automatic chemical analysis instrument
JPH01196572A (en) Method for continuous chemical analysis