JPH03198778A - New plasmid, transformant containing the same plasmid and production of thermostable lipase using the same transformant - Google Patents

New plasmid, transformant containing the same plasmid and production of thermostable lipase using the same transformant

Info

Publication number
JPH03198778A
JPH03198778A JP33825089A JP33825089A JPH03198778A JP H03198778 A JPH03198778 A JP H03198778A JP 33825089 A JP33825089 A JP 33825089A JP 33825089 A JP33825089 A JP 33825089A JP H03198778 A JPH03198778 A JP H03198778A
Authority
JP
Japan
Prior art keywords
plasmid
lipase
pseudomonas
transformant
thermostable lipase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33825089A
Other languages
Japanese (ja)
Other versions
JP2923658B2 (en
Inventor
Yoshiji Kosugi
佳次 小杉
Masaru Shiraki
白木 勝
Kinya Washizu
欣也 鷲津
Yuji Nakanishi
雄二 中西
Yoshiaki Kurono
良明 黒野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Amano Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Amano Pharmaceutical Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP33825089A priority Critical patent/JP2923658B2/en
Publication of JPH03198778A publication Critical patent/JPH03198778A/en
Application granted granted Critical
Publication of JP2923658B2 publication Critical patent/JP2923658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To efficiently produce a thermostable lipase by synthesizing plasmid pHTLip1 having a wide host vector integrated with DNA fragment containing a thermostable lipase gene derived from Pseudomonas. CONSTITUTION:Plasmid pHTLip1 integrated with DNA fragment containing a thermostable lipase gene derived from Pseudomonas and capable of manifesting in a bacterium of the genus Pseudomonas is synthesized. A cell of bacterium belonging to the genus Pseudomonas is transformed by using the plasmid pHTLip1 and the transformant is cultured in a nutritive medium to form thermostable lipase in the culture solution. Then the thermostable lipase is collected from the culture solution and purified. Productivity of the thermostable lipase by the bacteria of gene recombination by this procedure is about 20 times as much as that of original strain.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性リパーゼ遺伝子を含む組換えDNA、
それを含むシュードモナス属菌及びそれを用いた耐熱性
リパーゼの製造法に関する。リパーゼは、脂質を加水分
解する酵素として知られているが、近年リパーゼによる
逆反応を利用したエステル合成反応が注目されている。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a recombinant DNA containing a thermostable lipase gene,
The present invention relates to a Pseudomonas bacterium containing the same and a method for producing heat-stable lipase using the same. Lipase is known as an enzyme that hydrolyzes lipids, but in recent years, ester synthesis reactions that utilize the reverse reaction by lipase have been attracting attention.

それ故、本発明によって製造される耐熱性リパーゼは、
油脂の加工及び改質等の工業的利用が期待される酵素で
ある。
Therefore, the thermostable lipase produced by the present invention is
This enzyme is expected to have industrial uses such as processing and modifying fats and oils.

〔従来技術〕[Prior art]

従来、油脂の加工及び改質等の工業的方法は、はとんど
が化学的方法で行われており、高温、高圧条件あるいは
アルカリ処理という過酷な反応条件などが必須となって
いる。そこで最近になってエネルギー消費の節約及び産
業廃水による公害対策等のため、リパーゼによる生化学
的方法が試みられるようになってきた。
Conventionally, industrial methods such as processing and modifying fats and oils have mostly been carried out using chemical methods, which require harsh reaction conditions such as high temperature, high pressure conditions, or alkali treatment. Recently, biochemical methods using lipase have been attempted in order to save energy consumption and prevent pollution caused by industrial wastewater.

〔従来技術の問題点〕[Problems with conventional technology]

リパーゼを工業的に使用するには、耐熱性のものがより
好ましいが、耐熱性リパーゼとしてこれまで知られてい
るものは、例えばシュードモナス・メフイテイカ(Ps
eudomonas mephitica)の耐熱性リ
パーゼ[、]、Ferment、Techno1..5
1巻、895−903(1,973)、特公昭50−2
5553号]及びシュードモナス・セパシア(Pseu
domonas cepacia)の耐熱性リパーゼ(
特公昭57−59753号)等であり、これらはいずれ
も生産性が低く、このままでは工業的に利用するには問
題があった。
For industrial use of lipases, it is more preferable to use heat-stable lipases, but the ones known so far as heat-stable lipases are, for example,
Thermostable lipase of eudomonas mephitica [, ], Ferment, Techno 1. .. 5
Volume 1, 895-903 (1,973), Special Publication 1977-2
No. 5553] and Pseudomonas cepacia (Pseu
Thermostable lipase (domonas cepacia)
(Japanese Patent Publication No. 57-59753), etc., and all of these had low productivity and were problematic for industrial use as they were.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは」二記問題点を解決するため、耐熱性リパ
ーゼの高生産菌株を遺伝子組換え技術を用いて創製し、
得られた該菌株を培養し、培養液中に耐熱性リパーゼを
著量生産しそれを回収することによって、耐熱性リパー
ゼを市場に低コストで供給することができると考え、鋭
意検討した。そして、本発明者らは、耐熱性リパーゼ生
産菌であるシュードモナス属菌の染色体より耐熱性リパ
ーゼ遺伝子を含むDNA断片を分離し、該DNA断片を
有するプラスミドを得、これを利用してシュードモナス
属菌を形質転換し、そして該形質転換体を培養すること
により耐熱性リパーゼを菌体外に大量に生産させ、これ
を採取することに成功したのである。
In order to solve the problem mentioned above, the present inventors created a strain with high production of heat-stable lipase using genetic recombination technology.
We thought that it would be possible to supply heat-stable lipase to the market at a low cost by cultivating the obtained strain, producing a significant amount of heat-stable lipase in the culture solution, and recovering it, and conducted extensive studies. The present inventors isolated a DNA fragment containing a heat-stable lipase gene from the chromosome of a thermostable lipase-producing bacterium, Pseudomonas spp., obtained a plasmid containing the DNA fragment, and used this to infect Pseudomonas spp. By transforming and culturing the transformant, they were able to produce a large amount of heat-stable lipase outside the bacterial cells, and succeeded in harvesting it.

本発明の耐熱性リパーゼ遺伝子を含む染色体DNAの給
源は、耐熱性リパーゼ生産能を有するシュードモナス属
菌から供給される。例えば小形ら(特公昭50−255
53号)により分離されたシュードモナス・メフィティ
カ・バリエタス・リポリテイ力(Pseudomona
s mephitica var、 1ipolyti
ca)と命名された菌株があげられる。本菌株の菌学的
性質は特公昭50−25553号に記載されており、そ
して本菌株は微工研菌寄第520号(FERM P−5
20)として工業技術院微生物工業技術研究所に寄託さ
れている。
The source of the chromosomal DNA containing the thermostable lipase gene of the present invention is supplied from a Pseudomonas bacterium capable of producing thermostable lipase. For example, Kogata et al.
Pseudomonas mefitica varietus lipolytei (No. 53) isolated by Pseudomonas mefitica varietus
s mephitica var, 1ipolyti
A strain named ca) is mentioned. The mycological properties of this strain are described in Japanese Patent Publication No. 50-25553, and this strain has been published in FERM P-5
20) has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology.

形質転換体の調製 本発明にかかる染色体DNA及び形質転換体は、概略下
記の工程によって調製することができる。
Preparation of Transformants Chromosomal DNA and transformants according to the present invention can be prepared generally by the following steps.

(1)染色体DNAの調製法 シュードモナス・メフイテイカ・バリエタス・リボリテ
イ力(Pseudomonas mephitj、ca
 var。
(1) Preparation method of chromosomal DNA Pseudomonas mephitica varietus (ca.
var.

1ipolytica) FERM P−520をLB
培地(トリプトン− =4− 1.0%、酵母エキス0.5%、塩化ナトリウム1.0
%)で30℃にて一晩好気的に培養する。遠心分離によ
り菌体を集めた後、斎藤、三浦の方法[Biochim
1ipolytica) FERM P-520 as LB
Medium (tryptone = 4-1.0%, yeast extract 0.5%, sodium chloride 1.0
%) at 30° C. overnight aerobically. After collecting the bacterial cells by centrifugation, the method of Saito and Miura [Biochim
.

Biophys、 Acta、 72巻619−629
 (1,963))等公知の方法を利用して染色体DN
Aを抽出、精製してDNAを得る。
Biophys, Acta, Vol. 72, 619-629.
(1,963)) using known methods such as chromosomal DNA
A is extracted and purified to obtain DNA.

(2)DNA断片のプラスミドベクターへの挿入及び形
質転換の方法 プラスミドベクターは宿主内で複製可能な、既知の制限
酵素切断部位を持ち、薬剤耐性等の選択マーカーを持つ
ベクターが望ましい。例えばR3F1010、R1b6
79、R1162等の広宿主域プラスミドベクターがあ
げられる。より具体的にはR3FIOIOにカナマイシ
ン耐性遺伝子及びクロラムフェニコール耐性遺伝子等を
導入したρFL210等が利用できる。
(2) Method for inserting a DNA fragment into a plasmid vector and transforming the plasmid vector. Preferably, the plasmid vector is one that can be replicated within the host, has a known restriction enzyme cleavage site, and has a selection marker such as drug resistance. For example R3F1010, R1b6
Examples include broad host range plasmid vectors such as 79 and R1162. More specifically, ρFL210, etc., in which a kanamycin resistance gene, a chloramphenicol resistance gene, etc. are introduced into R3FIOIO, can be used.

こうして得られたベクターDNAをHindlrl等の
制限酵素で切断し、同じ制限酵素で切断、精製した染色
体DNA断片と混合後、リガーゼ等を用いた公知の方法
により反応させて組換えプラスミドを得る。
The vector DNA thus obtained is cut with a restriction enzyme such as Hindlrl, mixed with a chromosomal DNA fragment cut with the same restriction enzyme and purified, and reacted by a known method using ligase or the like to obtain a recombinant plasmid.

次いで該組換えプラスミドを用いてシュードモナス属菌
、例えばシュードモナス・メフィティ力(Pseudo
monas mephj、tica)を形質転換する。
The recombinant plasmid is then used to infect Pseudomonas bacteria, such as Pseudomonas mephiti.
Monas mephj, tica) is transformed.

形質転換は、塩化カルシウム法、塩化ルビジウム法、エ
レク1−ロポレーション法等の方法を利用する。
For transformation, methods such as the calcium chloride method, the rubidium chloride method, and the electroporation method are used.

耐熱性リパーゼ生産能を有する形質転換体の選択分離に
は、ポリビニルアルコールで乳化したトリブチリン、ト
リオレイン等のトリグリセライドを含み、所定濃度の抗
生物質を有する寒天培地を用いることが簡便である。
For selective isolation of transformants capable of producing thermostable lipase, it is convenient to use an agar medium containing a triglyceride such as tributyrin or triolein emulsified with polyvinyl alcohol and an antibiotic at a predetermined concentration.

即ち、形質転換した菌の中から該寒天培地において大き
なりリアーゾーンを形成する菌株を分離することにより
、リパーゼ遺伝子を含む菌を選択分離することが出来る
からである。この菌からアルカリ法、ボイリング法等公
知の方法を用いて耐熱性リパーゼ遺伝子を含むプラスミ
ドDNAを得る。
That is, by isolating strains that form a large rear zone on the agar medium from among the transformed bacteria, bacteria containing the lipase gene can be selectively isolated. Plasmid DNA containing a heat-stable lipase gene is obtained from this bacterium using a known method such as an alkaline method or a boiling method.

さらにこうして得られた本発明のプラスミドDNAを導
入して得られたシュードモナス属菌を用いて耐熱性リパ
ーゼを生産する。例えば新規な組換えプラスミドを有す
るシュードモナス・メフィテイカ・バリエタス・リポテ
ィ力(Pseudomonasmephitj、ca 
var、 Hpol、ytj、ca)FERN P−5
20を公知の培地を用いて培養し、培養上清より耐熱性
リパーゼを分離、精製して得ることが出来る。得られた
リパーゼの酵素学的性質は、特公昭50−25553号
に記載されているが主要な性質は次の通りである。
Furthermore, thermostable lipase is produced using Pseudomonas bacteria obtained by introducing the plasmid DNA of the present invention thus obtained. For example, Pseudomonas mephitica varietus lipotei (Pseudomonas mephitj, ca.
var, Hpol, ytj, ca) FERN P-5
It can be obtained by culturing No. 20 using a known medium, and separating and purifying the thermostable lipase from the culture supernatant. The enzymatic properties of the obtained lipase are described in Japanese Patent Publication No. 50-25553, and the main properties are as follows.

1、作用:脂肪分解性を有し、牛脂、ココヤシ油などを
反応温度70℃で分解率92′Aまで分解する。
1. Action: Has lipolytic properties and decomposes beef tallow, coconut oil, etc. to a decomposition rate of 92'A at a reaction temperature of 70°C.

2、基質特異性:各種グリセライド、エステル、レシチ
ンなどを分解する。
2. Substrate specificity: Decomposes various glycerides, esters, lecithin, etc.

3、安定pH範囲:pH3〜]、 ]、 、 5 (3
7°C)4、至適pl+範囲:p86.5〜7.05、
作用適温=70°C 6、耐熱性:水溶液状で60℃に14時間おいても失活
せず、73°Cで20分で75%になる。
3. Stable pH range: pH 3~], ], , 5 (3
7°C) 4, optimal pl+ range: p86.5-7.05,
Suitable temperature for action = 70°C 6. Heat resistance: In the form of an aqueous solution, it does not lose its activity even when kept at 60°C for 14 hours, and becomes 75% in 20 minutes at 73°C.

7、分子量二分子篩による推定分子量は160,000
である。
7. Molecular weight Estimated molecular weight by bimolecular sieve is 160,000
It is.

8、胆汁酸の影響:pH7の酵素液に胆汁酸を添加して
も活性の変化が全くない。
8. Effect of bile acids: Even when bile acids are added to the enzyme solution at pH 7, there is no change in activity.

リパーゼ活性測定法 2%ポリビニルアルコール(PVA)溶液2251とオ
リーブ油75mΩを混合乳化した基質溶液5IIIQと
0.2Mマツキルパイン緩衝液(pH7,0) 4 m
Qを平底試験管にとり、37℃、5分間予湿する。これ
に試料溶液1n+9を加え良く振り混ぜ、直ちに37℃
、30分間放置する。30分後にアセトン・エタノール
混液(1: 1)10mnを加え良く振り混ぜる。これ
に0.05N水酸化ナトリウム溶液10mn及びアセト
ン・エタノール混液(1: 1)10+Jを加え、さら
にフェノールフタレイン試液2滴を加えて窒素ガスを液
面に吹きつけながら、スターシーにて撹拌しつつ、0.
05N塩酸でpH10,00まで滴定する。ブランク値
は試料溶液の代わりに精製水を用い、同様操作する。酵
素活性は1分間に1マイクロモルの脂肪酸を生成すると
きの酵素量を1単位とする。
Lipase activity measurement method Substrate solution 5IIIQ made by mixing and emulsifying 2% polyvinyl alcohol (PVA) solution 2251 and olive oil 75 mΩ and 0.2 M pinequilpine buffer (pH 7,0) 4 m
Place Q in a flat bottom test tube and pre-humidify at 37°C for 5 minutes. Add sample solution 1n+9 to this, shake well, and immediately raise the temperature to 37°C.
, leave for 30 minutes. After 30 minutes, add 10 ml of acetone/ethanol mixture (1:1) and mix well. To this, add 10 mL of 0.05N sodium hydroxide solution and 10+J of acetone/ethanol mixture (1:1), and further add 2 drops of phenolphthalein test solution, and stir with a Starsea while blowing nitrogen gas onto the liquid surface. Tsutsu, 0.
Titrate to pH 10,00 with 05N hydrochloric acid. For the blank value, use purified water instead of the sample solution and perform the same operation. For enzyme activity, one unit is the amount of enzyme that produces 1 micromole of fatty acid per minute.

以下に実施例にて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

8− 矢遼l岨1 (1)染色体DNAの調製 シュードモナス・メフィティカ・バリエタス・リポリテ
イ力(Pseudomonas mephitjca 
var。
8- Arrow 1 (1) Preparation of chromosomal DNA Pseudomonas mephitica varietus (Pseudomonas mephitica)
var.

1ipolytica) FERM P−520をLB
培地(トリプトン1.0%、酵母エキス0.5%、塩化
す1〜リウム1.0%)で30℃にて一晩好気的に振盪
培養し、集菌後、奇麗、三浦の方法(Biochim、
 Biophys、 Acta、 72巻、61.9−
629(1963))により染色体DNAを抽出、精製
し、染色体D N A、4.6mgを得た。
1ipolytica) FERM P-520 as LB
Culture with aerobic shaking overnight at 30°C in a medium (1.0% tryptone, 0.5% yeast extract, 1% to 1.0% lithium chloride), and after collecting the bacteria, use the method of Kirei and Miura ( Biochim,
Biophys, Acta, vol. 72, 61.9-
629 (1963)), chromosomal DNA was extracted and purified to obtain 4.6 mg of chromosomal DNA.

(2)染色体DNA断片のプラスミドベクターへの挿入 染色体DNA断片の調製は、前記染色体DNA8.0μ
gに制限酵素Hjndmを加え、37°Cで15分間反
応させて部分的に切断する事により行った。一方プラス
ミドベクターとしては広宿主域プラスミドベクターR3
FIOIOに、pUC−4に由来のカナマイシン耐性遺
伝子、pBR328由来のクロラムフェニコール耐性遺
伝子、さらにpUc18由来のマルチクロニングサイト
を導入して構築したプラスミドpFL210を予め調製
し、このpFL2102.5μgに制限酵素Hind 
mを加え、37℃で2時間反応させて完全に切断し、ア
ルカリ性ホスファターゼにより脱リン酸化して使用した
。調製した染色体DNA断片とプラスミドベクターを混
合し、DNAリガーゼを加え16℃で一夜反応させて連
結反応を行った。
(2) Insertion of chromosomal DNA fragment into plasmid vector Preparation of chromosomal DNA fragment involves inserting 8.0μ of the chromosomal DNA into
The restriction enzyme Hjndm was added to g, and the reaction was carried out at 37°C for 15 minutes to partially cleave. On the other hand, as a plasmid vector, broad host range plasmid vector R3
A plasmid pFL210 was prepared in advance and constructed by introducing a kanamycin resistance gene derived from pUC-4, a chloramphenicol resistance gene derived from pBR328, and a multi-cloning site derived from pUc18 into FIOIO, and this pFL210 was limited to 2.5 μg. Enzyme Hind
m was added, reacted at 37° C. for 2 hours to completely cleave it, and used after dephosphorylation with alkaline phosphatase. The prepared chromosomal DNA fragment and plasmid vector were mixed, DNA ligase was added, and the mixture was reacted overnight at 16°C to perform a ligation reaction.

(3)プラスミドによる形質転換 リパーゼ遺伝子を選択する際、宿主はリパーゼ遺伝子欠
損株であると便利である。そこでシュードモナス・メフ
ィティカ・バリエタス・リポリテイ力(Pseudom
onas mephitica var、 lipol
ytica)FERM P−520をニトロソグアニジ
ン処理し、ポリビニルアルコールで乳化したトリオレイ
ンを0.1%含むアンティビオティクメディウム3培地
(Antibiotjc Medium 3、Difc
o社製)で選択し、ハローを形成しない変異株KW−1
を分離した。前記連結したDNAでエレクトロポレーシ
ョン法によりKW−1株を形質転換し、200μg/I
IIQクロラムフェニコール、0.1%トリオレインを
含むLB培地で選択した結果、ハローを形成する形質転
換体を17株得た。
(3) Transformation using plasmids When selecting a lipase gene, it is convenient if the host is a lipase gene-deficient strain. Therefore, Pseudomonas mephytica varietus lipolyteis
onas mephitica var, lipol
ytica) FERM P-520 was treated with nitrosoguanidine and treated with Antibiotic Medium 3 containing 0.1% triolein emulsified with polyvinyl alcohol
Mutant strain KW-1, which does not form a halo, was selected using
was separated. KW-1 strain was transformed with the ligated DNA by electroporation, and 200 μg/I
As a result of selection on LB medium containing IIQ chloramphenicol and 0.1% triolein, 17 transformants that formed a halo were obtained.

(4)リパーゼ遺伝子の解析 前記ハロー形成株17株よりプラスミドを抽出、分離し
、制限酵素Hindmで切断し、アガロース電気泳動で
挿入されたDNA断片を解析したところ、17菌株全て
に約8KbのHind m断片が共通に確認された。該
8Kb Hindm断片をプラスミドベクターPFL2
]、0のHindlllサイトに連結した組換え体DN
Aを用い、エレク1−ロボレーション法によりKW−1
株を形質転換したところ、ハロー形成株が得られたので
、118Kb )lindm断片上に断片−ゼ遺伝子が
存在すると断定した。8Kb Hindm断片を含むプ
ラスミドベクターをpHTLiplと命名し、その制限
酵素地図を第1図に示した。pHTLipl を各種制
限酵素により切断した各DNA断片をプラスミドベクタ
ーpFL21Qにサブクローニングして、KW−1株を
形質転換させ、前記と同様にしてトリオレイン培地にお
けるハロー形成の有無を調べた。結果は第2図に示した
。なお3Kb EcoRI −Xho I断片をPFL
21.OにサブクローニングしたプラスミドによるKW
−1−株形質転換体もリパーゼ生産能を示した。
(4) Analysis of lipase gene Plasmids were extracted and isolated from the 17 halo-forming strains, cut with the restriction enzyme Hindm, and the inserted DNA fragments were analyzed by agarose electrophoresis. All 17 strains contained approximately 8 Kb Hindm. m fragments were commonly identified. The 8Kb Hindm fragment was transferred to plasmid vector PFL2.
], recombinant DN linked to the Hindll site of 0
KW-1 by the Elek 1-loboration method using A
When the strain was transformed, a halo-forming strain was obtained, so it was concluded that the fragment-ase gene was present on the 118 Kb)lindm fragment. A plasmid vector containing the 8 Kb Hindm fragment was named pHTLipl, and its restriction enzyme map is shown in FIG. Each DNA fragment obtained by cleaving pHTLipl with various restriction enzymes was subcloned into plasmid vector pFL21Q, and the KW-1 strain was transformed, and the presence or absence of halo formation in triolein medium was examined in the same manner as above. The results are shown in Figure 2. In addition, the 3Kb EcoRI-XhoI fragment was
21. KW by plasmid subcloned into O.
-1- strain transformant also showed lipase producing ability.

(5)リパーゼの生産 前記リパーゼ遺伝子を含む約4.5Kb Sma I断
片をpFL210に挿入した組換え体DNAでシュード
モナス・メフイテイカ・バリエタス・リポリテイ力(P
seudomonas mephitjca var、
 lipolytica)FERM P−520を形質
転換した。本菌株を大豆油2.0%、ペプトン0.5%
(Difco社製)、肉エキス0.3%(Difco社
製)、KH2PO40,1%、MgSO4・7H200
,02%、Fe50. ’ 78200.001%、ア
デカノール1滴の成分よりなる液体培地で30℃にて3
日間振盪培養し、遠心分離し、培養上清を得た。なお、
リパーゼ活性は、2%ポリビニルアルコール溶液とオリ
ーブ油を混合乳化した溶液を基質とし、pH7,0,3
7℃条件下で30分間反応させ、遊離脂肪酸量を滴定法
により求めることで測定した。酵素活性は1分間に1マ
イクロモルの脂肪酸を生成する酵素量を1単位とした。
(5) Production of lipase Pseudomonas mephiteica varietus lipolytei (P
seudomonas mephitjca var,
lipolytica) FERM P-520 was transformed. This strain was mixed with 2.0% soybean oil and 0.5% peptone.
(manufactured by Difco), meat extract 0.3% (manufactured by Difco), KH2PO40.1%, MgSO4.7H200
, 02%, Fe50. ' 78200.001% and 1 drop of Adekanol in a liquid medium at 30°C.
The cells were cultured with shaking for 1 day and centrifuged to obtain a culture supernatant. In addition,
Lipase activity was determined using a mixed emulsified solution of 2% polyvinyl alcohol solution and olive oil as a substrate, and pH 7.0.3.
The reaction was carried out for 30 minutes at 7°C, and the amount of free fatty acids was determined by titration. For enzyme activity, one unit was defined as the amount of enzyme that produced 1 micromole of fatty acid per minute.

前記培養上清のリパーゼ活性は約400U/++bQで
あり、木組換え体のリパーゼ生産性はシュードモナス・
メフイテイカ・バリエタス・リポリ1 2 ティ力(Pseudomonas mephitica
 var、 lipolytica)FERM P−5
20よりリパーゼ生産性が約20倍高かった。
The lipase activity of the culture supernatant was approximately 400 U/++bQ, and the lipase productivity of the recombinant tree was higher than that of Pseudomonas.
Pseudomonas mephitica 1 2 Pseudomonas mephitica
var, lipolytica) FERM P-5
The lipase productivity was about 20 times higher than that of No. 20.

〔発明の効果〕〔Effect of the invention〕

本発明はシュードモナス属菌の耐熱性リパーゼ遺伝子を
含むDNA断片を分離し、該DNA断片を有するプラス
ミドを得、これを利用してシュードモナス属菌を形質転
換し、該形質転換体を培養することにより耐熱性リパー
ゼを菌体外に大量生産せしめ、これを採取する方法であ
る。本発明によって得られた遺伝子組換え菌による耐熱
性リパーゼの生産性は元株の20倍である。
The present invention involves isolating a DNA fragment containing a heat-stable lipase gene of a Pseudomonas bacterium, obtaining a plasmid containing the DNA fragment, transforming a Pseudomonas bacterium using this, and culturing the transformant. This is a method in which heat-stable lipase is mass-produced outside the bacterial body and then collected. The productivity of heat-stable lipase by the genetically modified bacterium obtained by the present invention is 20 times that of the original strain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシュードモナス・メフイテイカ・バリエタス場
すポリティ力 (Pseudomonas mephi
ticavar、 1ipolytica) FEBM
 P−520のリパーゼをコードするDNAを、プラス
ミドベクターpFL210に組み込んだ組換えD N 
A (pHTLipl)を各種制限酵素で切断し、アガ
ロースゲル電気泳動法を用いて測定した分子量に基づい
て作製した制限酵素地図を一例として示したものである
。 第2図は該リパーゼ遺伝子を各種制限酵素により切断し
て得られる各DNA断片をpFL210にサブクローニ
ングしてシュードモナス・メフイテイカ・バリエタス・
リボリテイ力(Pseudomonasmephiti
ca var、 1ipolytica) KW −1
株を形質転換させたものについてトリオレイン培地にお
けるハロー形成の有無を調べたものである。
Figure 1 shows the field of Pseudomonas mephitica varietus.
ticavar, 1ipolytica) FEBM
A recombinant DNA in which the DNA encoding P-520 lipase was integrated into the plasmid vector pFL210.
This is an example of a restriction enzyme map prepared by cutting A (pHTLipl) with various restriction enzymes and based on the molecular weight measured using agarose gel electrophoresis. Figure 2 shows the DNA fragments obtained by cutting the lipase gene with various restriction enzymes and subcloning them into pFL210 to generate Pseudomonas mephiteica varietus.
Pseudomonasmephiti
cava var, 1ipolytica) KW-1
The transformed strain was examined for halo formation in triolein medium.

Claims (1)

【特許請求の範囲】 1)第1図に示される制限酵素地図を有し、シュードモ
ナス属菌由来の耐熱性リパーゼ遺伝子を含有するDNA
断片を広宿主域ベクターに組み込んだシュードモナス属
菌内で発現可能なプラスミドpHTLip1。 2)プラスミドpHTLip1を導入したシュードモナ
ス属菌形質転換体。 3)プラスミドpHTLip1を導入したシュードモナ
ス属菌形質転換体を栄養培地で培養し、培養液中に耐熱
性リパーゼを生産せしめた後、該培養液より耐熱性リパ
ーゼを採取することを特徴とする耐熱性リパーゼの製造
法。
[Scope of Claims] 1) DNA having the restriction enzyme map shown in FIG. 1 and containing a heat-stable lipase gene derived from a Pseudomonas bacterium
Plasmid pHTLip1, which can be expressed in Pseudomonas bacteria, is a fragment incorporated into a wide host range vector. 2) Pseudomonas transformant into which plasmid pHTLip1 was introduced. 3) Heat resistance characterized by culturing the Pseudomonas genus transformant into which the plasmid pHTLip1 has been introduced, producing heat-stable lipase in the culture solution, and then collecting the heat-stable lipase from the culture solution. Method for producing lipase.
JP33825089A 1989-12-28 1989-12-28 Novel plasmid, transformant containing the same, and method for producing thermostable lipase using the same Expired - Lifetime JP2923658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33825089A JP2923658B2 (en) 1989-12-28 1989-12-28 Novel plasmid, transformant containing the same, and method for producing thermostable lipase using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33825089A JP2923658B2 (en) 1989-12-28 1989-12-28 Novel plasmid, transformant containing the same, and method for producing thermostable lipase using the same

Publications (2)

Publication Number Publication Date
JPH03198778A true JPH03198778A (en) 1991-08-29
JP2923658B2 JP2923658B2 (en) 1999-07-26

Family

ID=18316344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33825089A Expired - Lifetime JP2923658B2 (en) 1989-12-28 1989-12-28 Novel plasmid, transformant containing the same, and method for producing thermostable lipase using the same

Country Status (1)

Country Link
JP (1) JP2923658B2 (en)

Also Published As

Publication number Publication date
JP2923658B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP3079276B2 (en) Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same
Haas et al. Cloning, expression and characterization of a cDNA encoding a lipase from Rhizopus delemar
Kim et al. Expression and characterization of Ca2+-independent lipase from Bacillus pumilus B26
Suzuki et al. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6
Chartrain et al. Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001
Kok et al. Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene
Joseph et al. Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis
CA2202553A1 (en) Lipase, microorganism producing same, method for preparing said lipase and uses thereof
EP0318775B1 (en) A lipase gene
US5093256A (en) Essentially purified, thermostable and alkalophilic lipase from bacillus sp. a30-1 atcc 53841
Li et al. Screening, purification and characterization of lipase from Burkholderia pyrrocinia B1213
US6706501B1 (en) Polynucleotide encoding a propionibacterium linoleate isomerase and uses thereof
FR2550547A1 (en) NOVEL PLASMID CONTAINING A GENE INCREASING THE PRODUCTION OF PENICILLIN ACYLASE, MICROORGANISM CONTAINING THIS PLASMIDE, METHODS OF PREPARING THIS PLASMIDE AND THIS MICROORGANISM, AND METHOD FOR IMPROVING PRODUCTION OF PENICILLIN ACYLASE
JPH03198778A (en) New plasmid, transformant containing the same plasmid and production of thermostable lipase using the same transformant
Tcacenco et al. The preparation and immobilization of some yeast lipases for rapeseed oil transesterification to biodiesel
JPH074256B2 (en) Gene, vector and method for producing lipase which regulate active expression of lipase
JP3410128B2 (en) Pseudomonas sp. Having recombinant DNA and method for producing lipase using the same
JP2960775B2 (en) Expression of DNA sequences from nocardioform microorganisms
Simatupang et al. Lipolytic activity of Itb1. 1 and Lk3 thermostable lipases expressed in Escherichia coli and Pichia pastoris
CN111378583A (en) Trichoderma reesei and application thereof
WO1996027659A1 (en) Novel lipase, process for producing the same, and microorganism producing the same
US5166069A (en) Bacillus sp. A30-1 ATCC no. 53841
RU2340663C1 (en) STRAIN OF BACTERIUM Paenibacillus sp, PRODUCER OF RESTRICTION ENDONUCLEASE Psp 1009I
KR920008380B1 (en) Expression vector ptty2 and production of lipase
JPH11253157A (en) Microbe having ability for producing new lipase, lipase, its production and its use

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term