JPH03198388A - Piezoelectric actuator - Google Patents

Piezoelectric actuator

Info

Publication number
JPH03198388A
JPH03198388A JP1339690A JP33969089A JPH03198388A JP H03198388 A JPH03198388 A JP H03198388A JP 1339690 A JP1339690 A JP 1339690A JP 33969089 A JP33969089 A JP 33969089A JP H03198388 A JPH03198388 A JP H03198388A
Authority
JP
Japan
Prior art keywords
piezoelectric element
displacement
spring
force
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1339690A
Other languages
Japanese (ja)
Other versions
JP2940038B2 (en
Inventor
Hisanori Ishida
寿則 石田
Takashi Ota
孝 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1339690A priority Critical patent/JP2940038B2/en
Publication of JPH03198388A publication Critical patent/JPH03198388A/en
Application granted granted Critical
Publication of JP2940038B2 publication Critical patent/JP2940038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a piezoelectric actuator, which is little in power consumption and is small also in size, by a method wherein a piezoelectric element is pressurized by curved springs to obtain the amount of displacement larger than that in the case of the piezoelectric element single element and at the same time, the drive voltage of the piezoelectric element is suppressed low. CONSTITUTION:A piezoelectric element 2 and a curved spring 3 are pressed into a frame 4 and a spare compressive force is applied to each of them. The rigidity of the frame 4 is higher than those of the element 2 and the spring 3 and the expansion of the frame 4 can be substantially neglected to the displacement of the element 2. On the other hand, the relation between the displacement of the spring 3 and a force shows such characteristics that as the displacement becomes large in the drive extent of the element 2, the increment of the force is reduced to a negative. As a result, the relation between the displaceiment of the element 2 and a force shows such characteristics that as the displacement of the element 2 becomes large, the increment of the force is reduced to a negative. As a force which is acted by the element 2 is reduced, the amount of displacement larger than that in the case of the piezoelectric element single element can be taken out via a rod 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧電素子を駆動源とする圧電アクチュエータ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a piezoelectric actuator using a piezoelectric element as a driving source.

〔従来の技術〕[Conventional technology]

従来、この種の圧電素子は電気・機械エネルギの変換効
率が高く、低電力で駆動でき、発熱量が少なく磁気干渉
もないため、近年各種の圧電アクチュエータに使用され
ている。しかしながら、圧電素子は、圧縮力に対しては
機械的強度が強いが、引張り力には弱いという特性を有
しているため、通常圧電アクチュエータとして使用する
場合には圧電素子には引張り力が作用しないような構造
となっている。
Conventionally, this type of piezoelectric element has been used in various piezoelectric actuators in recent years because it has high conversion efficiency of electric and mechanical energy, can be driven with low power, generates little heat, and has no magnetic interference. However, piezoelectric elements have a characteristic of having strong mechanical strength against compressive force but weak against tensile force, so when used as a piezoelectric actuator, tensile force is usually applied to the piezoelectric element. The structure is such that it does not.

第6図は従来の一例を示す圧電アクチュエータの断面図
である。このような圧電アクチュエータとしては、例え
ば特出願61−199241に記載されているものがあ
る。これは、圧電素子21をフレーム22の内側に圧入
することにより、圧電素子21に予備圧縮力を作用させ
て、圧電素子21の動作中、常に圧縮力が加わるように
している。これによって圧電素子21の破壊を防ぎ、ア
クチュエータの信頼性を高めている。
FIG. 6 is a cross-sectional view of a piezoelectric actuator that is an example of a conventional piezoelectric actuator. An example of such a piezoelectric actuator is one described in Japanese Patent Application No. 61-199241. By press-fitting the piezoelectric element 21 into the inside of the frame 22, a pre-compression force is applied to the piezoelectric element 21, so that the compression force is always applied to the piezoelectric element 21 during its operation. This prevents the piezoelectric element 21 from being destroyed and increases the reliability of the actuator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した圧電アクチュエータの場合、フ
レーム22が圧電素子21に対して線形のばねとして作
用するため、圧電素子21の発生変位が大きくなるに比
例してフレーム22からの反力も大きくなる。その結果
、圧電素子21の変位量は、フレーム22を使用しない
場合のそれと比較して小さくなる。ここで圧電素子21
のばね定数をに1、フレーム22のばね定数をに2とす
ると圧電アクチュエータ全体のばね定数にはに=kl+
に2 となる、従って、例えば、圧電素子21とフレーム22
のばね定数が等しくkl=に2であるような場合には、
k=2・klとなるから、圧電素子21の変位量はフレ
ーム22を使用しない場合の1/2に減少する。圧電ア
クチュエータの動作特性を圧電素子本来の動作特性に近
ずけるには、フレーム22のばね定数に2を小さくする
必要がある。しかし、k2を小さくするにはフレーム2
2の厚み、幅などを小さくせねばならず、従って、圧電
素子に常に圧縮力が作用した状態で圧電素子を動作させ
得るほどの予備圧縮力を加えるには、フレーム22の機
械的強度が足りなくなる。すなわち、線形ばねでは実際
上、ばね定数に2をむやみに小さくすることができず下
限値が存在するため、従来例では、圧電素子の発生変位
が大幅に減少するという問題点がある。また、圧電素子
の変位量を減少させないためには、圧電素子の印加電圧
を高めなければならず、消費電力が増加するという欠点
がある。
However, in the case of the piezoelectric actuator described above, since the frame 22 acts as a linear spring on the piezoelectric element 21, the reaction force from the frame 22 increases in proportion to the displacement generated by the piezoelectric element 21. As a result, the amount of displacement of the piezoelectric element 21 becomes smaller than that when the frame 22 is not used. Here, the piezoelectric element 21
Assuming that the spring constant of is 1 and the spring constant of the frame 22 is 2, the spring constant of the entire piezoelectric actuator is = kl +
Therefore, for example, piezoelectric element 21 and frame 22
If the spring constants of are equal to kl = 2, then
Since k=2·kl, the amount of displacement of the piezoelectric element 21 is reduced to 1/2 of that when the frame 22 is not used. In order to bring the operating characteristics of the piezoelectric actuator closer to the original operating characteristics of the piezoelectric element, it is necessary to reduce the spring constant of the frame 22 by 2. However, to reduce k2, frame 2
Therefore, the mechanical strength of the frame 22 is insufficient to apply a pre-compression force sufficient to operate the piezoelectric element with a compressive force constantly acting on the piezoelectric element. It disappears. That is, in a linear spring, in reality, the spring constant cannot be made unnecessarily small by 2, and there is a lower limit value, so in the conventional example, there is a problem in that the displacement generated by the piezoelectric element is significantly reduced. Furthermore, in order not to reduce the amount of displacement of the piezoelectric element, it is necessary to increase the voltage applied to the piezoelectric element, which has the disadvantage of increasing power consumption.

本発明の目的はこれらの問題点を解決し、変位発生量が
大きく、しかも圧電素子の信頼性が高い圧電アクチュエ
ータを提供することにある。
An object of the present invention is to solve these problems and provide a piezoelectric actuator that generates a large amount of displacement and has a highly reliable piezoelectric element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の圧電アクチュエータは、電圧を印加することに
より伸縮する圧電素子と、該圧電素子の伸縮方向に力を
作用するように配置され、該圧電素子の駆動変位の範囲
内で変位が増大するにしたがい作用する力が減少する特
性を持つ湾曲ばねとを有することを特徴としている。ま
た、湾曲ばねと接触する部位の形状が突起状である湾曲
ばね・圧電素子接続部を有することを特徴としている。
The piezoelectric actuator of the present invention includes a piezoelectric element that expands and contracts by applying a voltage, and is arranged to apply a force in the direction of expansion and contraction of the piezoelectric element, and as the displacement increases within the range of drive displacement of the piezoelectric element. It is characterized by having a curved spring having a characteristic that the force acting thereon is accordingly reduced. Moreover, it is characterized by having a curved spring/piezoelectric element connection portion in which the shape of the portion that contacts the curved spring is protruding.

〔実施例〕〔Example〕

次に、本発明の作用及び実施例について図面を参照して
説明する。まず、本発明の作用について図面を参照して
説明する。第2図(イ)〜(ニ)は圧電素子とばねとの
配置とそれらの変位を示す模式図である。ここで、圧電
素子とばねが、第2図のように配置されているものとし
、変位をXとし、圧電素子が伸びる方向を正とする。第
2図(イ)は、圧電素子がないとき、湾曲ばねに初期た
わみδ0を与えた状態、(ロ)は、湾曲ばねがなく、電
圧が印加されていないときの圧電素子の状態、(ハ)は
、湾曲ばねと電圧が印加されていない圧電素子を組み合
わせた場合で、湾曲ばねは(イ)の状態よりもδ1、圧
電素子は(ロ)の状態よりもδ2だけそれぞれ圧縮され
た状態、(ニ)は、(ハ)の状態から圧電素子に電圧V
lを印加し、xlだけ変位した状態をそれぞれ表わして
いる。
Next, the operation and embodiments of the present invention will be described with reference to the drawings. First, the operation of the present invention will be explained with reference to the drawings. FIGS. 2(a) to 2(d) are schematic diagrams showing the arrangement of piezoelectric elements and springs and their displacements. Here, it is assumed that the piezoelectric element and the spring are arranged as shown in FIG. 2, the displacement is assumed to be X, and the direction in which the piezoelectric element extends is assumed to be positive. Figure 2 (A) shows the state of the piezoelectric element when there is no piezoelectric element and an initial deflection δ0 is given to the bending spring, (B) shows the state of the piezoelectric element when there is no bending spring and no voltage is applied, and (H) shows the state of the piezoelectric element when there is no bending spring and no voltage is applied. ) is a case where a curved spring and a piezoelectric element to which no voltage is applied are combined; the curved spring is compressed by δ1 more than the state of (a), and the piezoelectric element is compressed by δ2 more than the state of (b). (d) is the voltage V applied to the piezoelectric element from the state of (c).
1 is applied and xl is displaced.

第3図は第2図(ハ)、(ニ)における圧電素子とばね
それぞれの力・変位特性を示し、ばねは線形ばねと湾曲
ばねを示しである。圧電素子と線形ばねは、変位Xと作
用力Pが比例する力・変位特性を有している。一方、湾
曲ばねは図のように上に凸の力・変位特性を有しており
、頂点を越えると、変位Xが大きくなればなるほど作用
する力が減少する。湾曲ばねと圧電素子を組み合わせる
ことにより、湾曲ばねδ1、圧電素子はδ2だけ、それ
ぞれ組合せ前より圧縮される。湾曲ばねのかわりに線形
ばねを使用し場合は、δ3圧縮されている。アクチュエ
ータとして駆動させたときの動作特性は、圧電素子特性
線図とばね特性線図の交点で示されている。圧電素子特
性線図は駆動電圧Oの場合と、所定の駆動電圧■1の場
合を示しである。その中間の駆動電圧V2 (0<V2
〈vl)では、駆動電圧Oと■1の特性線図の間を平行
移動する。
FIG. 3 shows the force/displacement characteristics of the piezoelectric element and the spring in FIGS. 2(c) and 2(d), and the springs show a linear spring and a curved spring. The piezoelectric element and the linear spring have force/displacement characteristics in which displacement X and acting force P are proportional. On the other hand, the curved spring has upwardly convex force/displacement characteristics as shown in the figure, and beyond the apex, the force acting on the spring decreases as the displacement X increases. By combining the curved spring and the piezoelectric element, the curved spring δ1 and the piezoelectric element are each compressed by δ2 compared to before they were combined. When a linear spring is used instead of a curved spring, it is compressed by δ3. The operating characteristics when driven as an actuator are shown by the intersection of the piezoelectric element characteristic diagram and the spring characteristic diagram. The piezoelectric element characteristic diagram shows the case of a drive voltage O and the case of a predetermined drive voltage 1. The intermediate drive voltage V2 (0<V2
At <vl), parallel movement is made between the characteristic line diagram of drive voltage O and (1).

第3図に示すようにばねに線形ばねを使用した場合、圧
電素子駆動電圧を0からvlにすると動作点はCからG
に移動し、この時の変位はX2となる。湾曲ばねを使用
した場合には、動作点はCからFに移動し変位はxlと
なる。従って図のように変位が増大するにつれ作用する
力が減少するような湾曲ばねではXI>X2となり、従
来の線形ばねを使用した場合よりも大きな変位を得るこ
とが可能になる。しかも圧電素子単体での変位はδ4で
あるが、xi>δ4となることは図より明らかであり、
従って圧電素子単体の変位よりも大きな変位を取り出す
ことが可能になる。逆に変位量がx2でよいなら駆動電
圧はV2でよく、従来よりも低い駆動電圧で駆動するこ
とも可能である。
As shown in Figure 3, when a linear spring is used as the spring, when the piezoelectric element drive voltage is changed from 0 to vl, the operating point changes from C to G.
The displacement at this time is X2. When a curved spring is used, the operating point moves from C to F and the displacement becomes xl. Therefore, in the case of a curved spring in which the applied force decreases as the displacement increases as shown in the figure, XI>X2, and it is possible to obtain a larger displacement than when using a conventional linear spring. Moreover, the displacement of the piezoelectric element alone is δ4, but it is clear from the figure that xi>δ4,
Therefore, it is possible to extract a larger displacement than that of the piezoelectric element alone. Conversely, if the amount of displacement is x2, the driving voltage may be V2, and it is also possible to drive with a lower driving voltage than the conventional one.

第4図は湾曲ばねの中央に力を使用させたときの、湾曲
ばねの変形モードを表わす図である。この図で、■は初
期たわみが与えられ、力が加えられていない状態を表わ
しており、これは第2図(イ)に相当する。そして、変
形モードは■−■の順で変化していく。この図かられか
るように、湾曲ばねは中央がへこむような変形をする。
FIG. 4 is a diagram showing the deformation mode of the curved spring when force is applied to the center of the curved spring. In this figure, ■ represents a state in which an initial deflection is given and no force is applied, and this corresponds to Fig. 2 (a). Then, the deformation mode changes in the order of ■-■. As you can see from this figure, the curved spring deforms so that the center is concave.

そして、このような変形によって、第3図に示したよう
に、変位が増大するにしたがい作用するが減少するよう
なばね特性が得られる。
As shown in FIG. 3, such deformation results in a spring characteristic that acts but decreases as the displacement increases.

第7図(イ)、(ロ)は、湾曲ばねと接触する部位の形
状の相違による湾曲ばねの変形の様子を示す模式図であ
る。(イ)は湾曲ばね接触部位が比較的大きい場合、(
ロ)は湾曲ばね接触部位が突起状の場合をそれぞれ表わ
している。同図に示されているとおり、(イ)の場合で
は湾曲ばね接触部位によって湾曲ばねの変形が拘束され
、第4図に示したような湾曲ばね本来の変形モードが妨
げられている。しかしながら、(ロ)のように湾曲ばね
と接触する部位が、球、円筒、ナイフェツジなどのよう
に突起状であるなら、湾曲ばね・圧電素子接続部は、湾
曲ばねの変形を妨げることなく、圧電素子の変位を伝え
ることが可能である。
FIGS. 7(a) and 7(b) are schematic diagrams showing how the curved spring is deformed due to the difference in the shape of the portion that contacts the curved spring. In (a), when the curved spring contact area is relatively large, (
B) represents the case where the curved spring contact portion is protruding. As shown in the figure, in case (a), the deformation of the curved spring is restrained by the curved spring contact portion, and the original deformation mode of the curved spring as shown in FIG. 4 is prevented. However, if the part that contacts the curved spring has a protruding shape such as a ball, cylinder, knife, etc. as shown in (b), the curved spring/piezoelectric element connection part can be used to connect the piezoelectric element without hindering the deformation of the curved spring. It is possible to convey the displacement of the element.

次に本発明について図面を参照して詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例を示す圧電アクチュエータの
断面図である。この圧電アクチュエータは、同図に示す
ように、伸縮方向の一端に外部に変位を伝達するための
ロッド1を設けた圧電素子2と、圧電素子2の伸縮方向
に力を作用する湾曲ばね3と、圧電素子2と湾曲ばね3
を固定するフレーム4と、圧電素子の変位を湾曲ばねに
伝える湾曲ばね・圧電素子接続部5とから構成されてい
る。圧電素子2と湾曲ばね3はフレーム4の中に圧入さ
れ、それぞれに予備圧縮力が加えられている。フレーム
4は圧電素子2、および湾曲ばね3よりも剛性が高くな
っており、実質的に圧電素子2の変位に対してフレーム
4の伸びは無視できる。湾曲ばねの変位と力の関係は第
3図に示したように、圧電素子2の駆動範囲で、変位が
大きくなるに従い力の増分が負になるような特性を示す
ものである。その結果、圧電素子2の変位が大きくなる
につれ、圧電素子2の作用する力が減少するようになる
ために、圧電素子単体の場合の変位量よりも大きな変位
量をロッド1を通じて取り出すことが出来る。このよう
に圧電素子単体の変位量よりも大きな変位を取り出すこ
とが出来るのは、圧電素子2は、予め予備圧縮力が加え
られて圧縮されており、その分の変位量が解放されるた
めである。
FIG. 1 is a sectional view of a piezoelectric actuator showing one embodiment of the present invention. As shown in the figure, this piezoelectric actuator includes a piezoelectric element 2 provided with a rod 1 at one end in the expansion and contraction direction for transmitting displacement to the outside, and a curved spring 3 that applies force in the expansion and contraction direction of the piezoelectric element 2. , piezoelectric element 2 and curved spring 3
It consists of a frame 4 that fixes the piezoelectric element, and a curved spring/piezoelectric element connection part 5 that transmits the displacement of the piezoelectric element to the curved spring. The piezoelectric element 2 and the bending spring 3 are press-fitted into the frame 4, and a precompression force is applied to each. The frame 4 has higher rigidity than the piezoelectric element 2 and the bending spring 3, and the elongation of the frame 4 with respect to the displacement of the piezoelectric element 2 can be substantially ignored. As shown in FIG. 3, the relationship between the displacement and force of the curved spring exhibits a characteristic in which the increase in force becomes negative as the displacement increases within the drive range of the piezoelectric element 2. As a result, as the displacement of the piezoelectric element 2 increases, the force acting on the piezoelectric element 2 decreases, so that a larger displacement can be extracted through the rod 1 than the displacement of a single piezoelectric element. . The reason why it is possible to extract a displacement larger than that of the piezoelectric element alone is because the piezoelectric element 2 is compressed by applying a preliminary compression force in advance, and that amount of displacement is released. be.

また、一方、従来と同程度の変位量をとりだすには、圧
電素子2に印加する駆動電圧は従来よりも低いものであ
るから、消費電力を低く抑えることが可能である。従っ
て、圧電素子の大きさを小さくすることが可能であるた
め、低コストの圧電アクチュエータを得ることが出来る
On the other hand, in order to obtain the same amount of displacement as in the past, the drive voltage applied to the piezoelectric element 2 is lower than in the past, so it is possible to keep power consumption low. Therefore, since it is possible to reduce the size of the piezoelectric element, a low-cost piezoelectric actuator can be obtained.

第5図は本発明の別の実施例を示す圧電アクチュエータ
の断面図である。この圧電アクチュエータは、前述の実
施例の圧電アクチュエータの湾曲ばね・圧電素子接続部
5のかわりに球状湾曲ばね・圧電素子接続部51を用い
ている。このように球状の接続部を用いることにより、
湾曲ばねとはほぼ点接触となるために、湾曲ばね3の変
形を妨げることなく圧電素子2の変位を伝えることが可
能となる。なお、この例では湾曲ばね・圧電素子接続部
に球形状を用いたが、円筒形状、またはナイフェツジ形
状を用いても同様の効果が得られることは明らかである
FIG. 5 is a sectional view of a piezoelectric actuator showing another embodiment of the present invention. This piezoelectric actuator uses a spherical curved spring/piezoelectric element connection part 51 in place of the curved spring/piezoelectric element connection part 5 of the piezoelectric actuator of the previous embodiment. By using a spherical connection part in this way,
Since it is in almost point contact with the curved spring, it is possible to transmit the displacement of the piezoelectric element 2 without hindering the deformation of the curved spring 3. In this example, a spherical shape is used for the curved spring/piezoelectric element connection part, but it is clear that the same effect can be obtained even if a cylindrical shape or a knife shape is used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の圧電アクチュエータは圧
電素子を予圧する湾曲ばねを設けることによって、圧電
素子単体の変位量よりも大きな変位を得られることのほ
か、従来よりも圧電素子の駆動電圧を低く抑えることが
可能となり、消費電力が少なく大きさも小さいため低コ
ストでありその効果は大きい。
As explained above, by providing the piezoelectric actuator with a curved spring that preloads the piezoelectric element, the piezoelectric actuator of the present invention can obtain a displacement larger than that of the piezoelectric element alone, and can also reduce the drive voltage of the piezoelectric element more than before. Since it is possible to keep the power consumption low and the size is small, the cost is low and the effect is large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す圧電アクチュエータの
断面図、第2図(イ)〜(ニ)は圧電素子とばねとの配
置とそれらの変位を示す模式図、第3図は湾曲ばねと線
形ばねと圧電素子の力と変位との関係を示す図、第4図
は湾曲ばねの中央に力を作用させたときの湾曲バネの変
形モードを示す図、第5図は本発明の他の実施例を示す
圧電アクチュエータの断面図、第6図は従来の一例を示
す圧電アクチュエータの断面図、第7図(イ)。 (ロ)は湾曲ばねと接触する部位の形状の相違による湾
曲ばねの変形の様子を表わす模式図である。 1・・・ロッド、2,21・・・圧電素子、3.3a。 3b・・・湾曲ばね、4,22・・・フレーム、5,5
a・・・湾曲ばね・圧電素子接続部、51・・・球状湾
曲ばね・圧電素子接続部。
Figure 1 is a cross-sectional view of a piezoelectric actuator showing an embodiment of the present invention, Figures 2 (a) to (d) are schematic diagrams showing the arrangement of piezoelectric elements and springs and their displacement, and Figure 3 is a curved A diagram showing the relationship between the force and displacement of a spring, a linear spring, and a piezoelectric element, FIG. 4 is a diagram showing the deformation mode of a curved spring when force is applied to the center of the curved spring, and FIG. FIG. 6 is a cross-sectional view of a piezoelectric actuator showing another embodiment, and FIG. 7 is a cross-sectional view of a piezoelectric actuator showing a conventional example. (B) is a schematic diagram showing how the curved spring is deformed due to the difference in the shape of the portion that contacts the curved spring. 1... Rod, 2, 21... Piezoelectric element, 3.3a. 3b...Curved spring, 4,22...Frame, 5,5
a... Curved spring/piezoelectric element connection part, 51... Spherical curved spring/piezoelectric element connection part.

Claims (2)

【特許請求の範囲】[Claims] 1.電圧を印加することにより伸縮する圧電素子と、こ
の圧電素子の伸縮方向に力を作用するように配置され、
前記圧電素子の駆動変位の範囲内で変位が増大するにし
たがい作用する力が減少する特性を持つ湾曲ばねとを有
することを特徴とする圧電アクチュエータ。
1. A piezoelectric element that expands and contracts by applying a voltage, and is arranged to apply a force in the direction of expansion and contraction of this piezoelectric element,
A piezoelectric actuator comprising: a curved spring having a characteristic that the force acting on the piezoelectric element decreases as the displacement increases within the drive displacement range of the piezoelectric element.
2.湾曲ばねと接触する部位の形状が突起状である湾曲
ばね・圧電素子接続部を有することを特徴とする請求項
1記載の圧電アクチュエータ。
2. 2. The piezoelectric actuator according to claim 1, further comprising a curved spring/piezoelectric element connection portion in which a portion that contacts the curved spring has a protruding shape.
JP1339690A 1989-12-26 1989-12-26 Piezo actuator Expired - Fee Related JP2940038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339690A JP2940038B2 (en) 1989-12-26 1989-12-26 Piezo actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339690A JP2940038B2 (en) 1989-12-26 1989-12-26 Piezo actuator

Publications (2)

Publication Number Publication Date
JPH03198388A true JPH03198388A (en) 1991-08-29
JP2940038B2 JP2940038B2 (en) 1999-08-25

Family

ID=18329875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339690A Expired - Fee Related JP2940038B2 (en) 1989-12-26 1989-12-26 Piezo actuator

Country Status (1)

Country Link
JP (1) JP2940038B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479064A (en) * 1993-02-28 1995-12-26 Nec Corporation Piezoelectric actuator with a displacement enlarging feature
JP2002101674A (en) * 2000-09-21 2002-04-05 Tokin Corp Piezoelectric actuator
JP2003528563A (en) * 2000-03-23 2003-09-24 エリプテク・レゾナント・アクツアーター・アクチェンゲゼルシャフト Vibration motor and methods of making and using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479064A (en) * 1993-02-28 1995-12-26 Nec Corporation Piezoelectric actuator with a displacement enlarging feature
JP2003528563A (en) * 2000-03-23 2003-09-24 エリプテク・レゾナント・アクツアーター・アクチェンゲゼルシャフト Vibration motor and methods of making and using the same
JP4943618B2 (en) * 2000-03-23 2012-05-30 エリプテク・レゾナント・アクツアーター・アクチェンゲゼルシャフト Vibration motor and method of manufacturing and using the same
JP2002101674A (en) * 2000-09-21 2002-04-05 Tokin Corp Piezoelectric actuator
JP4554054B2 (en) * 2000-09-21 2010-09-29 Necトーキン株式会社 Piezoelectric actuator

Also Published As

Publication number Publication date
JP2940038B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US7732994B2 (en) Non-linear piezoelectric mechanical-to-electrical generator system and method
US5831371A (en) Snap-action ferroelectric transducer
US6093995A (en) Hybrid motor
US20040055293A1 (en) Apparatus for supplying power to a sensor
US6291928B1 (en) High bandwidth, large stroke actuator
US7579755B2 (en) Electrical-to-mechanical transducer apparatus and method
JPH03198388A (en) Piezoelectric actuator
CN108092546B (en) A kind of large displacement piezoelectric actuator and actuation method based on bistable state beam
JP2508289B2 (en) Piezoelectric actuator
CN209919919U (en) Piezoelectric manipulator based on spherical joint
CN107408622B (en) Piezoelectric generator, button, radio module and the method for manufacturing piezoelectric generator
JP2913740B2 (en) Piezo actuator
JPH0310580Y2 (en)
US20240213890A1 (en) Piezoelectric drive device and piezoelectric drive system having same
EP0452502A1 (en) Wire driving mechanism
JP2897315B2 (en) Piezo actuator
JP5727781B2 (en) Displacement magnification mechanism of piezoelectric element
JP2913685B2 (en) Piezo actuator
JP3278954B2 (en) Ultrasonic motor
JP3120360B2 (en) Housing structure of coil spring for prestress of electromagnetic strain actuator
JPS60245481A (en) Piezoelectric element actuator
JPH02139269A (en) Fine displacement and magnification mechanism and printing head using the same mechanism
CN115313910A (en) Asymmetric mass type piezoelectric inertia driver
RU2107854C1 (en) Spherical part compensator
JPH03244553A (en) Piezoelectric actuator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees