JPH03197955A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH03197955A
JPH03197955A JP2631490A JP2631490A JPH03197955A JP H03197955 A JPH03197955 A JP H03197955A JP 2631490 A JP2631490 A JP 2631490A JP 2631490 A JP2631490 A JP 2631490A JP H03197955 A JPH03197955 A JP H03197955A
Authority
JP
Japan
Prior art keywords
alloy
layer
selenium
charge
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2631490A
Other languages
Japanese (ja)
Inventor
Mitsuru Narita
満 成田
Tsuneo Tamura
田村 恒雄
Seizo Kitagawa
清三 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to DE4011267A priority Critical patent/DE4011267C2/en
Priority to US07/507,592 priority patent/US5330863A/en
Publication of JPH03197955A publication Critical patent/JPH03197955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a photosensitive body superior in printing resistance and heat resistance and good in dark decay characteristics and fatigue characteristics and stable even under high temperature by forming an electric charge injection restraining layer made of an Se-As-S alloy between a charge generating layer and a surface protective layer. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on a conductive substrate 1 the charge transfer layer 2 made of an Se-As alloy, the charge generating layer 3 made of an Se-Te alloy, the charge injection restraining layer 4 made of the Se-As-S alloy, and the surface protective layer 5 made of an Se-As alloy. The layer 4 restrains heat excited carriers generated in the photosensitive body, especially, in the layer 3 at high temperature from transferring to the layer 5, thus permitting electrophotographic sensitive body to be superior in printing resistance and heat resistance, good in dark decay characteristics and fatigue characteristics and stable in even under environment high temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、長波長光を露光光として用いるデジタル複
写機、プリンタなどに用いられる電子写真用感光体に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor used in digital copying machines, printers, etc. that use long wavelength light as exposure light.

〔従来の技術〕[Conventional technology]

この種の電子写真応用装置においては、露光光源として
半導体レーザダイオード+HeNeレーザ。
In this type of electrophotographic application equipment, a semiconductor laser diode + HeNe laser is used as an exposure light source.

発光ダイオードなどが主として用いられる。これらの光
源からの光は630nmから800n−と長波長である
ため、用いられる電子写真用感光体(以下、単に感光体
と略記する)としては、このような長波長光領域でも高
い感度を有する高テルル濃度のセレン・テルル系合金か
らなる電荷発生層、この電荷発生層に発生した電荷(正
孔)を導電性基体へ輸送するセレン・ひ素系合金からな
る電荷輸送層、および電荷発生層を外部ストレスから保
護する表面保護層を備えた機能分離型の多層積層型の感
光体が一般的に使われてきた。上述の表面保護層の材料
としては、耐剛性、耐化学的安定性、耐熱性などの観点
からセレン・ひ素系合金が用いられる。用いられる合金
のひ素濃度が高い程表面保護層の耐刷性、耐熱性は同上
するが、一方、ひ素濃度が高くなると、感光体の暗減衰
特性や疲労特性が悪くなるという問題が生じてくる。
Light emitting diodes and the like are mainly used. Since the light from these light sources has a long wavelength of 630 nm to 800 nm, the electrophotographic photoreceptor (hereinafter simply referred to as photoreceptor) used has high sensitivity even in such a long wavelength light region. A charge generation layer made of a selenium/tellurium alloy with a high tellurium concentration, a charge transport layer made of a selenium/arsenic alloy that transports the charges (holes) generated in this charge generation layer to a conductive substrate, and a charge generation layer. Functionally separated multilayer laminated photoreceptors equipped with a surface protective layer for protection from external stress have generally been used. As the material for the above-mentioned surface protective layer, a selenium-arsenic alloy is used from the viewpoints of rigidity resistance, chemical stability, heat resistance, etc. The higher the arsenic concentration of the alloy used, the better the printing durability and heat resistance of the surface protective layer will be. However, as the arsenic concentration increases, the problem arises that the dark decay characteristics and fatigue characteristics of the photoreceptor deteriorate. .

このような問題点の解決策の一つとして、本出願人の特
許出願に係る特開平1−112250号公報に、高テル
ル濃度のセレン・テルル系合金からなる電荷発生層と表
面保護層との間に、純セレンあるいは10重量%以下の
低ひ素濃度のセレン・ひ素系合金からなる電荷注入抑制
層を介在させることにより、感光体の暗減衰特性および
疲労特性を悪化させることなしに表面保護層材料として
高ひ素濃度のセレン・ひ素系合金を用いることが可能と
なり、耐刷性、耐熱性の大幅に向上した表面保護層を備
えた優れた特性の感光体が得られることが開示されてい
る。
As one solution to these problems, Japanese Patent Application Laid-Open No. 1-112250, filed by the applicant, discloses a method of combining a charge generation layer made of a selenium-tellurium alloy with a high tellurium concentration and a surface protective layer. By interposing a charge injection suppressing layer made of pure selenium or a selenium-arsenic alloy with a low arsenic concentration of 10% by weight or less, the surface protective layer can be formed without deteriorating the dark decay characteristics and fatigue characteristics of the photoreceptor. It has been disclosed that it is now possible to use a selenium-arsenic alloy with a high arsenic concentration as a material, and a photoreceptor with excellent characteristics, including a surface protective layer with significantly improved printing durability and heat resistance, can be obtained. .

また、高耐刷化を狙いとした表面保護層材料として、セ
レン系材料以外の非晶質シリコン、非晶質窒化シリコン
が知られており、さらに、特開昭63−81367号公
報にて非晶質窒化はう素、特開昭63−81430号公
報にて非晶質窒化酸化シリコンも公知となっている。
In addition, amorphous silicon and amorphous silicon nitride other than selenium-based materials are known as surface protective layer materials aimed at increasing printing durability. Crystalline boron nitride and amorphous silicon nitride oxide are also known in Japanese Patent Application Laid-open No. 81430/1983.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述のセレン・テルル系合金からなる電
荷発生層上に、純セレンまたはセレン・ひ素系合金から
なる電荷注入抑制層を積層し、さらに、その上に高ひ素
濃度のセレン・ひ素系合金からなる表面保護層を積層し
た構成の感光体は、室温環境下では電荷注入抑制層の効
果が大きく、良好な暗減衰特性、疲労特性を有するが、
高温環境下ではその作用が十分でなくなり、暗減衰特性
や疲労特性の悪化を防止しきれなくなるという問題が発
生する。
However, a charge injection suppressing layer made of pure selenium or a selenium-arsenic alloy is laminated on the charge generation layer made of the selenium-tellurium alloy mentioned above, and then a charge injection suppressing layer made of a selenium-arsenic alloy with a high arsenic concentration is layered on top of the charge-injection suppressing layer made of pure selenium or a selenium-arsenic alloy. A photoreceptor with a laminated surface protective layer has a large charge injection suppressing layer effect in a room temperature environment, and has good dark decay characteristics and fatigue characteristics.
In a high-temperature environment, this effect is no longer sufficient, and a problem arises in that deterioration of dark decay characteristics and fatigue characteristics cannot be prevented completely.

また、表面保護層の材料としてセレン・ひ素系合金以外
の前述の材料を用いる場合には、電荷発生層上にグロー
放電により成膜することになるために、表面保護層の形
成に長時間を要し、感光体の価格が高くなるという欠点
を有している。
Furthermore, when using the above-mentioned materials other than the selenium-arsenic alloy as the material for the surface protective layer, it takes a long time to form the surface protective layer because the film is formed on the charge generation layer by glow discharge. In short, it has the disadvantage that the price of the photoreceptor becomes high.

本発明は、上述の課題を解決して、高テルル濃度のセレ
ン・テルル系合金からなり長波長光に高感度を有する電
荷発生層、高ひ素濃度のセレン・ひ素系合金からなり耐
刷性、耐熱性に優れた表面保護層を備え、しかも暗減衰
特性、FM労時特性良好で、かつ高温環境下においても
安定で悪化が少ない感光体を提供することを目的とする
The present invention solves the above-mentioned problems, and has a charge generation layer made of a selenium-tellurium alloy with a high tellurium concentration and highly sensitive to long wavelength light, a charge generation layer made of a selenium-arsenic alloy with a high arsenic concentration, which has excellent printing durability, It is an object of the present invention to provide a photoreceptor which is provided with a surface protective layer having excellent heat resistance, has good dark decay characteristics and FM working characteristics, and is stable and suffers little deterioration even in a high temperature environment.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、導電性基体上
にセレン・ひ素系合金からなる電荷輸送層、セレン・テ
ルル系合金からなる電荷発生層。
To achieve the above object, the present invention provides a charge transport layer made of a selenium-arsenic alloy and a charge generation layer made of a selenium-tellurium alloy on a conductive substrate.

セレン・ひ素系合金からなる表面保護層が積層されてな
る感光体において、電荷発生層と表面保護層との間にセ
レン・ひ素・いおう系合金からなる電荷注入抑制層が介
在するものとする。あるいは、導電性基体と電荷輸送層
の間にセレン・ひ素・いおう系合金からなる電荷注入抑
制層が介在するものとする。あるいはまた、導電性基体
と電荷輸送層との間および電荷発生層と表面保護層との
間に、セレン・ひ素・いおう系合金からなる電荷注入抑
制層が介在するものとする。
In a photoreceptor in which a surface protective layer made of a selenium-arsenic alloy is laminated, a charge injection suppressing layer made of a selenium-arsenic-sulfur alloy is interposed between the charge generation layer and the surface protection layer. Alternatively, a charge injection suppressing layer made of a selenium-arsenic-sulfur alloy is interposed between the conductive substrate and the charge transport layer. Alternatively, a charge injection suppressing layer made of a selenium-arsenic-sulfur alloy is interposed between the conductive substrate and the charge transport layer and between the charge generation layer and the surface protective layer.

〔作用〕[Effect]

本発明は、熱膨張率が小さい^s諺sesにいおう(S
)を添加していくと、第2図に示すように任意の高い抵
抗値の合金が得られることに着目してなされたものであ
って、電荷発生層と表面保護層との間に設けられた高抵
抗のセレン・ひ素・いおう系合金からなる電荷注入抑制
層は、高温において感光体内部、特に電荷発生層で生じ
る熱励起キャリアの表面保護層への移動を抑制し、暗減
衰特性および疲労特性の悪化を抑制することができる。
The present invention has a small coefficient of thermal expansion.
) was created based on the fact that an alloy with an arbitrarily high resistance value can be obtained as shown in Figure 2. The charge injection suppression layer made of a high-resistance selenium-arsenic-sulfur alloy suppresses the movement of thermally excited carriers generated inside the photoreceptor, especially in the charge generation layer, to the surface protective layer at high temperatures, improving dark decay characteristics and fatigue. Deterioration of characteristics can be suppressed.

また、導電性基体と電荷輸送層との間に設けられた高抵
抗のセレン・ひ素・いおう系合金からなる層は、高温環
境下においても電荷注入抑制層として良好に機能し、導
電性基体からの電荷の注入を効果的に抑制することがで
き、暗減衰の増大を防止することができる。
In addition, the layer made of a high-resistance selenium-arsenic-sulfur alloy provided between the conductive substrate and the charge transport layer functions well as a charge injection suppression layer even in high-temperature environments, and is The charge injection can be effectively suppressed, and an increase in dark decay can be prevented.

さらに、導電性基体と電荷輸送層との間および電荷発生
層と表面保護層との間双方に高抵抗の電荷注入抑制層を
介在させることにより、高温環境下における疲労特性の
悪化1例えば帯電・除電を繰り返したときの帯電低下が
少なくなるようにすることができる。
Furthermore, by interposing a high-resistance charge injection suppressing layer both between the conductive substrate and the charge transport layer and between the charge generation layer and the surface protective layer, fatigue properties in high-temperature environments are reduced. It is possible to reduce the drop in charge when static elimination is repeated.

〔実施例〕〔Example〕

第1図は、本発明に係わる感光体の一実施例の模式的断
面図で、導電性基体1の上に電荷輸送層2、電荷発生層
3が積層され、その上にセレン・ひ素・いおう系合金か
らなる電荷注入抑制層4を介して表面保護層5が設けら
れている。
FIG. 1 is a schematic cross-sectional view of one embodiment of a photoreceptor according to the present invention, in which a charge transport layer 2 and a charge generation layer 3 are laminated on a conductive substrate 1, and selenium, arsenic, sulfur, etc. A surface protective layer 5 is provided with a charge injection suppressing layer 4 made of a base alloy interposed therebetween.

実施例1 機械加工および洗浄の施された直径80nのアルミニウ
ム円筒管の導電性基体1を蒸着装置の回転支持軸に取り
付け、導電性基体1の温度を約190℃に加熱し、この
温度に保ち、I X 111’Torrにまで真空引き
し、その後Asm5es合金の充填された蒸発源を約4
00℃に加熱して、回転している導電性基体1上に約6
0−の均一な膜厚を有する電荷輸送層2を蒸着した0次
に、フラッシュ蒸着法で、電荷発生層3として34原子
%のTeを含む5e−Te合金を約0.5nの厚さに、
電荷注入抑制層4としてAS*Sel+富S合金を約I
J!11の厚さに、表面保護層5としてへs、se、合
金を約2−の厚さに順次蒸着し、積層して感光体とした
。フラッシュ蒸着は回転支持軸温度60℃、圧力I X
 10−’Torr、蒸発源温度350℃の条件のもと
で行った。
Example 1 A conductive substrate 1 made of a machined and cleaned aluminum cylindrical tube with a diameter of 80 nm was attached to a rotating support shaft of a vapor deposition apparatus, and the temperature of the conductive substrate 1 was heated to about 190° C. and maintained at this temperature. , I x 111' Torr, and then the evaporation source filled with Asm5es alloy was
Heated to 00°C and placed about 6
After depositing the charge transport layer 2 with a uniform thickness of 0 -, a 5e-Te alloy containing 34 atomic % of Te was deposited as the charge generation layer 3 to a thickness of about 0.5 nm by flash evaporation. ,
AS*Sel+S-rich alloy is used as the charge injection suppressing layer 4.
J! A surface protective layer 5 of Hes, Se, and an alloy was sequentially deposited to a thickness of about 1.1 mm, and then layered to a thickness of about 2 mm to form a photoreceptor. For flash deposition, the rotating support shaft temperature is 60°C and the pressure is IX.
The experiment was carried out under the conditions of 10-' Torr and evaporation source temperature of 350°C.

実施例2 実施例1において、電荷注入抑制層4の蒸着材料をAs
655g5合金に替え、蒸着膜厚を約0.5−と薄くし
たこと以外は、実施例1と同様にして感光体を作製した
Example 2 In Example 1, the vapor deposition material of the charge injection suppressing layer 4 was As.
A photoreceptor was produced in the same manner as in Example 1, except that the 655g5 alloy was used and the thickness of the deposited film was reduced to about 0.5-.

比較例1 実施例1において、電荷注入抑制層4の蒸着材料を5原
子%のAsを含む5s−As合金に替えたこと以外は、
実施例1と同様にして感光体を作製した。
Comparative Example 1 In Example 1, except that the vapor deposition material of the charge injection suppressing layer 4 was changed to a 5s-As alloy containing 5 at% As.
A photoreceptor was produced in the same manner as in Example 1.

このようにして作製した実施例および比較例の感光体に
ついて、暗減衰特性の温度依存性を調べた。その結果を
第3図に示す、第3図における縦軸の暗減衰量は帯電後
1秒の暗減衰電位の初めの帯電位に対する百分率である
。また、疲労特性として、帯電・露光を250サイクル
繰り返したときの帯電低下量をとり、その温度依存性を
調べた。
The temperature dependence of the dark decay characteristics of the photoreceptors of Examples and Comparative Examples thus produced was investigated. The results are shown in FIG. 3. The dark decay amount on the vertical axis in FIG. 3 is the percentage of the dark decay potential 1 second after charging with respect to the initial charging potential. Furthermore, as fatigue characteristics, the amount of charge reduction after 250 cycles of charging and exposure was measured, and its temperature dependence was investigated.

その結果を第4図に示す、第4図における縦軸の帯電低
下量は初期帯電位と250サイクル後の帯電位との電位
差の初期帯電位に対する百分率である。
The results are shown in FIG. 4. The charge reduction amount on the vertical axis in FIG. 4 is the percentage of the potential difference between the initial charge potential and the charge potential after 250 cycles with respect to the initial charge potential.

第3図および第4図より、比較例1の感光体に比べ実施
例1および実施例2の感光体では、高温側での暗減衰特
性および疲労特性が大幅に改善されていることが明らか
である。
From FIG. 3 and FIG. 4, it is clear that the photoconductors of Examples 1 and 2 have significantly improved dark decay characteristics and fatigue characteristics at high temperatures compared to the photoconductor of Comparative Example 1. be.

第5図は、本発明に係わる感光体の他の実施例の模式的
断面図で、第1図と共通の部分には同一の符号が付され
ている。すなわち、導電性基体1の上に、セレン・ひ素
・いおう系合金からなる電荷注入抑制層4、セレン・ひ
素系合金からなる電荷輸送層2、セレン・テルル系合金
からなる電荷発生層3、セレン・ひ素系合金からなる表
面保護層5が積層された構成のものである。
FIG. 5 is a schematic sectional view of another embodiment of the photoreceptor according to the present invention, in which parts common to those in FIG. 1 are given the same reference numerals. That is, on a conductive substrate 1, a charge injection suppressing layer 4 made of a selenium-arsenic-sulfur alloy, a charge transport layer 2 made of a selenium-arsenic alloy, a charge generation layer 3 made of a selenium-tellurium alloy, and a selenium - It has a structure in which a surface protection layer 5 made of an arsenic alloy is laminated.

実施例3 実施例1と同様に加工および洗浄の施された直径80m
のアルミニウム円筒管の導電性基体1を蒸着装置の回転
支持軸に取り付け、導電性基体1の温度を約60℃に加
熱し、この温度に保ち、1×10−’ Torrにまで
真空引きし、回転している導電性基体1上にフラッシュ
蒸着法でAsSe+、□S+、tS合金を1μの厚さに
蒸着して電荷注入抑制層4を形成し、続いて、導電性基
体1の温度を約190℃に加熱し、As1Se3合金の
充填された蒸発源を約400℃に加熱して約60μの均
一な膜厚を有する電荷輸送層2を蒸着した0次に、この
上に、フラッシュ蒸着法で、電荷発生層3として34原
子%のToを含むSs −Te合金を約0.5μの厚さ
に、表面保護層5として^s@Se2合金を約2nの厚
さに順次蒸着し積層して、第5図に示した構成の感光体
を作製した。
Example 3 Diameter 80m processed and cleaned in the same way as Example 1
A conductive substrate 1 made of an aluminum cylindrical tube was attached to a rotating support shaft of a vapor deposition device, the temperature of the conductive substrate 1 was heated to about 60° C., maintained at this temperature, and evacuated to 1×10 −′ Torr. A charge injection suppressing layer 4 is formed by depositing AsSe+, □S+, and tS alloys to a thickness of 1 μm on the rotating conductive substrate 1 using a flash deposition method, and then the temperature of the conductive substrate 1 is lowered to about 1 μm. The evaporation source filled with As1Se3 alloy was heated to 190°C and then heated to about 400°C to deposit a charge transport layer 2 having a uniform film thickness of about 60μ. A Ss-Te alloy containing 34 atomic % of To was deposited to a thickness of about 0.5μ as the charge generation layer 3, and a ^s@Se2 alloy was deposited to a thickness of about 2N as the surface protection layer 5. A photoreceptor having the configuration shown in FIG. 5 was manufactured.

フラッシュ蒸着の条件は、実施例1のときと同様である
The conditions for flash deposition are the same as in Example 1.

第6図は、本発明に係わる感光体のさらに別の実施例の
模式的断面図で、第1.第5図と共通の部分には同一の
符号が付されている。すなわち、第5図の感光体の電荷
発生層と表面保護層5の間に、第1図の感光体と同様に
電荷注入抑制層4を設けたものである。
FIG. 6 is a schematic cross-sectional view of still another embodiment of the photoreceptor according to the present invention. Components common to those in FIG. 5 are given the same reference numerals. That is, a charge injection suppressing layer 4 is provided between the charge generation layer and the surface protection layer 5 of the photoreceptor shown in FIG. 5, similar to the photoreceptor shown in FIG.

実施例4 実施例3における電荷発生層3の蒸着後、再び電荷注入
抑制層今としてAsSe+、 xsse+、 ts金合
金約1nの厚さにフランシュ蒸着し、次いで実施例3と
同様の表面保護層5をフラッシュ蒸着法で積層して、第
6図に示した構成の感光体を作製した。
Example 4 After the charge generation layer 3 was deposited in Example 3, a charge injection suppressing layer was again deposited on AsSe+, xsse+, and ts gold alloys to a thickness of about 1 nm, and then the same surface protective layer 5 as in Example 3 was deposited. were laminated by flash vapor deposition to produce a photoreceptor having the structure shown in FIG.

比較例2 実施例3.4において、電荷注入抑制層4を設けなかっ
たこと以外は同様の工程で感光体を作製した。
Comparative Example 2 A photoreceptor was produced in the same manner as in Example 3.4 except that the charge injection suppressing layer 4 was not provided.

このようにして作製した実施例3.4および比較例2の
感光体について暗減衰の温度依存性を調べた。その結果
を第7図に示す、第7図における縦軸の暗減衰率は、第
3図の場合と同様、帯電後1秒の暗減衰電位の初めの帯
電位に対する百分率である。また、疲労特性として、第
4図の場合と同様、帯電・露光を250サイクル繰り返
したときの帯電低下量をとり、その温度依存性を調べた
The temperature dependence of dark decay was investigated for the photoreceptors of Example 3.4 and Comparative Example 2 produced in this way. The results are shown in FIG. 7. The dark decay rate on the vertical axis in FIG. 7 is the percentage of the dark decay potential 1 second after charging with respect to the initial charged potential, as in the case of FIG. Further, as fatigue characteristics, as in the case of FIG. 4, the amount of charge reduction when charging and exposure were repeated 250 cycles was measured, and its temperature dependence was investigated.

その結果を第8図に示す。The results are shown in FIG.

第7図および第8図より、比較例2の感光体に比べ実施
例3および実施例4の感光体では、高温側での暗減衰特
性および疲労特性が大幅に改善されていることは明らか
である。特に、導電性基体と電荷輸送層との間、および
電荷発生層と表面保護層との間の二ケ所に電荷注入抑制
層を設けた実施例4の感光体は、導電性基体から感光体
内部への電荷の注入および感光体内部の電荷輸送層、電
荷発生層に生じる熱励起キャリアの表面保護層(感光体
表面)への移動が抑制されて、優れた特性を有すること
が判かる。
From FIG. 7 and FIG. 8, it is clear that the photoconductors of Examples 3 and 4 have significantly improved dark decay characteristics and fatigue characteristics at high temperatures compared to the photoconductor of Comparative Example 2. be. In particular, the photoreceptor of Example 4, in which the charge injection suppressing layer was provided at two locations, between the conductive substrate and the charge transport layer and between the charge generation layer and the surface protective layer, had a It can be seen that the material has excellent properties because charge injection into the photoreceptor and transfer of thermally excited carriers generated in the charge transport layer and charge generation layer inside the photoreceptor to the surface protective layer (photoreceptor surface) are suppressed.

また、各実施例の感光体においては、電荷発生層は高テ
ルル濃度のセレン・テルル系合金で形成され、表面保護
層は高ひ素濃度のセレン・ひ素系合金で形成されている
。従って、実施例の感光体は長波長光に高い感度を有し
、暗減衰特性および疲労特性が良好で高温環境下でも悪
化することの少ない優れた特性を有し、しかも耐剛性、
耐熱性に優れた表面保護層を備えたものである。
In the photoreceptor of each example, the charge generation layer is formed of a selenium-tellurium alloy with a high tellurium concentration, and the surface protective layer is formed of a selenium-arsenic alloy with a high arsenic concentration. Therefore, the photoreceptor of the example has high sensitivity to long wavelength light, good dark decay characteristics and fatigue characteristics, and has excellent characteristics that do not deteriorate even in high-temperature environments.
It has a surface protection layer with excellent heat resistance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電荷発生層と表面保護層との間に、あ
るいは、導電性基体と電荷輸送層との間に、あるいはま
た、それぞれの間に、高抵抗のセレン・ひ素・いおう系
合金からなる電荷注入抑制層を設けることにより、電荷
輸送層をセレン・ひ素系合金で形成し、電荷発生層を高
テルル濃度のセレン・テルル系合金で形成し、表面保護
層を高ひ素濃度のセレン・ひ素系合金で形成すれば、耐
剛性、耐熱性に優れた表面保護層を備え、長波長光に高
い感度を有し、しかも、暗減衰特性、疲労特性が良好で
かつ高温環境下においても安定で悪化することの少ない
感光体を得ることが可能となる。
According to the present invention, a high-resistance selenium-arsenic-sulfur alloy is provided between the charge generation layer and the surface protective layer, between the conductive substrate and the charge transport layer, or between each of them. By providing a charge injection suppressing layer consisting of a selenium-arsenic alloy, the charge-transport layer is formed of a selenium-arsenic alloy, a charge-generating layer is formed of a selenium-tellurium alloy with a high tellurium concentration, and a surface protective layer is formed of a selenium-tellurium alloy with a high arsenic concentration.・If formed from an arsenic alloy, it has a surface protective layer with excellent rigidity and heat resistance, has high sensitivity to long wavelength light, and has good dark decay characteristics and fatigue characteristics, even in high temperature environments. It becomes possible to obtain a photoreceptor that is stable and rarely deteriorates.

本発明による感光体は、近年急速に普及してきている、
半導体レーザダイオード、発光ダイオードなどの長波長
光を露光光として用いるデジタル複写機、プリンタなど
に好適に使用できる。しかも、高温環境下においても良
質の画像を得ることができ、この発明の効果は顕著であ
る。
The photoreceptor according to the present invention has become rapidly popular in recent years.
It can be suitably used in digital copiers, printers, etc. that use long wavelength light from semiconductor laser diodes, light emitting diodes, etc. as exposure light. Furthermore, high quality images can be obtained even under high temperature environments, and the effects of this invention are remarkable.

また、本発明における表面保護層材料はセレン・ひ素系
合金であり、セレン系材料以外の非晶賞シリコンなどの
場合のように、表面保護層の形成にグロー放電などの長
時間を要する方法を用いることなく、真空蒸着で簡単に
形成することができ、感光体を安価に製造できる利点も
有する。
In addition, the surface protective layer material in the present invention is a selenium-arsenic alloy, and unlike the case of non-selenium-based materials such as amorphous silicon, the surface protective layer is formed using a method that requires a long time such as glow discharge. It also has the advantage that it can be easily formed by vacuum evaporation without using it, and the photoreceptor can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる感光体の一実施例の模式的断面
図、第2図はセレン・ひ素・いおう系合金の電気抵抗と
合金中のAa、Setに対するいおう添加量との関係を
示す線図、第3図、第4図はそれぞれ実施例1.2およ
び比較例1の感光体の暗減衰特性および疲労特性の温度
依存性を示す線図、第5図、第6図はそれぞれ本発明に
係わる感光体のさらに異なる実施例の模式的断面図、第
7図および第8図はそれぞれ実施例3.4および比較例
2の暗減衰特性および疲労特性の温度依存性を示す線図
である。 1 導電性基体、 :電荷輸送層、 3 : 電荷光 体層、 :を荷注入抑制層、 :表面保護層。 10    20゜ 王【寛1度(°C) 0 0 第3図 0 0 0 0 iH,温度(0C) 第4図 第1図 AS2Se3に対するSの滲加量(原子%)第2島 第5図 第6図
Figure 1 is a schematic cross-sectional view of an embodiment of a photoreceptor according to the present invention, and Figure 2 shows the relationship between the electrical resistance of a selenium-arsenic-sulfur alloy and the amount of sulfur added to Aa and Set in the alloy. 3 and 4 are diagrams showing the temperature dependence of the dark decay characteristics and fatigue characteristics of the photoconductors of Example 1.2 and Comparative Example 1, respectively, and FIGS. FIGS. 7 and 8, which are schematic cross-sectional views of further different examples of the photoreceptor according to the invention, are diagrams showing the temperature dependence of the dark decay characteristics and fatigue characteristics of Example 3.4 and Comparative Example 2, respectively. be. 1 conductive substrate, : charge transport layer, 3 : charge photoform layer, : charge injection suppression layer, : surface protection layer. 10 20゜King [1 degree (°C) 0 0 Fig. 3 0 0 0 0 iH, temperature (0C) Fig. 4 Fig. 1 Amount of S permeated into AS2Se3 (atomic %) 2nd island Fig. 5 Figure 6

Claims (1)

【特許請求の範囲】 1)導電性基体上にセレン・ひ素系合金からなる電荷輸
送層、セレン・テルル系合金からなる電荷発生層、セレ
ン・ひ素系合金からなる表面保護層が積層されてなるも
のにおいて、電荷発生層と表面保護層との間にセレン・
ひ素・いおう系合金からなる電荷注入抑制層が介在する
ことを特徴とする電子写真用感光体。 2)導電性基体上にセレン・ひ素系合金からなる電荷輸
送層、セレン・テルル系合金からなる電荷発生層、セレ
ン・ひ素系合金からなる表面保護層が積層されてなるも
のにおいて、導電性基体と電荷輸送層との間にセレン・
ひ素・いおう系合金からなる電荷注入抑制層が介在する
ことを特徴とする電子写真用感光体。 3)導電性基体上にセレン・ひ素系合金からなる電荷輸
送層、セレン・テルル系合金からなる電荷発生層、セレ
ン・ひ素系合金からなる表面保護層が積層されてなるも
のにおいて、導電性基体と電荷輸送層との間および電荷
発生層と表面保護層との間にセレン・ひ素・いおう系合
金からなる電荷注入抑制層が介在することを特徴とする
電子写真用感光体。
[Claims] 1) A charge transport layer made of a selenium/arsenic alloy, a charge generation layer made of a selenium/tellurium alloy, and a surface protection layer made of a selenium/arsenic alloy are laminated on a conductive substrate. selenium between the charge generation layer and the surface protective layer.
A photoreceptor for electrophotography characterized by having a charge injection suppressing layer made of an arsenic-sulfur alloy. 2) A conductive substrate in which a charge transport layer made of a selenium/arsenic alloy, a charge generation layer made of a selenium/tellurium alloy, and a surface protection layer made of a selenium/arsenic alloy are laminated on a conductive substrate. selenium between the charge transport layer and the charge transport layer.
A photoreceptor for electrophotography characterized by having a charge injection suppressing layer made of an arsenic-sulfur alloy. 3) A conductive substrate in which a charge transport layer made of a selenium/arsenic alloy, a charge generation layer made of a selenium/tellurium alloy, and a surface protection layer made of a selenium/arsenic alloy are laminated on a conductive substrate. An electrophotographic photoreceptor characterized in that a charge injection suppressing layer made of a selenium-arsenic-sulfur alloy is interposed between the charge transport layer and the charge generation layer and the surface protective layer.
JP2631490A 1989-04-12 1990-02-06 Electrophotographic sensitive body Pending JPH03197955A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4011267A DE4011267C2 (en) 1989-04-12 1990-04-06 Electrophotographic recording material
US07/507,592 US5330863A (en) 1989-04-12 1990-04-10 Photosensitive material for electronic photography use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9274089 1989-04-12
JP1-92740 1989-04-12
JP10973789 1989-04-28
JP1-109737 1989-04-28

Publications (1)

Publication Number Publication Date
JPH03197955A true JPH03197955A (en) 1991-08-29

Family

ID=26434117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2631490A Pending JPH03197955A (en) 1989-04-12 1990-02-06 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH03197955A (en)

Similar Documents

Publication Publication Date Title
JPS59223439A (en) Electrophotographic sensitive body
JPH0792611B2 (en) Heterogeneous electrophotographic imaging member consisting of amorphous silicon and silicon oxide
JPS6356974B2 (en)
JPH03197955A (en) Electrophotographic sensitive body
JPH0792610B2 (en) Electrophotographic photoconductor
US4868077A (en) Layered photosensitive material for electrophotography comprising selenium, arsenic and tellurium
JPS5984254A (en) Photosensitive body
JPH01112250A (en) Electrophotographic sensitive body
JPH01316750A (en) Electrophotographic sensitive body
JPS6354171B2 (en)
US5330863A (en) Photosensitive material for electronic photography use
JPS6043664A (en) Electrophotographic sensitive body
JPH0683091A (en) Electrophotographic sensitive body and manufacture thereof
JPH0463356A (en) Electrophotographic sensitive body
JPS58100854A (en) Electrophotographic receptor
JP2599950B2 (en) Photoconductor structure
USRE35246E (en) Layed photosensitive material and electrophotography comprising selenium, arsenic and tellurium
JPH03149563A (en) Electrophotographic sensitive body
JPS6064357A (en) Electrophotographic sensitive body made of selenium
JPH02201376A (en) Electrophotographic sensitive body
JPH052296A (en) Image forming device
JPS58115443A (en) Photosensitive body
JPS5984256A (en) Photosensitive body
JPS6348558A (en) Electrophotographic sensitive body
JPH01225958A (en) Electrophotographic sensitive body