JPH03197828A - Temperature measuring method by infrared camera - Google Patents

Temperature measuring method by infrared camera

Info

Publication number
JPH03197828A
JPH03197828A JP33653089A JP33653089A JPH03197828A JP H03197828 A JPH03197828 A JP H03197828A JP 33653089 A JP33653089 A JP 33653089A JP 33653089 A JP33653089 A JP 33653089A JP H03197828 A JPH03197828 A JP H03197828A
Authority
JP
Japan
Prior art keywords
temperature
thermal image
thermal
range
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33653089A
Other languages
Japanese (ja)
Other versions
JPH0663937B2 (en
Inventor
Shohachi Okamoto
岡元 昭八
Yuji Matoba
的場 有治
Toyokichi Kimura
木村 豊吉
Sadaaki Sakai
禎明 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Japan Steel Tower Co Ltd JST
Original Assignee
NKK Corp
Nippon Kokan Ltd
Japan Steel Tower Co Ltd JST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd, Japan Steel Tower Co Ltd JST filed Critical NKK Corp
Priority to JP33653089A priority Critical patent/JPH0663937B2/en
Publication of JPH03197828A publication Critical patent/JPH03197828A/en
Publication of JPH0663937B2 publication Critical patent/JPH0663937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To easily detect a defective part by switching a 1st and a 2nd temperature measurement range and picking up images before and after heating, and detecting a heat image part which has high heat data projecting from the periphery from the deviation value heat image between two composite heat images. CONSTITUTION:Each measurement range for obtaining a heat image by the infrared camera is divided into four measurement range without overlapping with each other, which are switched to pick up the infrared heat images of an object to be measured before and after the heating, thereby obtaining heat image effective ranges D - A in the respective measurement ranges. Then the heat image data in the ranges D - A are processed by a personal computer by superimposition, subtraction, etc., and the result is displayed on a CRT display device. Then the heat image part which has high heat data projecting from the periphery is detected as a defect from the deviation value heat image between the two composite heat images obtained by composition.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、赤外線カメラにより温度差の大きい測定対
象物を撮像しその熱像を得る場合に、所望の温度分解能
により加熱前後における測定対象物を複数の温度測定レ
ンジを切換え撮像して得られた熱像を信号処理し、高い
温度分解能により欠陥部を容易に検出できる赤外線カメ
ラによる温度測定方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for capturing images of a measurement target with a large temperature difference using an infrared camera and obtaining a thermal image of the measurement target before and after heating using a desired temperature resolution. This invention relates to a temperature measurement method using an infrared camera that can easily detect defective parts with high temperature resolution by signal processing a thermal image obtained by switching between a plurality of temperature measurement ranges.

[従来の技術] パイプ等の内部が腐蝕し、減肉した場合に、外部よりこ
の減肉を診断する方法の1つとして、赤外線カメラによ
る温度測定方法がある。この方法はまずパイプ等の被測
定体の表面を均一に加熱する。するとこの加熱によりパ
イプの表面温度は上昇するが、もしもバイブに減肉部が
あると、熱容量の差に基づき肉厚の薄い欠陥部は肉厚の
厚い正常部よりも温度上昇が大きく、2つの部分には温
度差が生じる。従って赤外線カメラで加熱後のバイブ表
面の温度を測定すれば、どの部分に減肉部があるか、ま
たその温度差により減肉の程度を診断することができる
[Prior Art] When the inside of a pipe or the like is corroded and thinned, one method for diagnosing this thinning from the outside is to measure temperature using an infrared camera. In this method, first, the surface of the object to be measured, such as a pipe, is heated uniformly. Then, the surface temperature of the pipe increases due to this heating, but if there is a thinned part in the vibrator, the temperature rise in the defective part with thinner wall is larger than that in the normal part with thicker wall due to the difference in heat capacity, and the two There will be temperature differences between the parts. Therefore, by measuring the temperature of the surface of the vibrator after heating with an infrared camera, it is possible to determine where the thinned portion is and the degree of thinning based on the temperature difference.

第9図(a)は−膜内な赤外線カメラによる温度A11
j定装置の構成図であり、1は赤外線カメラ、2はパー
ソナルコンピュータ(以下パソコンという)、3は通常
はカラー表示できるCRT表示器、4は被all定休の
バイブである。またバイブ4は′AP1定用の加熱をす
る以前に、既に太陽による輻射熱により大きな温度差が
生じている例を示す。
Figure 9(a) shows - Temperature A11 measured by an infrared camera inside the membrane.
1 is a configuration diagram of a fixed device, 1 is an infrared camera, 2 is a personal computer (hereinafter referred to as a personal computer), 3 is a CRT display that can normally display in color, and 4 is a vibrator for all regular holidays. In addition, an example is shown in which a large temperature difference has already occurred in the vibrator 4 due to radiant heat from the sun before it is heated for AP1.

第9図(b)は同図(a)の温度測定装置により&1定
された温度分布例を示す図であり、横軸はバイブ表面の
位置を、縦軸はal定温度である。同図においては、バ
イブ表面の温度は最高で28℃、最低で20℃、即ち8
℃の温度差により分′布し、この温度分布は当然太陽光
がバイブ表面に垂直に照射する表面の中心部が最高温度
となり、周辺部になるにつれて次第に温度が低下するよ
うになっている。
FIG. 9(b) is a diagram showing an example of the temperature distribution determined by the temperature measuring device shown in FIG. 9(a), where the horizontal axis represents the position of the vibrator surface and the vertical axis represents the al constant temperature. In the same figure, the temperature of the surface of the vibrator is 28℃ at the highest and 20℃ at the lowest, that is, 8℃.
The temperature distribution is based on the temperature difference in degrees Celsius, and naturally the temperature is highest at the center of the surface where sunlight irradiates perpendicularly to the vibrator surface, and the temperature gradually decreases toward the periphery.

[発明が解決しようとする課題] 上記のような従来の赤外線温度測定装置に使用される赤
外線カメラは、CRT表示器に表示する1画面分(例え
ば256 X2O3程度)熱画素を有し、温度分解能を
所望の値に設定する(例えば最高分解能は0.01℃で
、以下0.02℃、0.03℃、0.04℃・・と任意
な値に設定できる)と、各熱画素は赤外線の受光量に基
づき、指定された測定温度の下限値から前記設定された
温度分解能により決まる温度範囲の温度情報(例えば量
子化後の8ビツト、0〜255の値のデータ)を有する
[Problems to be Solved by the Invention] The infrared camera used in the conventional infrared temperature measuring device as described above has thermal pixels equivalent to one screen (for example, about 256 x 2 O 3) displayed on a CRT display, and has a low temperature resolution. When set to a desired value (for example, the highest resolution is 0.01°C, and the following values can be set to any value such as 0.02°C, 0.03°C, 0.04°C, etc.), each thermal pixel emits infrared light. Based on the amount of light received, temperature information (for example, 8-bit data after quantization, data with values from 0 to 255) is provided in a temperature range determined by the set temperature resolution from the specified lower limit of the measurement temperature.

従って’tM r1分解能を最高の0.01℃/ bi
tとすると、測定可能な温度範囲は0.01℃X25B
 −2,56℃となる。いまAPI定温度の下限値を2
0℃とすると温度測定レンジは20℃〜22.55℃と
なる。しかし第9図(b)の測定による温度差は8℃で
あるので、1回の測定ではバイブ温度全域をカバーでき
ない。
Therefore, the 'tM r1 resolution is the highest of 0.01℃/bi
If t, the measurable temperature range is 0.01℃ x 25B
It becomes -2,56℃. Now set the lower limit of API constant temperature to 2
If it is 0°C, the temperature measurement range will be 20°C to 22.55°C. However, since the temperature difference in the measurement in FIG. 9(b) is 8° C., one measurement cannot cover the entire range of the vibrator temperature.

パイプ温度全域を1回の測定でカバーするために、温度
分解能を例えば0.04℃/ bitと低下させれば、
0.04℃X 25B −10,24℃の温度範囲はカ
バーできる。
In order to cover the entire pipe temperature range in one measurement, if the temperature resolution is lowered to, for example, 0.04°C/bit,
A temperature range of 0.04°C x 25B -10.24°C can be covered.

従ってapl定対象物に大きな温度差がある場合には、
赤外線カメラの温度分解能を上げて欠陥部の検出を容易
にしようとしても、赤外線カメラの1熱画素当りの温度
情報量(通常8ビツト)の制限により測定対象物全体の
測定ができず、また測定温度範囲を広げると温度分解能
が低下して欠陥部の検出が困難になるという問題点があ
った。
Therefore, if there is a large temperature difference in the apl constant object,
Even if we try to improve the temperature resolution of an infrared camera to make it easier to detect defects, it is not possible to measure the entire object due to the limited amount of temperature information per thermal pixel of the infrared camera (usually 8 bits). When the temperature range is widened, the temperature resolution decreases, making it difficult to detect defects.

この発明はかかる問題点を解決するためになされたもの
で、API定対象物に大きな温度差があっても、温度分
解能を低下させないでIIFJ定対象物全体の熱像を作
成し、その欠陥部を容易に検出できる赤外線カメラによ
る温度測定方法を得ることを目的とする。
This invention was made to solve this problem, and even if there is a large temperature difference in the API constant object, it is possible to create a thermal image of the entire IIFJ constant object without reducing the temperature resolution, and to locate the defective parts. The purpose is to obtain a temperature measurement method using an infrared camera that can easily detect temperature.

[課題を解決するための手段] この発明に係る赤外線カメラによる温度測定方法は、赤
外線カメラにより温度差の大きい測定対象物を撮像しそ
の熱像を得る場合に、所望の温度分解能によっては測定
対象物全体の温度範囲をカバーできないときに、前記温
度範囲を分割しそれぞれ所望の温度分解能で測定する複
数の第1の温度測定レンジを設定し、該設定された第1
の各温度測定レンジを切換え撮像して得られた有効熱像
を合成して第1の合成熱像を作成し、次に前記測定対象
面全体を加熱しほぼ一定の温度上昇を行わせた状態で、
前記温度上昇分に対応して前記複数の第1の温度JFJ
定レンジをシフトさせた同数の第2の温度ΔIII定レ
ンジを設定し、該設定された第2の各温度i’l)J定
しンジを切換え撮像して得られた有効熱像を合成して第
2の合成熱像を作成し、前記第2の合成熱像の熱データ
よりこれと同一撮像位置にある第1の合成熱像の熱デー
タを減算して偏差値熱像を算出し、該偏差値熱像のもつ
平均的熱データよりも突出して高い熱データを有する熱
像部を識別することにより測定対象物の欠陥部を検出す
ることができる信号処理手段を備えたものである。
[Means for Solving the Problems] In the temperature measurement method using an infrared camera according to the present invention, when an infrared camera images a measurement object with a large temperature difference and obtains a thermal image thereof, depending on the desired temperature resolution, the temperature measurement method using an infrared camera When the temperature range of the entire object cannot be covered, a plurality of first temperature measurement ranges are set for dividing the temperature range and measuring each with a desired temperature resolution, and
A first composite thermal image is created by combining the effective thermal images obtained by switching and imaging each temperature measurement range, and then heating the entire surface to be measured to raise the temperature almost constant. in,
The plurality of first temperatures JFJ correspond to the temperature increase.
The same number of second temperature ΔIII constant ranges are set by shifting the constant ranges, and the effective thermal images obtained by switching and imaging each of the set second temperature ranges are synthesized. to create a second composite thermal image, and calculate a deviation value thermal image by subtracting thermal data of a first composite thermal image located at the same imaging position from the thermal data of the second composite thermal image; The apparatus is equipped with a signal processing means capable of detecting a defective part of the object to be measured by identifying a thermal image part having significantly higher thermal data than the average thermal data of the deviation value thermal image.

[作用コ この発明においては、赤外線カメラにより温度差の大き
い測定対象物を撮像しその熱像を得る場合に、所望の温
度分解能によっては測定対象物全体の温度範囲をカバー
できないときに、赤外線カメラにより撮像された熱像信
号を処理する信号処理手段により、前記温度範囲を分割
しそれぞれ所望の温度分解能でaj定する複数の第1の
温度all+定レンジを設定し、該設定された第1の各
温度測定レンジを切換え撮像して得られた有効熱像を合
成して第1の合成熱像を作成し、次に前記測定対象面全
体を加熱しほぼ一定の温度上昇を行わせた状態で、前記
温度上昇分に対応して前記複数の第1の温度71117
定レンジをシフトさせた同数の第2の温度測定レンジを
設定し、該設定された第2の各温度n1定レンジを切換
え撮像して得られた有効熱像を合成して第2の合成熱像
を作成し、前記第2の合成熱像の熱データよりこれと同
一撮像位置にある第1の合成熱像の熱データを減算して
偏差値熱像を算出し、該偏差値熱像のもつ平均的熱デー
タよりも突出して高い熱データを有する熱像部を識別す
ることにより測定対象物の欠陥部を検出する。
[Function] In this invention, when an infrared camera is used to image a measurement object with a large temperature difference and obtain a thermal image, the infrared camera is used when the temperature range of the entire measurement object cannot be covered depending on the desired temperature resolution. A signal processing means for processing a thermal image signal imaged by divides the temperature range and sets a plurality of first temperatures all+fixed ranges each with a desired temperature resolution. A first composite thermal image is created by combining the effective thermal images obtained by switching and imaging each temperature measurement range, and then heating the entire measurement target surface to raise the temperature almost constant. , the plurality of first temperatures 71117 corresponding to the temperature increase.
The same number of second temperature measurement ranges with shifted constant ranges are set, and the effective thermal images obtained by switching and imaging each of the set second temperature n1 constant ranges are synthesized to obtain a second composite thermal image. A deviation thermal image is calculated by subtracting the thermal data of the first synthetic thermal image at the same imaging position from the thermal data of the second synthetic thermal image, and A defective portion of the object to be measured is detected by identifying a thermal image portion having significantly higher thermal data than the average thermal data.

[実施例] 第1図(a)〜(d)は本発明に係る加熱前の測定レン
ジ分割撮像とその熱画像有効範囲を示す図である。本実
施例においては、従来例の場合と同様に赤外線カメラ1
により撮像される熱画像の各画素の温度データは8ビツ
トとし、温度分解能は最高の0.01”C/ bitに
設定され、測定が可能な温度範囲は0,01℃X25B
−2,5B℃とする。この場合同図の(a) 、(b)
 、(c) 、(d)は赤外線カメラにより熱画像を得
る各測定レンジを、20″〜22.55℃、22.58
 ”〜25.11 ’C125,12@〜27.87℃
、27、i38 ”〜:90.23℃のそれぞれ重複し
ない4つの測定レンジに分割し、この分割された4つの
測定レンジを順次切換え測定対象物(本例ではバイブ4
)の赤外線熱像を撮像し、この各測定レンジにおける熱
像有効範囲をそれぞれDSC,B、Aとして示している
。そして各熱像有効範囲D−A内の熱像データは、パソ
コン2により以下に説明するように、重ね合せや減算等
の信号処理が行われ、その処理結果はCR7表示器3に
表示される。
[Example] FIGS. 1(a) to 1(d) are diagrams showing measurement range divided imaging before heating and its thermal image effective range according to the present invention. In this embodiment, as in the case of the conventional example, the infrared camera 1
The temperature data of each pixel in the thermal image captured by
-2.5B℃. In this case, (a) and (b) in the same figure
, (c) and (d) are the measurement ranges for obtaining thermal images using an infrared camera, 20'' to 22.55℃, 22.58℃.
”~25.11'C125,12@~27.87℃
, 27, i38 ”~: Divide into four non-overlapping measurement ranges of 90.23°C, and sequentially switch the four divided measurement ranges to measure the object to be measured (in this example, vibrator 4).
), and the effective range of the thermal image in each measurement range is shown as DSC, B, and A, respectively. Then, the thermal image data within each thermal image effective range D-A is subjected to signal processing such as superposition and subtraction by the computer 2 as explained below, and the processing results are displayed on the CR7 display 3. .

第2図(a)及び(b)は第1図の各Jl定レンジによ
り撮像された熱像有効範囲を重ね合せた合成画像とその
断面熱像データ値を示す図である。同図(a)において
は彼7%)定休の全体が熱像有効範囲A〜Dを重ね合せ
た合成画像によりカバーされていることを示している。
FIGS. 2(a) and 2(b) are diagrams showing a composite image obtained by superimposing the thermal image effective ranges imaged by each Jl constant range in FIG. 1, and its cross-sectional thermal image data values. In the same figure (a), it is shown that the entire fixed holiday (7%) is covered by a composite image obtained by superimposing thermal image effective ranges A to D.

また同図(b)は同図(a)のX−Y断面による各熱像
位置を横軸として、縦軸は横軸に対応した位置における
熱像データ値をそのまま示している。従ってこの熱像デ
ータ値は温度の絶対値を無視して、各温度測定レンジの
下限値(20℃、22.56℃、25.12℃、27.
68℃)をデータ値“0”として、この下限値から測定
された2進8ビツトのデータで最高を“255”とする
データ値がそのまま示されている。
In addition, in FIG. 5B, the horizontal axis represents each thermal image position on the X-Y cross section of FIG. Therefore, this thermal image data value ignores the absolute value of temperature and uses the lower limit values of each temperature measurement range (20°C, 22.56°C, 25.12°C, 27.
68° C.) as the data value “0”, and the data value with the highest value of the binary 8-bit data measured from this lower limit value as “255” is shown as is.

次に赤外線カメラ1とδP1定対象物(本例ではバイブ
4)との相互位置を固定したまま、測定対象物に含まれ
る欠陥部を検出するため、Δp1定対象物を加熱する。
Next, while the mutual positions of the infrared camera 1 and the δP1 constant object (the vibrator 4 in this example) are fixed, the Δp1 constant object is heated in order to detect a defective portion included in the measurement object.

この加熱はできるだけAFI定対象面全体を均一に一定
温度だけ上昇させるように行うことが望ましい。
It is desirable that this heating be performed so as to uniformly raise the temperature of the entire AFI target surface by a constant amount as much as possible.

第3図(a)〜(d)は本発明に係る加熱後の4−1定
レンジ分割撮像とその熱画像有効範囲を示す図である。
FIGS. 3(a) to 3(d) are diagrams showing 4-1 fixed range divided imaging after heating and its thermal image effective range according to the present invention.

第3図においては、第1図の加熱前の被apl定休の測
定対象面に均一に熱負荷を加え全体を一定温度、例えば
3℃上昇させた例を示す。この場合赤外線カメラ1の各
温度測定レンジも3℃シフトさせて、23°〜25.5
5℃、25.5B°〜28.11℃、28.12 ”〜
3.0 、67℃、30.88 ’〜33.23℃に変
更し、この変更後の各測定レンジを順次高速で切換え測
定対象物の赤外線熱像を撮像する。第3図(a)〜(d
)にこの加熱後の各温度測定レンジとこの各レンジで撮
像された熱像有効範囲り、C,B。
FIG. 3 shows an example in which a heat load is uniformly applied to the surface to be measured during the APL period before heating in FIG. In this case, each temperature measurement range of the infrared camera 1 is also shifted by 3 degrees to 23 degrees to 25.5 degrees.
5℃, 25.5B°~28.11℃, 28.12''~
3.0°C, 67°C, and 30.88' to 33.23°C, and each measurement range after the change is sequentially switched at high speed to capture an infrared thermal image of the object to be measured. Figure 3(a)-(d)
) shows each temperature measurement range after heating and the effective range of thermal images taken in each range, C and B.

Aがそれぞれ示される。本例の場合赤外線カメラ1とバ
イブ4の相互位置は固定されているので、第3図と第1
図の熱像有効範囲D−Aはバイブ4の同一位置となる。
A is shown respectively. In this example, the mutual positions of the infrared camera 1 and the vibrator 4 are fixed, so the
The thermal image effective range D-A in the figure is the same position of the vibrator 4.

第4図(a)及び(b)は第3図の各測定レンジにより
撮像された熱像有効範囲を重ね合せた合成画像とその断
面熱像データ値を示す図であり、横軸及び縦軸は第2図
と全く同一である。
FIGS. 4(a) and (b) are diagrams showing a composite image obtained by superimposing the effective range of thermal images captured by each measurement range in FIG. 3 and its cross-sectional thermal image data values, and the horizontal and vertical axes is exactly the same as in Figure 2.

第5図(a)及び(b)は、第4図(a)及び(b)ノ
熱像データから第2図(a)及び(b)の熱像データの
減算処理を示す図である。この減算処理は測定対象物が
加熱前にもっていた温度分布の影響を除去して、加熱に
より欠陥部から発生する異常温度上昇の検出を容品にす
るために行う信号処理である。
FIGS. 5(a) and 5(b) are diagrams showing the process of subtracting the thermal image data of FIGS. 2(a) and (b) from the thermal image data of FIGS. 4(a) and (b). This subtraction processing is a signal processing performed to remove the influence of the temperature distribution that the measurement object had before heating, and to detect an abnormal temperature rise occurring from a defective part due to heating.

第5図(a)は第4図(a)の各測定レンジ毎の熱像有
効範囲内の熱像データから第2図(a)の対応する同一
位置の熱像データが減算され、この減算処理後の差分値
(偏差値)による偏差値熱像が表示される。また同図(
b)は同図(a)のX−Y断面における熱偏差値が表示
される。本例の場合X−Y11′r而位置が固定される
ので、第4図(b)と第2図(b)の熱像データの偏差
値が表示されたと考えてもよい。この実施例において、
測定対象面が理想的にすべて均一に3℃上昇するように
加熱された場合は、加熱後の各温度測定レンジを3℃シ
フトさせているので、上記減算処理後の偏差値はすべて
ゼロである。しかし測定対象面をすべて均一に3℃上昇
させるように加熱することは容易でないので、もしも一
部に3.1℃とが3.2℃温度上昇した正常部があれば
、この場合上記減算処理後の熱偏差値は、0.1 ℃と
が0.2℃の温度データをもつ熱像としてCRT表示部
3に表示される。従ってl1llJ定対象而がすべて正
常部の場合は、この減算処理後の熱偏差値はほぼゼロに
近い値、又はある一定値から急激に変化しない値となる
。しがもこの場合の温度分解能はO,OL”Cに保たれ
た熱像データとなっている。その故もしもこの第5図(
a)に示される偏差値熱像において、熱偏差値が急激に
上昇する部分があれば、この部分は欠陥部であると推定
することができる。
Figure 5 (a) shows that the thermal image data at the same position corresponding to Figure 2 (a) is subtracted from the thermal image data within the thermal image effective range for each measurement range in Figure 4 (a). A deviation value thermal image based on the difference value (deviation value) after processing is displayed. Also, the same figure (
In b), the thermal deviation value in the X-Y cross section of FIG. 3(a) is displayed. In this example, since the X-Y11'r position is fixed, it may be considered that the deviation value between the thermal image data of FIG. 4(b) and FIG. 2(b) is displayed. In this example,
If the surface to be measured is ideally heated so that it rises by 3 degrees Celsius uniformly, each temperature measurement range after heating is shifted by 3 degrees Celsius, so the deviation values after the above subtraction process will all be zero. . However, it is not easy to heat all the surfaces to be measured so that the temperature rises by 3 degrees Celsius uniformly, so if there is a normal part where the temperature increases from 3.1 degrees Celsius to 3.2 degrees Celsius, in this case, the above-mentioned subtraction process will be applied. The subsequent thermal deviation value is displayed on the CRT display unit 3 as a thermal image having temperature data of 0.1°C and 0.2°C. Therefore, if all the l1llJ constant objects are normal parts, the thermal deviation value after this subtraction process will be a value close to zero, or a value that does not change rapidly from a certain constant value. However, the temperature resolution in this case is thermal image data maintained at O, OL''C. Therefore, if this figure 5 (
In the deviation value thermal image shown in a), if there is a part where the thermal deviation value increases rapidly, this part can be estimated to be a defective part.

第6図(a)〜(d)は本発明に係る加熱前後における
各flPj定レンジしの熱像有効範囲の重ね合せ合成画
像とその断面熱像データ値を示す図であり、減肉欠陥部
が存在する場合の例を示している。同図(a)及び(b
)は加熱前の状態における各測定レンジ毎の熱像有効範
囲D−Aを重ね合せた合成画像とその断面熱像データを
示す図で、それぞれ第2図(a)及び(b)と同一のも
のである。同図(C)及び(d)は熱負荷により測定対
象面全体を均一に加熱し、内域欠陥部のみに温度上昇が
大きく、その他の部分は3℃上昇した場合の各δ1j定
レンジ毎の熱像有効範囲の重ね合せ合成画像と、この合
成画像のX−Y断面における熱像データ値を示している
。同図(c)には熱像有効範囲Aの中央に欠陥部があり
、X−Y断面における同図(d)の対応する位置でも熱
像データ値が上昇していることが判る。
FIGS. 6(a) to 6(d) are diagrams showing superimposed composite images of the thermal image effective range for each flPj constant range before and after heating according to the present invention, and their cross-sectional thermal image data values, and show thinning defect areas. An example is shown in which . Figures (a) and (b)
) is a diagram showing a composite image obtained by superimposing the thermal image effective range D-A for each measurement range in the state before heating and its cross-sectional thermal image data. It is something. Figures (C) and (d) show the results for each δ1j constant range when the entire surface to be measured is uniformly heated by a heat load, and the temperature rise is large only in the internal defect area, and the other areas rise by 3°C. A superimposed composite image of the thermal image effective range and thermal image data values in the XY cross section of this composite image are shown. It can be seen that there is a defective part in the center of the effective thermal image range A in FIG. 2(c), and that the thermal image data value also increases at the corresponding position in FIG.

T57図(a)及び(b)は第6図(e)及び(d)の
熱像データから同図(a)及び(b)の熱像データの減
算処理を示す図であり、欠陥部のない場合の第5図(a
)及び(b)に対応している。第5図(a)のX−Yr
Tr面熱像には欠陥部がないので、同図(b)のデータ
偏差値はほぼゼロに近い値となっている。
T57 Figures (a) and (b) are diagrams showing the subtraction process of the thermal image data in Figures 6 (e) and (d) from the thermal image data in Figures 6 (e) and (d), and show the process of subtracting the thermal image data in Figures 6 (a) and (b). Figure 5 (a) when there is no
) and (b). X-Yr in Figure 5(a)
Since there is no defective part in the Tr plane thermal image, the data deviation value in FIG. 3(b) is almost zero.

しかし第7図(a)のX−Y断面熱像には欠陥部が含ま
れているため、同図(b)の熱闘差値には平均的な温度
上昇のほかに温度の異常上昇値が示される。従ってこの
異常上昇値から欠陥部の存在が検出できる。
However, since the X-Y cross-sectional thermal image in Figure 7(a) includes a defective part, the thermal difference value in Figure 7(b) includes abnormal temperature increases in addition to the average temperature increase. shown. Therefore, the presence of a defective portion can be detected from this abnormally increased value.

第8図(a)及び(b)は本発明による方法と従来の方
法による欠陥部を示すデータの大きさの相違を示す図で
ある。同図(a)では、本発明による熱偏差値は0.0
1℃の温度分解能により欠陥部が明確に示されるが、同
図(b)では従来の方法による熱像データ値は0.04
℃の温度分解能のため欠陥部の検出が困難であることが
示される。
FIGS. 8(a) and 8(b) are diagrams showing the difference in the size of data indicating defective portions between the method according to the present invention and the conventional method. In the same figure (a), the thermal deviation value according to the present invention is 0.0
The defect is clearly shown with a temperature resolution of 1°C, but in the same figure (b), the thermal image data value obtained by the conventional method is 0.04.
It is shown that detection of defects is difficult due to the temperature resolution of °C.

なお、上記実施例においては、測定対象物の欠陥部を検
出する目的の赤外線カメラの温度測定方法の例を示した
が、本発明は温度差が大きい、1111定対象物を高い
温度分解能により測定したい場合に、複数の分割された
温度aPI定レンジによりそれぞれ撮像された分割熱像
を合成する手法により測定対象物全体の温度分布を測定
する一般的な赤外線カメラによる温度測定方法として利
用できることは明白である。
In the above embodiment, an example of a temperature measurement method using an infrared camera for the purpose of detecting a defective part of an object to be measured was shown. It is clear that it can be used as a temperature measurement method using a general infrared camera, which measures the temperature distribution of the entire object to be measured by combining the divided thermal images taken by multiple divided temperature aPI fixed ranges, if desired. It is.

[発明の効果] 以上のようにこの発明によれば、赤外線カメラにより温
度差の大きい測定対象物を撮像しその熱像を得る場合に
、所望の温度分解能によってはall定対象物全体の温
度範囲をカバーできないときに、加熱前後における測定
対象物の温度範囲を分割しそれぞれ所望の温度分解能で
測定する複数の第1及び第2の温度δIIJ定レンジを
設定し、加熱前後において前記第1及び第2の各温度1
TP1定レンジを切換え撮像後、合成されて得られた2
つの合成熱像の偏差値熱像から周囲より突出した高い熱
データを有する熱像部を欠陥部として検出するようにし
たので、従来不可能であった温度差の大きい測定対象物
を高い温度分解能によりalll定し、その欠陥部を容
易に検出できる効果が得られる。
[Effects of the Invention] As described above, according to the present invention, when an infrared camera images an object to be measured with a large temperature difference and obtains a thermal image thereof, the temperature range of the entire object is fixed depending on the desired temperature resolution. When the temperature range of the object to be measured cannot be covered before and after heating, a plurality of first and second temperature ranges δIIJ are set to divide the temperature range of the object to be measured before and after heating, respectively, and each temperature is measured with the desired temperature resolution. 2 each temperature 1
After switching the TP1 constant range and capturing the image, the synthesized 2
Deviation value of two composite thermal images Thermal image areas with high thermal data that stand out from the surroundings are detected as defective areas from the thermal image, so it is possible to measure objects with large temperature differences with high temperature resolution, which was previously impossible. Therefore, it is possible to easily detect defective parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明に係る加熱前の測定レン
ジ分割撮像とその熱画像有効範囲を示す図、第2図(a
)及び(b)は第1図の各71P+定レンジにより撮像
された熱像有効範囲を重ね合せた合成画像とその断面熱
像データ値を示す図である。第3図(a)〜(d)は本
発明に係る加熱後のΔt1定レンジ分割撮像とその熱画
像有効範囲を示す図である。第4図(a)及び(b)は
第3図の各測定レンジにより撮像された熱像有効範囲を
重ね合せた合成画像とその断面熱像データを示す図、第
5図(a)及び(b)はTS4図(a)及び(b)の熱
像データから第2図(a)及び(b)の熱像データの減
算処理を示す図、第6図(a)〜(d)は本発明に係る
加熱前後における各測定レンジ毎の熱像有効範囲の重ね
合せ合成画像とその断面熱像データ値を示す図、第7図
(a)及び(b)は第6図(c)及び(d)の熱像デー
タから同図(a)及び(b)熱像データの減算処理を示
す図、第8図(a)及び(b)は本発明による方法と従
来の方法による欠陥部を示すデータの大きさの相違を示
す図、第9図(a)は−膜内な赤外線カメラによる温度
測定装置の構成図、第9図(b)は同図(a)の温度測
定装置により測定された温度分布例を示す図である。 図において、1は赤外線カメラ、2はパソコン、3はC
RT表示器、4はパイプである。
Figures 1 (a) to (d) are diagrams showing the measurement range divided imaging before heating according to the present invention and its thermal image effective range, and Figure 2 (a)
) and (b) are diagrams showing a composite image in which the thermal image effective ranges imaged by each 71P+fixed range in FIG. 1 are superimposed, and the cross-sectional thermal image data values thereof. FIGS. 3(a) to 3(d) are diagrams showing the Δt1 constant range divided imaging after heating and the effective thermal image range thereof according to the present invention. Figures 4 (a) and (b) are diagrams showing a composite image obtained by superimposing the effective thermal image range taken by each measurement range in Figure 3 and its cross-sectional thermal image data, and Figures 5 (a) and ( b) is a diagram showing the subtraction process of the thermal image data of Figures 2 (a) and (b) from the thermal image data of TS4 Figures (a) and (b), and Figures 6 (a) to (d) are from this book. Figures 7(a) and 7(b) are diagrams showing superimposed composite images of the effective thermal image range for each measurement range before and after heating and their cross-sectional thermal image data values before and after heating according to the invention, and FIGS. 6(c) and ( Figures 8(a) and 8(b) show the subtraction process of the thermal image data from the thermal image data of d), and Figures 8(a) and 8(b) show defective parts according to the method according to the present invention and the conventional method. Figure 9(a) is a diagram showing the difference in data size, and Figure 9(a) is a configuration diagram of a temperature measuring device using an infrared camera inside the membrane. FIG. 3 is a diagram showing an example of temperature distribution. In the figure, 1 is an infrared camera, 2 is a computer, and 3 is a C
RT display, 4 is a pipe.

Claims (1)

【特許請求の範囲】[Claims]  赤外線カメラにより温度差の大きい測定対象物を撮像
しその熱像を得る場合に、所望の温度分解能によっては
測定対象物全体の温度範囲をカバーできないときに、前
記温度範囲を分割しそれぞれ所望の温度分解能で測定す
る複数の第1の温度測定レンジを設定し、該設定された
第1の各温度測定レンジを切換え撮像して得られた有効
熱像を合成して第1の合成熱像を作成し、次に前記測定
対象面全体を加熱しほぼ一定の温度上昇を行わせた状態
で、前記温度上昇分に対応して前記複数の第1の温度測
定レンジをシフトさせた同数の第2の温度測定レンジを
設定し、該設定された第2の各温度測定レンジを切換え
撮像して得られた有効熱像を合成して第2の合成熱像を
作成し、前記第2の合成熱像の熱データよりこれと同一
撮像位置にある第1の合成熱像の熱データを減算して偏
差値熱像を算出し、該偏差値熱像のもつ平均的熱データ
よりも突出して高い熱データを有する熱像部を識別する
ことにより測定対象物の欠陥部を検出することを特徴と
する赤外線カメラによる温度測定方法。
When capturing an object to be measured with a large temperature difference and obtaining a thermal image using an infrared camera, if the temperature range of the entire object cannot be covered depending on the desired temperature resolution, the temperature range can be divided and the desired temperature can be obtained for each object. A first composite thermal image is created by setting a plurality of first temperature measurement ranges for measuring with resolution, and synthesizing the effective thermal images obtained by switching and imaging each of the set first temperature measurement ranges. Then, with the entire surface to be measured heated to a nearly constant temperature rise, the same number of second temperature measurement ranges are set by shifting the plurality of first temperature measurement ranges corresponding to the temperature rise. A temperature measurement range is set, and a second composite thermal image is created by combining the effective thermal images obtained by switching and imaging each of the second temperature measurement ranges set, and creating a second composite thermal image. A deviation value thermal image is calculated by subtracting the thermal data of a first composite thermal image located at the same imaging position from the thermal data of 1. A method for measuring temperature using an infrared camera, characterized in that a defective part of an object to be measured is detected by identifying a thermal image part having a heat image.
JP33653089A 1989-12-27 1989-12-27 Temperature measurement method with infrared camera Expired - Fee Related JPH0663937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33653089A JPH0663937B2 (en) 1989-12-27 1989-12-27 Temperature measurement method with infrared camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33653089A JPH0663937B2 (en) 1989-12-27 1989-12-27 Temperature measurement method with infrared camera

Publications (2)

Publication Number Publication Date
JPH03197828A true JPH03197828A (en) 1991-08-29
JPH0663937B2 JPH0663937B2 (en) 1994-08-22

Family

ID=18300087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33653089A Expired - Fee Related JPH0663937B2 (en) 1989-12-27 1989-12-27 Temperature measurement method with infrared camera

Country Status (1)

Country Link
JP (1) JPH0663937B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138205A (en) * 1995-11-15 1997-05-27 Agency Of Ind Science & Technol Detection method for flaw of material by infrared thermography
JP2013250183A (en) * 2012-06-01 2013-12-12 Jfe Steel Corp Temperature measurement system and temperature measurement method
JP2014202528A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Temperature measuring device and temperature measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138205A (en) * 1995-11-15 1997-05-27 Agency Of Ind Science & Technol Detection method for flaw of material by infrared thermography
JP2013250183A (en) * 2012-06-01 2013-12-12 Jfe Steel Corp Temperature measurement system and temperature measurement method
JP2014202528A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Temperature measuring device and temperature measuring method

Also Published As

Publication number Publication date
JPH0663937B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JP2004112802A (en) Digital image sensor for detecting defective pixel and the method
JP2005016995A (en) Infrared structure diagnosis method
JPH0591411A (en) Image processor
CN107248151B (en) Intelligent liquid crystal display detection method and system based on machine vision
JPH03197828A (en) Temperature measuring method by infrared camera
JPH09101236A (en) Method and apparatus for detecting defect of display
JPH1031730A (en) Calibration method
JP3427230B2 (en) Image processing device
JP3127598B2 (en) Method for extracting density-varying constituent pixels in image and method for determining density-fluctuation block
JPH0682377A (en) Appearance inspecting device of semiconductor
JPH05307013A (en) Inspecting method using thermographic device
JPH08278109A (en) Non-contact displacement amount measuring device
JP2711643B2 (en) Apparatus and method for detecting surface flaw of inspection object
JP3807338B2 (en) Image processing device
JP2004170374A (en) Apparatus and method for detecting surface defect
JP3829024B2 (en) Display screen inspection method and apparatus
JPH0979946A (en) Inspection device for display device
JP3196122B2 (en) Imaging device
JP2747396B2 (en) Appearance inspection equipment for electronic components
JPH0544982B2 (en)
JP2003057146A (en) Method and device for evaluating color display device
JPS6096088A (en) Defect detector of shaft symmetrical object
JPH03173292A (en) Color picture signal evaluation method
JP3915753B2 (en) Image detection device
JPS63214642A (en) Cracking progress tracking device for crack testing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees