JPH03197678A - Method for synthesizing cubic boron nitride - Google Patents

Method for synthesizing cubic boron nitride

Info

Publication number
JPH03197678A
JPH03197678A JP29423289A JP29423289A JPH03197678A JP H03197678 A JPH03197678 A JP H03197678A JP 29423289 A JP29423289 A JP 29423289A JP 29423289 A JP29423289 A JP 29423289A JP H03197678 A JPH03197678 A JP H03197678A
Authority
JP
Japan
Prior art keywords
substrate
boron nitride
reaction chamber
gas
cubic boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29423289A
Other languages
Japanese (ja)
Inventor
Hajime Takimoto
肇 滝本
Toshiaki Oimizu
利明 生水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP29423289A priority Critical patent/JPH03197678A/en
Publication of JPH03197678A publication Critical patent/JPH03197678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To synthesize the cubic boron nitride from an inexpensive boron source with a device of simple structure by using a boron atom-contg. solid and a nitrogen atom-contg. gas as the raw material and depositing cubic boron nitride on the surface of a substrate heated to a specified temp. by a microwave electroless discharge. CONSTITUTION:The substrate 20 consisting of an Si wafer is placed on a susceptor 19 in a reaction chamber 15, and an NaBH4 powder 21 is provided close to the substrate 20. The reaction chamber 1 is evacuated through an exhaust pipe 22, and gaseous NH3 and gaseous N2 are supplied to the reaction chamber 1 respectively from a gaseous NH3 feeder 14 and a gaseous N2 feeder 16 to control the pressure to a specified value. An electroless discharge is then generated in the reaction chamber 1 by a microwave cavity 17 connected to a microwave oscillator 18 to heat the substrate 20 to 300-1300 deg.C, and a film is formed on the surface of the substrate 20. Consequently, excellent c-BN film is synthesized by using the inexpensive and safe raw material and simple reactor under wide synthetic conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、切削工具等の工具材料やヒートシンク等の電
子材料となる立方晶窒化硼素の合成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for synthesizing cubic boron nitride, which is used as a tool material for cutting tools and the like, and as an electronic material for heat sinks and the like.

〔従来の技術〕[Conventional technology]

立方晶窒化硼素(c−BN)は、ダイヤモンドに次ぐ硬
さと熱伝動率を有し、鉄族合金に対して極めて化学的に
安定であり、切削工具、金型等の耐久性向上への応用あ
るいは半導体素子、発光素子等への応用など、幅広い用
途が考えられる。
Cubic boron nitride (c-BN) has hardness and thermal conductivity second only to diamond, and is extremely chemically stable against iron group alloys, making it suitable for use in improving the durability of cutting tools, molds, etc. Alternatively, a wide range of uses can be considered, such as application to semiconductor devices, light emitting devices, etc.

従来、マイクロ波を用いたc−BNの合成方法として、
例えば特開昭62−205277号公報に開示される技
術が知られている。かかる合成方法は、第4図または第
5図に示す反応装置を用いて行う。
Conventionally, as a method for synthesizing c-BN using microwaves,
For example, a technique disclosed in Japanese Unexamined Patent Publication No. 62-205277 is known. Such a synthetic method is carried out using a reaction apparatus shown in FIG. 4 or FIG. 5.

第4図および第5図において、1で示すのは硼素原子含
有ガスおよび窒素原子含有ガス供給装置で、反応室2内
にそのガスを供給するものである。
In FIGS. 4 and 5, reference numeral 1 indicates a boron atom-containing gas and nitrogen atom-containing gas supply device, which supplies the gases into the reaction chamber 2. In FIG.

また、このガス供給装置1とは別個に、反応室2内に水
素ガスを供給する水素ガス供給装置3が設けられている
。反応室2の外側には、ウェーブガイド4が設置されて
おり、このウェーブガイド4はマイクロ波発振器5に接
続されている。一方、反応室2内にはサセプター6が設
置されており、このサセプター6上には、基板7が載置
されている。また、反応室2には、反応室2内を排気す
る排気装置8が接続されている。9は排気装置8に設け
られた排気口である。10,11.12は、それぞれコ
ックを示している。
Furthermore, a hydrogen gas supply device 3 for supplying hydrogen gas into the reaction chamber 2 is provided separately from the gas supply device 1 . A waveguide 4 is installed outside the reaction chamber 2, and this waveguide 4 is connected to a microwave oscillator 5. On the other hand, a susceptor 6 is installed in the reaction chamber 2, and a substrate 7 is placed on the susceptor 6. Further, an exhaust device 8 that exhausts the inside of the reaction chamber 2 is connected to the reaction chamber 2 . 9 is an exhaust port provided in the exhaust device 8. 10, 11, and 12 each indicate a cock.

なお、第5図に示す反応装置では、反応室2の外周に抵
抗加熱炉13が設置されている。これは、第5図に示す
反応装置では、基板7がマイクロ波プラズマ外に存在す
るため、基板7を加熱すべく設けたものである。
In the reaction apparatus shown in FIG. 5, a resistance heating furnace 13 is installed around the outer periphery of the reaction chamber 2. This is because in the reaction apparatus shown in FIG. 5, the substrate 7 is present outside the microwave plasma, so it is provided to heat the substrate 7.

第4図に示す反応装置によれば、各ガス供給装置1およ
び3から全反応ガスを混合して反応室2内に導入し、マ
イクロ波無電極放電中を通過させ、300〜1300℃
に加熱した基板7表面にC−BNを析出させる。
According to the reaction apparatus shown in FIG. 4, all the reaction gases are mixed from each gas supply device 1 and 3, introduced into the reaction chamber 2, passed through a microwave electrodeless discharge, and heated to a temperature of 300 to 1300°C.
C-BN is deposited on the surface of the substrate 7 heated to .

一方、第5図に示す反応装置によれば、まず水素ガスの
みをマイクロ波無電極放電中を通過させ、その後に硼素
原子含有ガスと窒素原子含有ガスとを混合して反応室2
内に導入し、基板7表面にC−BNを析出させる。
On the other hand, according to the reaction apparatus shown in FIG. 5, first, only hydrogen gas is passed through the microwave electrodeless discharge, and then a boron atom-containing gas and a nitrogen atom-containing gas are mixed to form a reaction chamber 2.
C-BN is introduced into the substrate 7 to deposit C-BN on the surface of the substrate 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の合成方法では、反応ガス濃度及び比率、
基板加熱温度、反応系の圧力などの合成条件が狭く、ま
た成膜状態の再現性が良くないという欠点を有していた
。さらに、従来技術により成膜した膜は、立方晶と六方
晶の混晶体としてしか得られず性能が良くなかった。
However, in conventional synthesis methods, the concentration and ratio of reactant gases,
The synthesis conditions such as substrate heating temperature and reaction system pressure are narrow, and the reproducibility of the film formation state is poor. Furthermore, films formed by conventional techniques were obtained only as a mixed crystal of cubic and hexagonal crystals, and did not have good performance.

c−BN薄膜を再現性よく形成させるためには、反応物
としてc−BHのSP3結合に近い結合を有し、かつエ
ネルギー的にも有利な構造のものを使用することが必要
である。ここで、硼素源として硼素原子含有ガスを用い
ると、原料が限定されるとともに、構造的、エネルギー
的に有利なガスはほとんどない、そして、硼素原子含有
ガスであるBJ4. BCf i BFs+ BBr3
等は一般的でなく、高価でしかも危険なガスである。
In order to form a c-BN thin film with good reproducibility, it is necessary to use a reactant having a bond close to the SP3 bond of c-BH and having an advantageous structure in terms of energy. Here, when a boron atom-containing gas is used as a boron source, the raw materials are limited, and there are almost no gases that are structurally and energetically advantageous. BCf i BFs+ BBr3
These gases are not common, expensive, and dangerous.

また、硼素原子含有ガスの方が窒素原子含有ガスに比べ
て分解し易い場合が多いため、装置内に二重円筒管を設
け、硼素原子含有ガスを基板直前に導入する方式を取る
ことになり、反応管の構造が複雑になるという欠点を有
していた。
In addition, since boron atom-containing gas is often more easily decomposed than nitrogen atom-containing gas, it is necessary to install a double cylindrical tube in the equipment and introduce the boron atom-containing gas just before the substrate. However, this method had the disadvantage that the structure of the reaction tube was complicated.

本発明は、かかる従来の問題点に鑑みてなされたもので
、化学気相析出法において、立方晶形成に有利で、しか
も比較的入手し易く、安価な硼素源として硼素原子含有
固体を用い、良好なc−BNを合成でき、かつ反応装置
の構造が簡単となるc−BNの合成方法を提供すること
を目的とする。
The present invention has been made in view of such conventional problems, and uses a boron atom-containing solid as a boron source that is advantageous for cubic crystal formation and is relatively easy to obtain and inexpensive in a chemical vapor deposition method. It is an object of the present invention to provide a method for synthesizing c-BN that can synthesize good c-BN and has a simple structure of a reaction apparatus.

〔課題を解決するための手段] 上記目的を達成するために、本発明は、マイクロ波無電
極放電により、300〜1300℃に加熱した基板表面
にc−BNを析出させるにあたり、原料として硼素原子
含有固体および窒素原子含有ガスを用いた。
[Means for Solving the Problems] In order to achieve the above object, the present invention uses boron atoms as a raw material in depositing c-BN on the surface of a substrate heated to 300 to 1300°C by microwave electrodeless discharge. A solid containing nitrogen atoms and a gas containing nitrogen atoms were used.

また、原料として硼素原子含有固体、窒素原子含有ガス
および水素ガスまたは不活性ガスを用いてもよい、さら
に、原料として硼素原子含有固体、窒素原子含有ガス、
水素ガスおよび不活性ガスを用いてもよい。
In addition, boron atom-containing solids, nitrogen atom-containing gases, hydrogen gas, or inert gases may be used as raw materials; furthermore, boron atom-containing solids, nitrogen atom-containing gases,
Hydrogen gas and inert gas may also be used.

〔作 用〕[For production]

上記構成のc−BNの合成方法においては、硼素原子含
有固体をマイクロ波による誘導加熱またはマイクロ波導
波管とは独立に設置した抵抗加熱により蒸発2気化させ
、これをマイクロ波プラズマに通じ励起状態の硼素原子
含有ガスを生成させる。これを励起状態の窒素ガスと加
熱した基板表面近傍で熱分解および反応させることで3
00〜1300℃に加熱した基板上に所望のc−BNを
析出させる。
In the method for synthesizing c-BN with the above configuration, a boron atom-containing solid is evaporated by induction heating using microwaves or resistance heating installed independently of a microwave waveguide, and then passed through microwave plasma to bring it into an excited state. A gas containing boron atoms is generated. This is thermally decomposed and reacted with excited nitrogen gas near the heated substrate surface.
Desired c-BN is deposited on a substrate heated to 00 to 1300°C.

本発明では、硼素源として硼素原子含有固体を使用する
ので、構造的またはエネルギー的にもC−BN膜形成に
有利な原料B、0.や入手が容易で安価な原料H3BO
3+ NaB)Inを成膜に用いることができ、再現性
の良い成膜が実現できる。さらに、励起方式としてマイ
クロ波プラズマを用いていることから、空間的エネルギ
ー密度が高く、立方晶形成に寄与するようなイオンを多
量に生成させることができる。
In the present invention, since a boron atom-containing solid is used as a boron source, raw material B, which is structurally and energetically advantageous for forming a C-BN film, is 0. and easily available and inexpensive raw material H3BO.
3+ NaB)In can be used for film formation, and film formation with good reproducibility can be realized. Furthermore, since microwave plasma is used as the excitation method, it is possible to generate a large amount of ions that have a high spatial energy density and contribute to the formation of cubic crystals.

(実施例) (第1実施例) 第1図は、本実施例で用いた反応装置を示すもので、1
4で示すのはNHsHeガス供給装置反応室15内にN
113ガスを供給するものである。また、二〇N)13
ガス供給装置14とは別個に、反応室15内にN!ガス
を供給するN2ガス供給装置16が設けられている0反
応室15の外周には、マイクロ波キャビティ17が設置
されており、このマイクロ波キャビティ17はマイクロ
波発振器1日に接続されている。一方、反応室15内に
は、サセプター19が設置されており、このサセプター
19上には、Siウェハからなる基板20が載置されて
いる。さらに、サセプター19上には、基@20の近傍
にNaBHa粉末(硼素原子含有固体)21が設けられ
ている。22で示すのは排気管である。
(Example) (First Example) Figure 1 shows the reaction apparatus used in this example.
4 indicates N in the reaction chamber 15 of the NHsHe gas supply device.
113 gas. Also, 20N) 13
Separately from the gas supply device 14, N! is supplied into the reaction chamber 15. A microwave cavity 17 is installed around the outer periphery of the reaction chamber 15 in which an N2 gas supply device 16 for supplying gas is provided, and this microwave cavity 17 is connected to a microwave oscillator. On the other hand, a susceptor 19 is installed in the reaction chamber 15, and a substrate 20 made of a Si wafer is placed on the susceptor 19. Furthermore, NaBHa powder (solid containing boron atoms) 21 is provided on the susceptor 19 near the group @20. Reference numeral 22 indicates an exhaust pipe.

このような構成の反応装置により、c−BNliの形成
を行った。
c-BNli was formed using a reaction apparatus having such a configuration.

排気袋f(図示省略)により反応系を減圧にし、NH,
ガスおよびN、ガスの流速をそれぞれ5cc/winお
よび100cc/■inとし、反応系内の圧力を20T
orrとした0次に、2450MH2のマイクロ波発振
器18により無電極放電を発生させ、基板20の温度を
850〜950℃に上昇させ、3時間反応を継続した。
The reaction system is depressurized using an exhaust bag f (not shown), and NH,
The flow rates of gas, N, and gas were 5 cc/win and 100 cc/inch, respectively, and the pressure in the reaction system was 20 T.
orr, an electrodeless discharge was generated using a 2450 MH2 microwave oscillator 18, the temperature of the substrate 20 was raised to 850 to 950°C, and the reaction was continued for 3 hours.

結果として、基板200表面に2μ−の厚さのc−BN
IAが成膜された。
As a result, a 2μ-thick c-BN layer is deposited on the surface of the substrate 200.
IA was deposited.

このc−BN膜をFT−IR(フーリエ変換赤外線吸収
スペクトル)で調べたところ、101050C’に顕著
な吸収を示し、c−BN膜の形成を確認できた。
When this c-BN film was examined by FT-IR (Fourier transform infrared absorption spectrum), it showed remarkable absorption at 101050C', confirming the formation of a c-BN film.

(第2実施例) 第2図は、本実施例で用いた反応装置を示すもので、2
3で示すのはH8ガス供給装置であり、このhガス導入
系の途中にマイクロ波発振器18が設置されている。ま
た、反応室15内におけるサセプター19の近傍には、
t(JOi  (硼素原子含有固体)24が設けられて
いる。そして、反応室15外におけるHJOs 24の
対応位置には、Wフィラメント25が設置されている。
(Second Example) Figure 2 shows the reaction apparatus used in this example.
3 is an H8 gas supply device, and a microwave oscillator 18 is installed in the middle of this H gas introduction system. In addition, near the susceptor 19 in the reaction chamber 15,
t(JOi (solid containing boron atoms)) 24 is provided. A W filament 25 is provided at a position corresponding to the HJOs 24 outside the reaction chamber 15.

さらに、反応室15の外周には、基板20を囲繞するよ
うに電気炉26が設置されている。
Further, an electric furnace 26 is installed around the outer periphery of the reaction chamber 15 so as to surround the substrate 20 .

このような構成の反応装置により、c−BN膜の形成を
行った。
A c-BN film was formed using a reaction apparatus having such a configuration.

排気装置(図示省略)により反応系を減圧にし、次にH
,BO,24をWフィラメント25で数百度に抵抗加熱
した。そして、Htガス(流速100cc/5in)を
励起、分解させ、これとMHIガス(流速5cc/5i
n)との混合気体を、電気炉26で850〜950℃に
加熱した基板20上に導入した。3時間成膜を行ったと
ころ、基板200表面に2μmの厚さのc−BN膜が成
膜された。
The reaction system is reduced in pressure using an exhaust device (not shown), and then H
, BO, 24 was resistance heated to several hundred degrees with a W filament 25. Then, Ht gas (flow rate 100cc/5in) is excited and decomposed, and this and MHI gas (flow rate 5cc/5i
A mixed gas with n) was introduced onto the substrate 20 which was heated to 850 to 950°C in an electric furnace 26. After 3 hours of film formation, a 2 μm thick c-BN film was formed on the surface of the substrate 200.

このc−BN膜をFT−IRで調べたところ、1050
cm−1に顕著な吸収を示し、c−BNW4の形成を確
認できた。
When this c-BN film was examined by FT-IR, it was found that 1050
A remarkable absorption was observed at cm-1, and the formation of c-BNW4 was confirmed.

(第3実施例) 第3図は、本実施例で用いた反応装置を示すもので、2
7で示すのはHeガス供給装置である。基板20上には
、B20.粉末(硼素原子含有固体)28が均一に散布
されている。
(Third Example) Figure 3 shows the reaction apparatus used in this example.
7 is a He gas supply device. On the substrate 20, B20. Powder (solid containing boron atoms) 28 is uniformly dispersed.

このような構成の反応装置により、c−BN膜の形成を
行った。
A c-BN film was formed using a reaction apparatus having such a configuration.

排気装置(図示省略)により反応系を減圧にし、次にN
HKガス(流速5cc/win )とHeガス(流速1
00 cc/win )との混合ガスを反応系にフロー
させ、基板20の近傍でマイクロ波を発振させ、無電極
放電により反応物を励起1分解2反応させるとともに、
基板20を誘導加熱した。3時間成膜を行った結果、基
板20の表面に1.5μ論の厚さのc−BNが析出され
た。
The reaction system was reduced in pressure using an exhaust device (not shown), and then N
HK gas (flow rate 5cc/win) and He gas (flow rate 1
00 cc/win) is flowed into the reaction system, microwaves are oscillated near the substrate 20, and the reactants are excited, decomposed, and reacted by electrodeless discharge.
The substrate 20 was heated by induction. As a result of film formation for 3 hours, c-BN with a thickness of 1.5 μm was deposited on the surface of the substrate 20.

これをFT−I Rで調べたところ、1050c+*−
’に顕著な吸収を示し、c−BNII@の形成を確認で
きた。
When I checked this with FT-IR, it was 1050c++-
', and the formation of c-BNII@ was confirmed.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明のc−BNの合成方法によれば、
これまではダイヤモンドと同様に超高圧。
As described above, according to the c-BN synthesis method of the present invention,
Until now, it was under ultra-high pressure like diamond.

高温化でしか作成することができなかったc−BNが、
安価で安全な材料を用いて、広い合成条件の下で良好に
合成でき、しかも反応装置の構造を簡単にすることがで
きる。
c-BN, which could only be created at high temperatures,
It can be successfully synthesized using inexpensive and safe materials under a wide range of synthesis conditions, and the structure of the reactor can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図まではそれぞれ本発明に係るc−BN
の合成方法の第1から第3実施例で用いた反応装置を示
す概略構成図、第4図および第5図はそれぞれ従来法で
用いた反応装置を示す概略構成図である。 14・・・NH3ガス供給装置 15・・・反応室 16・・・N2ガス供給装置 18・・・マイクロ波発振器 20・・・基板 21−NaB)In粉末 23・・・Hヨガス供給装置 24・・・)lsBOs 26・・・電気炉 27・・・Heガス供給装置 28・・・B20.粉末
1 to 3 are c-BNs according to the present invention, respectively.
FIGS. 4 and 5 are schematic diagrams showing the reaction apparatuses used in the first to third examples of the synthesis method, and FIGS. 4 and 5 are schematic diagrams showing the reaction apparatuses used in the conventional method, respectively. 14...NH3 gas supply device 15...Reaction chamber 16...N2 gas supply device 18...Microwave oscillator 20...Substrate 21-NaB)In powder 23...H Yogas supply device 24. ...)lsBOs 26...Electric furnace 27...He gas supply device 28...B20. powder

Claims (4)

【特許請求の範囲】[Claims] (1) 硼素原子含有固体および窒素原子含有ガスを原
料として用い、マイクロ波無電極放電により、300〜
1300℃に加熱した基板表面に立方晶窒化硼素を析出
させることを特徴とする立方晶窒化硼素の合成方法。
(1) Using a boron atom-containing solid and a nitrogen atom-containing gas as raw materials, 300~
A method for synthesizing cubic boron nitride, which comprises depositing cubic boron nitride on the surface of a substrate heated to 1300°C.
(2) 硼素原子含有固体、窒素原子含有ガスおよび水
素ガスを原料として用い、マイクロ波無電極放電により
、300〜1300℃に加熱した基板表面に立方晶窒化
硼素を析出させることを特徴とする立方晶窒化硼素の合
成方法。
(2) Cubic boron nitride is deposited on a substrate surface heated to 300 to 1300°C by microwave electrodeless discharge using a boron atom-containing solid, a nitrogen atom-containing gas, and hydrogen gas as raw materials. Synthesis method of crystalline boron nitride.
(3) 硼素原子含有固体、窒素原子含有ガスおよび不
活性ガスを原料として用い、マイクロ波無電極放電によ
り、300〜1300℃に加熱した基板表面に立方晶窒
化硼素を析出させることを特徴とする立方晶窒化硼素の
合成方法。
(3) Using a boron atom-containing solid, a nitrogen atom-containing gas, and an inert gas as raw materials, cubic boron nitride is deposited on a substrate surface heated to 300 to 1300°C by microwave electrodeless discharge. Synthesis method of cubic boron nitride.
(4) 硼素原子含有固体、窒素原子含有ガス、水素ガ
スおよび不活性ガスを原料として用い、マイクロ波無電
極放電により、300〜1300℃に加熱した基板表面
に立方晶窒化硼素を析出させることを特徴とする立方晶
窒化硼素の合成方法。
(4) Using a boron atom-containing solid, a nitrogen atom-containing gas, hydrogen gas, and an inert gas as raw materials, cubic boron nitride is deposited on a substrate surface heated to 300 to 1300°C by microwave electrodeless discharge. Characteristic method for synthesizing cubic boron nitride.
JP29423289A 1989-09-25 1989-11-13 Method for synthesizing cubic boron nitride Pending JPH03197678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29423289A JPH03197678A (en) 1989-09-25 1989-11-13 Method for synthesizing cubic boron nitride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-248337 1989-09-25
JP24833789 1989-09-25
JP29423289A JPH03197678A (en) 1989-09-25 1989-11-13 Method for synthesizing cubic boron nitride

Publications (1)

Publication Number Publication Date
JPH03197678A true JPH03197678A (en) 1991-08-29

Family

ID=26538717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29423289A Pending JPH03197678A (en) 1989-09-25 1989-11-13 Method for synthesizing cubic boron nitride

Country Status (1)

Country Link
JP (1) JPH03197678A (en)

Similar Documents

Publication Publication Date Title
JPS643948B2 (en)
US20050255245A1 (en) Method and apparatus for the chemical vapor deposition of materials
JPH05254808A (en) Preparation of boron nitride
EP0334791A1 (en) Process for the preparation of silicon nitride
EP0502657B1 (en) Improved apparatus for producing diamonds by chemical vapor deposition and articles produced thereform
JPH03197678A (en) Method for synthesizing cubic boron nitride
JPS62265198A (en) Method for synthesizing diamond
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPS61149478A (en) Production of boron nitride film of hexagonal or cubic crystal
JPH0481552B2 (en)
JPH02262324A (en) X-ray transmitting film and its manufacture
JPS63256596A (en) Method for synthesizing diamond in vapor phase
JPS6369973A (en) Production of cubic boron nitride film
JPS60826A (en) Method and apparatus for manufacturing ultrafine particle
JPS63156009A (en) Synthesis of fine diamond powder
KR100280116B1 (en) Method for producing diamond with liquid organic compound as precursor
JP2615409B2 (en) Synthesis of boron nitride by pyrolysis
JPH04341566A (en) Method for synthesizing cubic boron nitride
JPH0499871A (en) Synthetic method for cubic carbon nitride
JPH03111573A (en) Method for synthesizing cubic boron nitride
JPS63117995A (en) Device for synthesizing diamond in vapor phase
JPH04154970A (en) Method for synthesizing cubic boron nitride
JPH03223463A (en) Synthetic method for cubic boron nitride
JPS5869705A (en) Method and apparatus for preparation of sintered hard silicon nitride of high purity
JPH01153511A (en) Production of aluminum nitride