JPH03197663A - Surface coated sintered hard alloy and its production - Google Patents

Surface coated sintered hard alloy and its production

Info

Publication number
JPH03197663A
JPH03197663A JP33730889A JP33730889A JPH03197663A JP H03197663 A JPH03197663 A JP H03197663A JP 33730889 A JP33730889 A JP 33730889A JP 33730889 A JP33730889 A JP 33730889A JP H03197663 A JPH03197663 A JP H03197663A
Authority
JP
Japan
Prior art keywords
cemented carbide
film
hard alloy
coated
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33730889A
Other languages
Japanese (ja)
Other versions
JPH0737665B2 (en
Inventor
Yuji Chiba
千葉 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP33730889A priority Critical patent/JPH0737665B2/en
Publication of JPH03197663A publication Critical patent/JPH03197663A/en
Publication of JPH0737665B2 publication Critical patent/JPH0737665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce the surface coated sintered hard alloy having excellent wear resistance and oxidation resistance by specifying the bias voltage to be impressed to the sintered hard alloy and a reactive gaseous pressure at the time of forming a nitride film on the sintered hard alloy by an ion plating method. CONSTITUTION:A substrate 14 (sintered hard alloy) is mounted on a turn table 12 in a reaction vessel 10 and an evaporating source 16 (Cr) is provided on the surround side wall of the reaction vessel 10. The pressure in the reaction vessel 10 is evacuated through a port 20 to about >=1X10<-5>Torr. Gaseous nitrogen is then introduced from a reactive gas supplying port 18 to attain 10X10<-3>Torr pressure. After the substrate is heated, about 70A current is passed to the evaporating source 16 to impress -50 to -800V bias voltage to the substrate 14. The chromium nitride of about 0.2 to 20mu film thickness is formed on the substrate 14. The surface coated sintered hard alloy coated with the chromium nitride film having the crystal structure which consists of the deposited layer of a single CrN layer and has the max. intensity in X-ray diffraction measurement on the (220) face is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面被覆超硬合金及びその製造方法に間し、
特に、耐摩耗性、耐酸化性、耐溶着性が要求される切削
用及び耐摩耗部品用に最適な表面被覆超硬合金及びその
製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a surface-coated cemented carbide and a method for manufacturing the same,
In particular, the present invention relates to a surface-coated cemented carbide that is optimal for cutting and wear-resistant parts that require wear resistance, oxidation resistance, and welding resistance, and a method for producing the same.

(従来の技術) Ti、Zr、Hf、■、Nb、Ta、Cr、Mo、Wの
炭化物、窒化物、酸化物の一種またはそれ以上の混合物
もしくは固溶体を主として鉄属金属で結合したいわゆる
超硬合金を母材として、表面に母材より耐摩耗性に富む
Ti、Zr、Hfの炭化物、窒化物、炭窒化物を数μm
の厚さに被覆したいわゆるコーティングチップは、母材
の靭性と、表面被覆層の耐摩耗性を兼ね備えており、切
削工具としては、従来の超硬合金より優れた切削性能を
有することは広く知られた事実である。
(Prior art) So-called cemented carbides are made by bonding mixtures or solid solutions of one or more of carbides, nitrides, and oxides of Ti, Zr, Hf, ■, Nb, Ta, Cr, Mo, and W mainly with ferrous metals. The alloy is used as a base material, and carbides, nitrides, and carbonitrides of Ti, Zr, and Hf, which have higher wear resistance than the base material, are coated on the surface with a thickness of several μm.
The so-called coated chips, which are coated to a thickness of It is a fact that

しかし、切削材及び切削方法の進歩にともなって更に高
性能、長寿命化を目的に改良された切削工具が要望され
ている。
However, with advances in cutting materials and cutting methods, there is a demand for improved cutting tools with the aim of achieving even higher performance and longer life.

これらの要求に対して、最近、炭化物及び窒化物の単層
膜を用いるのではなく、材料の特徴を活かした使い方が
なされている。例えば、TiC被覆は、硬度が高いこと
から耐フランク摩耗はあるが、耐クレータ摩耗に対して
劣る欠点がある。また、T i N被膜は、硬度が低い
ことから耐フランク摩耗に対して劣るが、化学的安定性
が大きいことから耐クレータ摩耗に優れている。おのお
のの特徴を活かすため、TiC+TiN+Ti (C。
In response to these demands, recently, instead of using single-layer films of carbides and nitrides, efforts have been made to take advantage of the characteristics of the materials. For example, TiC coating has high hardness and therefore has flank wear resistance, but has the disadvantage of poor crater wear resistance. Further, the T i N coating has low hardness and therefore is inferior in flank wear resistance, but has high chemical stability and therefore is excellent in crater wear resistance. In order to take advantage of the characteristics of each, TiC+TiN+Ti (C.

N)等の多層膜、複合被膜のコーティング材料が開発さ
れ、市場に出回っている。更に、コーティング材料とし
ては高温において安定なものが要求され、TiC被膜の
上にAl2O3をコーティングしたチップもある。Ti
N被膜は物理蒸着、化学蒸着の両方で行われているが、
多層膜、A1□0、のコーティングは化学蒸着で行われ
ている。
Coating materials for multilayer films and composite films such as N) have been developed and are on the market. Furthermore, the coating material is required to be stable at high temperatures, and some chips have Al2O3 coated on top of the TiC film. Ti
N coatings are made by both physical vapor deposition and chemical vapor deposition.
Coating of the multilayer film, A1□0, is done by chemical vapor deposition.

(発明が解決しようとする課題) 刃先の鋭い超硬合金は、化学蒸着で被覆すると、刃先に
被膜が厚く付き切削特性を劣化させる原因となる。また
、化学蒸着によるコーティングでは超硬合金チップと被
覆界面に密着力を低下させるη相を作り易いなめ、η相
の析出を抑える組成のチップを用いる必要がある。さら
には、化学蒸着で多層膜、Al2O,をコーティングす
るには多数の種類のガスを用いるため、ガス管理、ガス
制御が複雑なものとなる。
(Problems to be Solved by the Invention) When a cemented carbide with a sharp cutting edge is coated with chemical vapor deposition, the coating becomes thick on the cutting edge, causing deterioration of cutting characteristics. Furthermore, coating by chemical vapor deposition tends to produce an η phase that reduces adhesion at the interface between the cemented carbide tip and the coating, so it is necessary to use a tip with a composition that suppresses precipitation of the η phase. Furthermore, since many types of gases are used to coat a multilayer film, Al2O, by chemical vapor deposition, gas management and gas control become complicated.

そこで、プロセスが簡単で低温製膜可能なイオンブレー
ティング法を用いて、化学蒸着で製膜される多層膜やA
l2O,と同等な性能を持つ被膜を作ることができれば
、刃先の丸みやη相の析出の問題等を解決することがで
きる。
Therefore, using the ion blating method, which is a simple process and can be formed at low temperatures, multilayer films formed by chemical vapor deposition and A
If a film with performance equivalent to l2O can be created, problems such as rounding of the cutting edge and precipitation of the η phase can be solved.

したがって、本発明の目的は、物理蒸着法によりTiN
被膜よりも耐摩耗性、耐酸化性に優れた表面被覆超硬合
金及びその製造方法を提供することにある。
Therefore, the object of the present invention is to deposit TiN by physical vapor deposition.
The object of the present invention is to provide a surface-coated cemented carbide having better wear resistance and oxidation resistance than coatings, and a method for producing the same.

(課題を解決するための手段) 前述の目的を達成するために、本発明は、金属クロムを
蒸発源とし、窒素ガス、アンモニアガス、またはこれら
の混合ガスを反応ガスとしてイオンプレーテング法によ
り、超硬合金上に窒化物被膜を製造する方法において、
超硬合金に一30V〜−5oovのバイアス電圧を印加
し、反応ガスの圧力を10×10−3Torr以上にし
て製膜を行うことを特徴とする表面被覆超硬合金の製造
方法を採用するものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention uses ion plating method using metallic chromium as an evaporation source and nitrogen gas, ammonia gas, or a mixed gas thereof as a reaction gas. In a method of producing a nitride coating on a cemented carbide,
A method for producing a surface-coated cemented carbide, which is characterized by applying a bias voltage of -30 V to -5 oov to the cemented carbide and forming a film at a reaction gas pressure of 10 x 10-3 Torr or higher. It is.

イオンプレーテング法を前述の製膜条件下で行うと、C
rN単層の析出層から成り、(220)面にX線回折測
定の最大強度を有する結晶構造をした窒化物被膜により
被覆された表面被覆超硬合金が得られる。
When the ion plating method is performed under the above film forming conditions, C
A surface-coated cemented carbide is obtained which is composed of a single rN precipitated layer and is coated with a nitride film having a crystal structure having the maximum intensity in X-ray diffraction measurements on the (220) plane.

また、前記窒化クロムの製膜を行う前に、超硬合金上に
Va族、Va族、またはVIa族の元素の窒化物、炭化
物、または酸化物から成る被膜を形成し、または、前記
窒化クロムの製膜を行った後に、窒化クロム被膜上にI
t/a族、Va族、またはVIa族の元素の窒化物、炭
化物、琥たは酸化物から成る被膜を形成することもでき
る。
Furthermore, before forming the chromium nitride film, a film made of a nitride, carbide, or oxide of an element of the Va group, Va group, or VIa group is formed on the cemented carbide, or the chromium nitride film is formed on the cemented carbide. After forming a film of I on the chromium nitride film,
It is also possible to form a film consisting of a nitride, carbide, amber or oxide of an element of the t/a group, Va group or VIa group.

このことにより、超硬合金及び前記CrN単層被膜の間
、または前記被膜上に、IVa族、Va族、またはVI
a族の元素の窒化物、炭化物、または酸化物から成る被
膜を得ることができる。
This allows for a group IVa, group Va, or VI
Coatings consisting of nitrides, carbides or oxides of elements of group a can be obtained.

(作用〉 本発明は、金属クロムを蒸発源とし、窒素ガス、アンモ
ニアガス、またはこれらの混合ガスを反応ガスとしてイ
オンプレーテング法により、超硬合金上に窒化物被膜を
製造する方法において、特定のパラメータ(バイアス電
圧、反応ガス圧力)を成る特定の製膜条件の範囲に設定
して、CrN被膜中でのCr2N及びCrの析出を抑制
すると共にこのCrNの方位配列を(220>面とする
ことにより、CrN被膜自体が持つ耐酸化性に加えて、
耐摩耗性を向上させるものである。
(Function) The present invention provides a method for producing a nitride film on a cemented carbide by an ion plating method using metallic chromium as an evaporation source and nitrogen gas, ammonia gas, or a mixed gas thereof as a reaction gas. The parameters (bias voltage, reaction gas pressure) are set within the range of specific film forming conditions to suppress the precipitation of Cr2N and Cr in the CrN film and to make the orientational arrangement of this CrN (220> plane). In addition to the oxidation resistance of the CrN film itself,
This improves wear resistance.

さらに、CrN被膜の上、またはこの被膜と超硬合金と
の間に、IVa族、Va族、またはVIa族(Ti、Z
r、Hf、V、Nb、Ta、Mo、W)の元素の窒化物
、炭化物、または酸化物から成る第2の被膜を形成する
ことにより、これらの2つの被膜の重畳効果により耐酸
化性及び耐摩耗性をさらに向上させることができる。
Furthermore, on the CrN coating or between this coating and the cemented carbide, a group IVa, Va, or VIa group (Ti, Z
By forming a second film consisting of a nitride, carbide, or oxide of the elements (r, Hf, V, Nb, Ta, Mo, W), the superposition effect of these two films improves oxidation resistance and Abrasion resistance can be further improved.

(実施例) 次に、図面を参照して本発明の好ましい実施例を説明す
る。
(Example) Next, a preferred example of the present invention will be described with reference to the drawings.

第1図は、本発明に用いたイオンプレーテング装置の概
略図であり、第2図は超硬合金チップを用いた切削性能
試験の結果を示すグラフである。
FIG. 1 is a schematic diagram of the ion plating apparatus used in the present invention, and FIG. 2 is a graph showing the results of a cutting performance test using a cemented carbide tip.

最初に、本発明の詳細な説明する。First, the present invention will be explained in detail.

本発明は、要約すると、金属クロムを蒸発源とし、窒素
ガス、アンモニアガス、またはこれらの混合ガスを反応
ガスとしてイオンプレーテング法により、超硬合金上に
窒化物被膜を製造する方法において、特定のパラメータ
(バイアス電圧、反応ガス圧力)を成る特定の製膜条件
の範囲に設定して、CrN被膜中でのCr2N及びCr
の析出を抑制することができると共にこのCrNの方位
配列を(220)面とすることにより、CrN被膜自体
が持つ耐酸化性に加えて、耐摩耗性を向上させることが
できる事実を見い出しなことに基づくものである。以下
に、CrNの特性と合わせて、製膜条件の範囲を説明す
る。
To summarize, the present invention provides a method for producing a nitride film on a cemented carbide by an ion plating method using metallic chromium as an evaporation source and nitrogen gas, ammonia gas, or a mixed gas thereof as a reaction gas. By setting the parameters (bias voltage, reaction gas pressure) within the range of specific film forming conditions,
We discovered the fact that by making the CrN oriented in the (220) plane, it is possible to improve the wear resistance in addition to the oxidation resistance of the CrN coating itself. It is based on Below, the range of film forming conditions will be explained along with the characteristics of CrN.

CrNは耐酸化性が大きい物質であり、したがって、こ
れにより形成された被膜は高温状態での酸化による脆性
化及び摩耗を防止するために優れた効果を発揮するが、
酸化以外の原因による耐摩耗の点では十分であるとは言
えない、これは、CrN被膜中におけるCr2Nまたは
Crの析出が強度を低下せしめることによるものであり
、特に本発明において、X線回折測定によるCr2Nま
たはCrに帰属する最大の回折強度がCrNに帰属する
最大の回折強度の5%以上になると、被膜強度が著しく
低下することが判明した。かかるCr2NまたはCrの
析出と製膜条件との関係については以下に通りである。
CrN is a substance with high oxidation resistance, and therefore, the coating formed with it exhibits an excellent effect in preventing embrittlement and wear caused by oxidation at high temperatures.
It cannot be said that the wear resistance due to causes other than oxidation is sufficient. This is because the precipitation of Cr2N or Cr in the CrN coating reduces the strength. In particular, in the present invention, X-ray diffraction measurement It has been found that when the maximum diffraction intensity attributable to Cr2N or Cr becomes 5% or more of the maximum diffraction intensity attributable to CrN, the film strength decreases significantly. The relationship between the precipitation of Cr2N or Cr and the film forming conditions is as follows.

例えば、反応ガスの圧力を10×10づT o rr未
満及びバイアス電圧を一100〜800■とした場合に
は、CrN被膜中にCr2Nの析出が認められるように
なり、この場合、CrN及びCr2Nの混相状態になる
。また、反応ガスを10XIO−3Torr未満及びバ
イアス電圧を一100未満とした場合には、Crが析出
してCrN及びCrの混相状態になる。さらに、反応ガ
スを10×10−3Torr以上にした場合であっても
バイアス電圧を一30V未満にすると、CrN被膜は(
220)面以外の方位配列を有する柱状結晶組織になる
結果、被膜の耐摩耗性は劣化してしまう、一方、バイア
ス電圧を一300V以上にすると、入射エネルギーが大
き過ぎて、逆に膜質を劣化させてしまう。
For example, when the pressure of the reaction gas is less than 10 x 10 Torr and the bias voltage is -100 to 800 cm, precipitation of Cr2N is observed in the CrN film, and in this case, CrN and Cr2N becomes a mixed phase state. Further, when the reaction gas is less than 10XIO-3 Torr and the bias voltage is less than 1100, Cr is precipitated and a mixed phase state of CrN and Cr is formed. Furthermore, even when the reaction gas is 10 x 10-3 Torr or more, if the bias voltage is less than -30 V, the CrN film (
220) As a result of forming a columnar crystal structure with an orientation other than the plane, the wear resistance of the coating deteriorates.On the other hand, when the bias voltage is increased to -300V or more, the incident energy becomes too large, which deteriorates the film quality. I'll let you.

以上の結果から、製膜条件としては、バイアス電圧−5
0〜−5oovの範囲及び反応ガスの圧力を1 ox 
10−’To r r以上ということになる。
From the above results, the film forming conditions are as follows: bias voltage -5
range of 0 to -5 oov and the pressure of the reaction gas to 1 ox
This means that it is more than 10-'Torr.

膜厚は、好ましくは、0.2から20μmの範囲であれ
ばよい、即ち、0.2未満の膜厚では薄すぎるため十分
な耐摩耗性が確保されず、また20μm以上の膜厚にな
ると、CrN被膜内の残留圧縮応力のために割れが発生
し易くなって、やはり耐摩耗性が劣化してしまう。
The film thickness is preferably in the range of 0.2 to 20 μm; in other words, if the film thickness is less than 0.2, it is too thin and sufficient wear resistance cannot be ensured, and if the film thickness is 20 μm or more, , cracks are likely to occur due to residual compressive stress within the CrN coating, and the wear resistance also deteriorates.

本発明では、かかる製膜条件を設定することにより、C
rN被膜中におけるCr2NまたはCrの析出相を制御
することができると共に、CrN析出相を(220)面
配向にすることができる。
In the present invention, by setting such film forming conditions, C
The precipitated phase of Cr2N or Cr in the rN film can be controlled, and the CrN precipitated phase can be oriented in the (220) plane.

したがって、本発明の製造方法によって得られた被覆超
硬合金は、超硬合金自体の特性を維持したまま耐酸化性
の大きいCrN被膜の耐牽耗性を著しく改善されている
Therefore, the coated cemented carbide obtained by the production method of the present invention has significantly improved drag resistance of the CrN coating, which has high oxidation resistance, while maintaining the properties of the cemented carbide itself.

なお、蒸発源としての金属クロムを蒸発させる方法とし
ては、抵抗加熱、電子銃等があり、蒸発した金属クロム
をイオン化する方法としては、アーク放電、グロー放電
、高周波放電等のいずれでもよく、反応ガスとしては、
窒素のほかにアンモニアガス、またはこれらの混合ガス
を選択しうる。
Methods for evaporating metallic chromium as an evaporation source include resistance heating and electron guns, and methods for ionizing evaporated metallic chromium include arc discharge, glow discharge, and high-frequency discharge. As a gas,
In addition to nitrogen, ammonia gas or a mixture thereof may be selected.

次に、真空アーク放電型のイオンプレーテング装置を用
いて、本発明の製造方法による製造、及び製造された表
面被覆超硬合金の例について説明する。
Next, an example of a surface-coated cemented carbide manufactured by the manufacturing method of the present invention using a vacuum arc discharge type ion plating apparatus will be described.

改−」− 第1図は、本発明の製造方法を実施するのに用いた真空
アーク放電型のイオンプレーテング装置を示す。このイ
オンプレーテング装置は、反応容器10に基板(超硬合
金、または鋼材)14を取付ける回転可能なターンテー
ブル12と、反応容器の周囲側壁に設けた蒸発源16と
、反応ガスの供給口18と、真空ポンプへのボート20
と、から成るものである。
1 shows a vacuum arc discharge type ion plating apparatus used to carry out the manufacturing method of the present invention. This ion plating apparatus includes a rotatable turntable 12 for attaching a substrate (carbide or steel) 14 to a reaction vessel 10, an evaporation source 16 provided on the peripheral side wall of the reaction vessel, and a reaction gas supply port 18. and boat 20 to vacuum pump
It consists of.

なお、このイオンプレーテング装置は、以下の例、比較
例の場合のすべてにおいて用いられた。
Note that this ion plating device was used in all of the following examples and comparative examples.

被覆すべき基板としてISOP−30型超硬合金チップ
(72WC−9Co−8TiC−11TaC)を用いた
。この超硬合金チップを有機溶剤により洗浄後、真空反
応容器内にセットし、この反応容器内の圧力をlXl0
’−’以上まで真空にしたのち、Crイオン衝撃による
洗浄、加熱を行って窒化チタン被膜の形成を開始する。
An ISOP-30 type cemented carbide chip (72WC-9Co-8TiC-11TaC) was used as the substrate to be coated. After washing this cemented carbide chip with an organic solvent, it is set in a vacuum reaction vessel, and the pressure inside this reaction vessel is set to lXl0.
After creating a vacuum to a level above '-', cleaning by Cr ion bombardment and heating are performed to start forming a titanium nitride film.

被膜を形成すべき金属の蒸発源としてCrを用いるが、
この例1では、反応ガスとして窒素のみを導入し、その
圧力を70X10−3とした。蒸発源に7OAの電流を
流すことにより、Crターゲットから真空アーク放電に
よりCrイオンを放出させ、一方、超硬合金に対して一
500Vのバイアス電圧を印加した。この条件下で超硬
合金表面に窒化クロムを生成させた。この結果、約2時
間の製膜反応により膜厚が5μmの被膜が得られた。さ
らに、この被膜のX線回折測定の結果得られた回折チャ
ートによれば、最大の回折強度を示すピークが被覆結晶
の(220)面に存在することが明らかになった。なお
、この測定はグラファイト(002>モノクロメータを
備えたデイフラクトメータを用いてCu Ka線によっ
て行った。
Cr is used as the evaporation source of the metal to form the film, but
In this example 1, only nitrogen was introduced as a reaction gas, and the pressure was set to 70×10 −3 . By passing a current of 7 OA through the evaporation source, Cr ions were released from the Cr target by vacuum arc discharge, while a bias voltage of -500 V was applied to the cemented carbide. Under these conditions, chromium nitride was generated on the cemented carbide surface. As a result, a film having a thickness of 5 μm was obtained by a film forming reaction of about 2 hours. Furthermore, according to the diffraction chart obtained as a result of X-ray diffraction measurement of this coating, it was revealed that the peak showing the maximum diffraction intensity was present on the (220) plane of the coated crystal. Note that this measurement was performed using a diffractometer equipped with a graphite (002> monochromator) using Cu Ka radiation.

このように製造した表面被覆超硬合金チップに対して切
削性能試験を行った。切削条件は、以下の通りであった
Cutting performance tests were conducted on the surface-coated cemented carbide tips manufactured in this manner. The cutting conditions were as follows.

被剛材     SCM3 切削速度    180m/min 送り       0.3mm/rev切込み    
 2.0mm 第2図はこの試験結果を示すものである。第2図は、切
削時間に対するフランク李耗を示すものであり、この図
面から明らかなように、例1で製造された超硬合金チッ
プは後述する比較例1(Cr2Nの析出あり〉、比較例
2(方位配列が(200)配向)及び比較例3(TiN
単相被膜)の試験試験結果より飛躍的に性能が向上して
いる。
Rigid material SCM3 Cutting speed 180m/min Feed 0.3mm/rev depth of cut
2.0 mm Figure 2 shows the results of this test. Figure 2 shows the flank wear versus cutting time, and as is clear from this drawing, the cemented carbide tip manufactured in Example 1 is different from Comparative Example 1 (with Cr2N precipitation), which will be described later, and Comparative Example 2 (orientation is (200) orientation) and Comparative Example 3 (TiN
The performance has been dramatically improved compared to the test results of single-phase coating).

匠−1 最初に、金属蒸発源としてTiを用いて、反応ガスとし
てアンモニアガス圧を35X10””T。
Takumi-1 First, using Ti as a metal evaporation source, the ammonia gas pressure was 35×10”T as a reaction gas.

rrとしたほか例1と同様な条件で膜厚2μmのTiN
被膜を第1被膜として超硬合金表面に形成した。その後
、さらにこのTiN被膜上に、ターゲットをCrとし、
第2被膜とし膜厚が1μmのCrN被膜を形成した。こ
の例2の場合には、したがって、TiN被膜及びCrN
被膜から成る複層構造の被覆超硬合金が得られる。得ら
れた・超硬合金チップについて切削試験を行った。第2
図に示すように、例1より、さらによい性能のものが得
られた。
TiN with a film thickness of 2 μm under the same conditions as Example 1 except that
The first coating was formed on the surface of the cemented carbide. After that, a target of Cr was further applied on this TiN film,
A CrN film having a thickness of 1 μm was formed as a second film. In the case of this example 2, therefore, the TiN coating and the CrN
A coated cemented carbide having a multilayer structure consisting of a coating is obtained. A cutting test was conducted on the obtained cemented carbide tip. Second
As shown in the figure, even better performance than Example 1 was obtained.

なお、例2におけるTiN被膜の代わりに、Va族、V
a族、VIa族(Ti、Zr、Hf、V、Nb、Ta、
Mo、W)の元素の窒化物、炭化物、または酸化物から
成る第1被膜を形成してもよく、そして、第1被膜と第
2被膜との形成順序を入れ換えて両方の被膜を形成する
こともできる。これらのいずの場合にも例2で製造され
たものと同様な複層構造による効果が得られる。この点
に関して以下の例3、例4で示す。
Note that instead of the TiN film in Example 2, Va group, V
Group a, Group VIa (Ti, Zr, Hf, V, Nb, Ta,
A first film may be formed of a nitride, carbide, or oxide of an element Mo, W), and the order of formation of the first film and the second film may be reversed to form both films. You can also do it. In both of these cases, the same multilayer structure effect as that produced in Example 2 can be obtained. This point is illustrated in Examples 3 and 4 below.

匠−1 最初に、金属蒸発源としてTaを用いて、反応ガスとし
てN2ガス圧を20X10−3Torrとし、蒸発源の
電流を15OAとしてTaイオンを放出させる一方、超
硬合金に対して一500Vのバイアス電圧を印加する。
Takumi-1 First, Ta was used as a metal evaporation source, N2 gas pressure was set to 20X10-3 Torr as a reaction gas, and Ta ions were released by setting the current of the evaporation source to 15OA. Apply bias voltage.

このような条件下で、超硬合金表面上にTaNを2μm
製膜した。その後、例1と同様な方法でCrNを3μm
製膜した。
Under these conditions, 2 μm of TaN was deposited on the cemented carbide surface.
A film was formed. Thereafter, 3 μm of CrN was added in the same manner as in Example 1.
A film was formed.

このようにして得られなTaNとCrNの複層構造膜を
有する超硬合金チップの切削試験を行ったところ、60
分後のフランク摩耗は0.07mmであった。即ち、例
2とほぼ同様な性能のものが得られた。
When a cutting test was conducted on a cemented carbide tip having a multilayer structure film of TaN and CrN obtained in this way, it was found that
Flank wear after minutes was 0.07 mm. That is, a product with substantially the same performance as Example 2 was obtained.

匠−支 最初に、金属蒸発源としてZrを用いて、反応ガスとし
てメタンガス圧を20X10−3Torrとし、蒸発源
の電流を9OAとしてZrイオンを放出させる一方、超
硬合金に対して一4O0vのバイアス電圧を印加する。
First, Zr was used as a metal evaporation source, the methane gas pressure was set to 20X10-3 Torr as a reaction gas, and the current of the evaporation source was set to 9OA to release Zr ions, while a bias of -4O0v was applied to the cemented carbide. Apply voltage.

このような条件下で、超硬合金表面上にZrCを2μm
製膜した。その後、例1と同様な方法でCrNを3μm
製膜した。
Under these conditions, 2 μm of ZrC was deposited on the cemented carbide surface.
A film was formed. Thereafter, 3 μm of CrN was added in the same manner as in Example 1.
A film was formed.

このようにして得られたZrCとCrNの複層構造膜を
有する超硬合金チップの切削試験を行ったところ、60
分後のフランク摩耗は0.06mmであった。即ち、例
2とほぼ同様な性能のものが得られた。
When a cutting test was conducted on the thus obtained cemented carbide tip having a multilayer structure film of ZrC and CrN, it was found that 60
Flank wear after minutes was 0.06 mm. That is, a product with substantially the same performance as Example 2 was obtained.

ルl」ロー 反応容器内の窒素ガスの圧力を5×10づT。Le l'low The pressure of nitrogen gas in the reaction vessel was set to 5×10T.

rrとして行った以外は例1と同様な製膜条件で行った
。形成された被膜のX線回折測定の結果によればCr2
Nの析出が認められた。得られた超硬合金チップについ
て切削試験を行ったところ、第2図に示すように、性能
は劣っていた。
Film forming conditions were the same as in Example 1 except that rr was used. According to the results of X-ray diffraction measurement of the formed film, Cr2
Precipitation of N was observed. A cutting test was conducted on the obtained cemented carbide tip, and as shown in FIG. 2, the performance was poor.

監11L バイアス電圧を一23Vに設定した以外は例1と全く同
様な製膜条件でCrNを形成したが、この場合のX線回
折測定の結果によれば方位配列は(200)配向になっ
ていた。得られた超硬合金チップについて切削試験を行
ったところ、第2図に示すように、性能は劣っていた。
Supervisor 11L CrN was formed under exactly the same film forming conditions as in Example 1 except that the bias voltage was set to -23 V, but according to the results of X-ray diffraction measurement in this case, the azimuth alignment was (200) oriented. Ta. A cutting test was conducted on the obtained cemented carbide tip, and as shown in FIG. 2, the performance was poor.

例1、比較例1、比較例2の切削試験結果から明らかな
ように、被膜をCrN単相とし、(220)配向になる
ように制御することにより、被膜超硬合金の耐摩耗性は
格段に向上したものになる。
As is clear from the cutting test results of Example 1, Comparative Example 1, and Comparative Example 2, the wear resistance of the coated cemented carbide is significantly improved by making the coating a single CrN phase and controlling it to have a (220) orientation. It will be improved.

m工 金属蒸発源としてTiを用い、反応ガスとして窒素ガス
を用い、圧力を30X10−STorrとした以外の製
膜条件は例1と同様な条件で超硬合金表面上にTiNを
5μm形成させる。得られた超硬合金チップについて切
削試験を行ったところ、第2図に示す結果となった。
TiN was formed to a thickness of 5 μm on the surface of the cemented carbide under the same conditions as in Example 1 except that Ti was used as the metal evaporation source, nitrogen gas was used as the reaction gas, and the pressure was 30×10 −STorr. When the obtained cemented carbide tip was subjected to a cutting test, the results shown in FIG. 2 were obtained.

例1と比較例3を比較した結果から明らかなように、本
発明の製造方法で得られたCrN単相膜は従来用いられ
ていたTiN被膜より優れた性能を示す。
As is clear from the results of comparing Example 1 and Comparative Example 3, the CrN single-phase film obtained by the manufacturing method of the present invention exhibits superior performance to the conventionally used TiN film.

(発明の効果) 以上詳細に説明したように、本発明によれば、被膜超硬
合金の耐摩耗性を大幅に改善できると共に優れた耐酸化
性を保証することができる。
(Effects of the Invention) As described above in detail, according to the present invention, the wear resistance of coated cemented carbide can be significantly improved and excellent oxidation resistance can be guaranteed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に用いたイオンプレーテング装置の概
略図である。 第2図は超硬合金チップを用いた切削性能試験の結果を
示すグラフである。 10・・・反応容器、 12・・・ターンテーブル、 14・・・基板、 16・・・蒸発源、 18・・・反応ガス供給口、 20・・・真空ポンプへのボート。 第 ■ 図 2υ 第 図 切削時間(min)
FIG. 1 is a schematic diagram of an ion plating apparatus used in the present invention. FIG. 2 is a graph showing the results of a cutting performance test using a cemented carbide tip. DESCRIPTION OF SYMBOLS 10... Reaction container, 12... Turntable, 14... Substrate, 16... Evaporation source, 18... Reaction gas supply port, 20... Boat to vacuum pump. Fig. 2 υ Fig. Cutting time (min)

Claims (5)

【特許請求の範囲】[Claims] (1) CrN単層の析出層から成り、(220)面に
X線回折測定の最大強度を有する結晶構造をした窒化物
被膜により被覆された表面被覆超硬合金。
(1) A surface-coated cemented carbide consisting of a precipitated single layer of CrN and coated with a nitride film having a crystal structure having the maximum intensity in X-ray diffraction measurements on the (220) plane.
(2) 請求項1記載の表面被覆超硬合金において、超
硬合金及び前記CrN単層被膜の間、または前記被膜上
に、IVa族、Va族、またはVIa族の元素の窒化物、炭
化物、または酸化物から成る被膜が形成されていること
を特徴とする表面被覆超硬合金。
(2) In the surface-coated cemented carbide according to claim 1, between the cemented carbide and the CrN single-layer coating, or on the coating, a nitride or carbide of an element of group IVa, group Va, or group VIa, Or a surface-coated cemented carbide characterized by having a film formed of an oxide.
(3) 金属クロムを蒸発源とし、窒素ガス、アンモニ
アガス、またはこれらの混合ガスを反応ガスとしてイオ
ンプレーテング法により、超硬合金上に窒化物被膜を製
造する方法において、超硬合金に−50V〜−800V
のバイアス電圧を印加し、反応ガスの圧力を10×10
^−^3Torr以上にして製膜を行うことを特徴とす
る表面被覆超硬合金の製造方法。
(3) A method for producing a nitride film on a cemented carbide by an ion plating method using metallic chromium as an evaporation source and nitrogen gas, ammonia gas, or a mixed gas thereof as a reaction gas. 50V~-800V
Apply a bias voltage of 10 × 10
^-^ A method for producing a surface-coated cemented carbide, characterized by forming a film at a temperature of 3 Torr or higher.
(4) 請求項3記載の表面被覆超硬合金の製造方法に
おいて、前記窒化クロムの製膜を行う前に、超硬合金上
にIVa族、Va族、またはVIa族の元素の窒化物、炭化
物、または酸化物から成る被膜を形成することを特徴と
する表面被覆超硬合金の製造方法。
(4) In the method for manufacturing a surface-coated cemented carbide according to claim 3, before forming the chromium nitride film, a nitride or carbide of an element of group IVa, group Va, or group VIa is formed on the cemented carbide. A method for producing a surface-coated cemented carbide, the method comprising forming a coating made of , or oxide.
(5) 請求項3記載の表面被覆超硬合金の製造方法に
おいて、前記窒化クロムの製膜を行った後に、窒化クロ
ム被膜上にIVa族、Va族、またはVIa族の元素の窒化
物、炭化物、または酸化物から成る被膜を形成すること
を特徴とする表面被覆超硬合金の製造方法。
(5) In the method for producing a surface-coated cemented carbide according to claim 3, after forming the chromium nitride film, a nitride or carbide of an element of group IVa, group Va, or group VIa is formed on the chromium nitride film. A method for producing a surface-coated cemented carbide, the method comprising forming a coating made of , or oxide.
JP33730889A 1989-12-26 1989-12-26 Surface-coated cemented carbide and method for producing the same Expired - Lifetime JPH0737665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33730889A JPH0737665B2 (en) 1989-12-26 1989-12-26 Surface-coated cemented carbide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33730889A JPH0737665B2 (en) 1989-12-26 1989-12-26 Surface-coated cemented carbide and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03197663A true JPH03197663A (en) 1991-08-29
JPH0737665B2 JPH0737665B2 (en) 1995-04-26

Family

ID=18307410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33730889A Expired - Lifetime JPH0737665B2 (en) 1989-12-26 1989-12-26 Surface-coated cemented carbide and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0737665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580406B2 (en) 2007-08-02 2013-11-12 Kobe Steel, Ltd. Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580406B2 (en) 2007-08-02 2013-11-12 Kobe Steel, Ltd. Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film
US8828562B2 (en) 2007-08-02 2014-09-09 Kobe Steel, Ltd. Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film

Also Published As

Publication number Publication date
JPH0737665B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US4401719A (en) Highly hard material coated articles
CA2290514C (en) A method of coating edges with diamond-like carbon
CN110004409B (en) CrAlN nano gradient coating with high hardness and high binding force and preparation process thereof
US7323219B2 (en) Apparatus and method for applying diamond-like carbon coatings
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
US7799429B2 (en) Hybrid coating structure
JPH0222471A (en) Diamond coated sintered hard alloy and method for coating sintered hard alloy with diamond
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
KR102335906B1 (en) TiCN with reduced growth defects by HiPIMS
JPH03197663A (en) Surface coated sintered hard alloy and its production
JPH07109561A (en) Chromium nitride film coated substrate
JPH04103754A (en) Ceramic-coated material and its production
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JP4257425B2 (en) Novel inorganic compound, superhard material using the same, and method for producing the same
JPH0250948A (en) Conjugated super hard material
JPH0794081B2 (en) Hard carbon coated parts
JP3417902B2 (en) Manufacturing method for high-hardness metal products
JPH06316756A (en) Corrosion and wear resistant coating film
JPH03197662A (en) Surface coated sintered hard alloy and its production and surface coated steel products and its production
JPH07150337A (en) Production of nitride film
JPH05237707A (en) Coated tool
JPS63195260A (en) Coating material and its production
JP2921853B2 (en) Method for producing silver member having protective layer
JPH04120265A (en) Boron nitride coated member
JPH06116711A (en) Formation of alumina film