JPH0319694B2 - - Google Patents

Info

Publication number
JPH0319694B2
JPH0319694B2 JP55062590A JP6259080A JPH0319694B2 JP H0319694 B2 JPH0319694 B2 JP H0319694B2 JP 55062590 A JP55062590 A JP 55062590A JP 6259080 A JP6259080 A JP 6259080A JP H0319694 B2 JPH0319694 B2 JP H0319694B2
Authority
JP
Japan
Prior art keywords
current
semiconductor
amorphous
amorphous semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55062590A
Other languages
Japanese (ja)
Other versions
JPS56158419A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP6259080A priority Critical patent/JPS56158419A/en
Publication of JPS56158419A publication Critical patent/JPS56158419A/en
Publication of JPH0319694B2 publication Critical patent/JPH0319694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明はアモルフアス半導体
(AMORPHOUS SEMICNNDUCTORすなわち
ASという)に対し、電流特にパルス電流を流す
ことによりアモルフアス半導体の有している不対
結合手による再結合中心を介してのキヤリアの再
結合にかかる部所での局部的な急加熱によりこの
不対結合手を活性にし、その近傍の他の不対結合
手または水素等と中和した結合手と結合せしめる
ことにより正常な原子間距離を有しかつその不対
結合手を相殺してしまうというアモルフアス半導
体(AMORPHOUS SEMICONDUCTORすな
わちSASという)の作製方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous semiconductor (AMORPHOUS SEMICNNDUCTOR).
By passing a current, especially a pulse current, to AS), this phenomenon is caused by rapid local heating of the area where carriers are recombined via the recombination center by the dangling bonds of the amorphous semiconductor. By activating the unpaired bond and bonding it with other nearby unpaired bonds or bonds neutralized with hydrogen, etc., the unpaired bond maintains a normal interatomic distance and cancels out the unpaired bond. This article concerns a method for manufacturing an amorphous semiconductor (AMORPHOUS SEMICONDUCTOR, or SAS).

本発明は半導体例えば硅素において Si・+Si・→Si−Si Si・+Si・−H→Si−Si+H・ 等の反応を物理的に加電流により発生せしめ、ひ
いては不対結合手の密度を減少せしめることとを
目的としている。
The present invention physically generates reactions such as Si・+Si・→Si−Si Si・+Si・−H→Si−Si+H・ in a semiconductor such as silicon by applying an electric current, thereby reducing the density of dangling bonds. The purpose is to

従来ASはその原子間距離もランダムでありか
つその結晶学的な配置もランダムであることをも
つて定義されていた。
Conventionally, AS has been defined by the fact that its interatomic distances are random and its crystallographic arrangement is also random.

またかかるAS中にはそのランダムのため化学
的に他と結合をしていないすなわち不対結合手が
多数存在していた。この不対結合手は再結合中心
となり、キヤリアのライフタイムをきわめて小さ
くしてしまい、キヤリアキラーとして最もその排
除が期待されていた。この不対結合手を除く方法
として最近水素またはハロゲンにより中和するす
なわち半導体が硅素であるとすると、 Si・+H→Si−H Si・+F→Si−F が知られている。これはシラン(SiH4)、四フツ
化硅素(SiF4)またはその混合気体をグロー放電
またはプラズマCVD法により作製された被膜は
再結合中心が水素、ハロゲンの添加がないASが
1020〜1022cm-3を再結合中心の密度を有するのに
対し1017〜1018cm-3と104〜106分の1にまでその
再結合中心の密度を小さくすることができるもの
として注目されている。
Furthermore, due to its random nature, there were many dangling bonds in the AS that were not chemically bonded to others. This unpaired bond becomes the center of recombination and extremely shortens the lifetime of the carrier, making it the most anticipated carrier killer to eliminate. Recently, as a method for removing these dangling bonds, neutralization with hydrogen or halogen has been known. In other words, assuming that the semiconductor is silicon, Si.+H→Si-H Si.+F→Si-F. This is because films made using silane (SiH 4 ), silicon tetrafluoride (SiF 4 ), or a mixture thereof by glow discharge or plasma CVD have recombination centers of hydrogen and AS without the addition of halogens.
While the density of recombination centers is 10 20 to 10 22 cm -3 , it is possible to reduce the density of recombination centers to 1/10 4 to 10 6 times that of 10 17 to 10 18 cm -3 . It is attracting attention as a thing.

しかしかかる程度の密度は半導体としては十分
でなく、そのため光電変換装置特に太陽電池を作
ろうとした時その光−電気変換効率は2〜4%と
なつてしまつた。本発明はかかる再結合中心の密
度を1013〜1016cm-3とさらにその1/102〜1/104
してさらに理想的な半導体に近づけたものであ
り、その結果電子、ホールの移動度もASの300Å
とCSの106μmの中間状態の1〜50μmの値を得る
ことができた。以下にその実施例を図面に従つて
説明する。
However, such a density is not sufficient for a semiconductor, and therefore, when trying to make a photoelectric conversion device, especially a solar cell, the light-to-electricity conversion efficiency was 2 to 4%. The present invention brings the density of such recombination centers to 10 13 to 10 16 cm -3 and further to 1/10 2 to 1/10 4 of that, closer to an ideal semiconductor, and as a result, the movement of electrons and holes is reduced. Degree of AS is 300Å
We were able to obtain values between 1 and 50 μm with an intermediate state of 10 6 μm for CS and 10 6 μm. Examples thereof will be described below with reference to the drawings.

実施例 1 第1図Aは基板4上に導体または半導体の電極
3(Mという)、半導体1(SすなわちASをい
う)、導体または半導体の対抗電極2(以下Mと
いう)の構成をさせたMSM構造のたて断面図を
示している。
Example 1 In FIG. 1A, a conductor or semiconductor electrode 3 (hereinafter referred to as M), a semiconductor 1 (S or AS), and a conductor or semiconductor counter electrode 2 (hereinafter referred to as M) are formed on a substrate 4. A vertical cross-sectional view of the MSM structure is shown.

図面において半導体は1はまずシラン
(SiH4)、SiF4、SiH2Cl2等の硅化物気体をグロー
放電法またはプラズマCVD法により0.1〜10μm
特に1〜2μmの厚さに形成した。そして400〜
600℃の温度で加熱しかつその雰囲気をH2とHe
との混合状態でプラズマ化した。また結晶化温度
の630〜700℃に対し50〜100℃低い温度にて被膜
形成してもよい。
In the drawings, the semiconductor 1 is first coated with a silicide gas such as silane (SiH 4 ), SiF 4 , SiH 2 Cl 2 to a thickness of 0.1 to 10 μm using the glow discharge method or plasma CVD method.
In particular, it was formed to have a thickness of 1 to 2 μm. And 400~
Heated at a temperature of 600℃ and replaced the atmosphere with H2 and He.
It turned into plasma when mixed with. Further, the film may be formed at a temperature 50 to 100°C lower than the crystallization temperature of 630 to 700°C.

さらにこの半導体を形成する工程の前後にて金
属または不純物を多量にドープされた半導体によ
る電極3,2を真空蒸着法またはプラズマCVD
または減圧CVD法により形成させて第1図Aの
構造を得た。
Furthermore, before and after the process of forming this semiconductor, electrodes 3 and 2 made of a semiconductor doped with a large amount of metal or impurities are formed by vacuum evaporation or plasma CVD.
Alternatively, the structure shown in FIG. 1A was obtained by forming by low pressure CVD method.

さらにこの2つの電極に対し電流時にパルス電
流を102〜107A/cm2の範囲にて〜100秒特に0.1〜
2秒間加えた。電極が半導体あつては一方をP+
型または他方をN+型とし、そこに順方向に電流
を加えた。
Furthermore, pulse current was applied to these two electrodes in the range of 10 2 to 10 7 A/cm 2 for ~100 seconds, especially from 0.1 to
Added for 2 seconds. If the electrode is a semiconductor, one side is P +
One type or the other was made into N + type, and a current was applied thereto in the forward direction.

この電流は102〜105PFのキヤパシタに電荷を
充電しそれを放電して電極3,2間に複数回引加
する方法を用いてもよい。
This current may be applied by charging a capacitor of 10 2 to 10 5 PF, discharging it, and applying the current between the electrodes 3 and 2 multiple times.

すると第2図に示される如きエネルギバンド図
において伝導帯8を流れる電子5と価電子帯9を
流れるホール6とは再結合中心7,71を介して
互いに再結合する。しかしこの時エネルギバンド
巾に従つたェネルギを熱として放出しこの中心線
またはその局部的な近傍は昇温し、この熱により
再結合中心は熱エネルギーを得ることになる。こ
の熱エネルギが不対結合手同志を結合せしめるの
に十分なエネルギである時はそれにより2つの不
対結合手が互いに結合しかつその原子間距離は2
つの原子にとつて最も安定な状態すなわち硅素に
あつては1.9Å〜2.85Å、2.34ű20Å、特に2.3
〜2.5Åを有するようになる。
Then, in the energy band diagram shown in FIG. 2, the electrons 5 flowing in the conduction band 8 and the holes 6 flowing in the valence band 9 recombine with each other via the recombination centers 7, 71 . However, at this time, the energy according to the energy band width is released as heat, and the temperature of this center line or its local vicinity increases, and the recombination center gains thermal energy from this heat. When this thermal energy is sufficient to bond the dangling bonds together, the two dangling bonds bond together and the interatomic distance is 2.
The most stable state for silicon atoms is 1.9 Å to 2.85 Å, 2.34 Å ± 20 Å, especially 2.3
~2.5 Å.

またひとつの不対結合手と中和原子すなわちSi
−Hとの結合エネルギよりも熱エネルギが大きく
なると Si・+Si−H→Si−Si+H・ で示されるようになり、この活性水素は他のそれ
らと活性でない不対結合手と結合して中和化を下
式の如くに H・+Si・→Si−H 実施させる。その結果この過電流により2重に再
結合中心を相殺・中和させることができることが
わかる。
Another dangling bond and a neutralized atom, i.e., Si
When the thermal energy becomes larger than the bonding energy with -H, it becomes expressed as Si・+Si−H→Si−Si+H・, and this active hydrogen is neutralized by combining with other non-active dangling bonds. The conversion of H・+Si・→Si−H is carried out as shown in the following formula. As a result, it can be seen that this overcurrent can double cancel and neutralize the recombination center.

またこの相殺・中和がおきると、この部分での
再結合がなくなり、その部分の温度は下がり電子
およびホールは他の再結合中心を介して互いに同
様の 再結合→発熱→結合手の励起→結合手の中和の
工程を経る。そのため電流を流すことにより、半
導体の原子配置は必ずしもダイアモンド構造を有
さず不定であるがその距離は最も安定な状態すな
わち原子間距離は結晶状態の距離(2.34Å)と同
様の2.34A+0.2、−0.04Aであり概略均質の一定に
なることが判明した。
Also, when this cancellation/neutralization occurs, recombination at this part disappears, and the temperature of that part decreases, and electrons and holes recombine in the same way as each other via other recombination centers → heat generation → excitation of bond → Go through the process of neutralizing the bond. Therefore, by applying an electric current, the atomic arrangement of the semiconductor does not necessarily have a diamond structure and is indeterminate, but the distance between the atoms is the most stable state, that is, the interatomic distance is 2.34A + 0.2, which is the same as the distance in the crystalline state (2.34 Å). , -0.04A, which was found to be approximately homogeneous and constant.

第3図はたて軸が再結合中心の密度の相対値で
あり、初期を1と規定したものである。さらにこ
の電流を印加する場合、真性のアモルフアス硅素
においては10-8〜10-12cm-1の伝導度を有し、
このきわめて低い電導度は電流を流すのに必ずし
も十分でない。このため本発明においては、真性
半導体に対してはキセノンランプにより103LX以
上の強さの光照射を行い、その電子・ホール対を
作りそれを利用して伝導度を10-1〜10-6cm-1
で向上せしめた。
In FIG. 3, the vertical axis represents the relative value of the density of the recombination center, and the initial value is defined as 1. Furthermore, when applying this current, intrinsic amorphous silicon has a conductivity of 10 -8 to 10 -12 cm -1 ,
This extremely low conductivity is not necessarily sufficient to conduct current. Therefore, in the present invention, the intrinsic semiconductor is irradiated with light with an intensity of 10 3 LX or more using a xenon lamp, and electron-hole pairs are created and used to increase the conductivity to 10 -1 to 10 - It was improved to 6 cm -1 .

そしてさらに2つの電極に電圧を印加して102
〜5×107Acm-2の範囲の電流を流した。またこ
の電流密度は第3図において電流を103A/cm2
(10)、104A/cm(11)、105A/cm2(12)、
106A/cm2(13)と所定の時間流したものであ
る。この電流はDC電流であつてもまた10ns〜1
msのパルス巾の電流の総量であつてもよい。パ
ルス巾の場合は102〜104 pFのキヤパシタを100〜
104V充電してそれを放電させる方法をくりかえ
してもよい。
Then, apply voltage to two more electrodes to obtain 10 2
A current in the range of ~5×10 7 Acm −2 was applied. Also, this current density is 10 3 A/cm 2 in Figure 3.
(10), 10 4 A/cm (11), 10 5 A/cm 2 (12),
10 6 A/cm 2 (13) for a predetermined period of time. Even though this current is a DC current, it is still 10ns to 1
It may be the total amount of current with a pulse width of ms. For pulse width, use a capacitor of 10 2 to 10 4 pF .
The method of charging to 10 4 V and discharging it may be repeated.

またこの第3図において、基板温度を室温より
200℃、300℃とすると第3図の室温のグラフ1
2,13がそれぞれ104A/cm2の低い電流密度に
おいて得ることができた。
In addition, in this Figure 3, the substrate temperature is lower than room temperature.
At 200℃ and 300℃, room temperature graph 1 in Figure 3
2 and 13 could be obtained at low current densities of 10 4 A/cm 2 , respectively.

電流を加えるとさらに光照射によるフオトキヤ
リアを発生させることおよび加熱により熱励起を
助長することは実用上むりなく電流を加えるため
にきわめて有効であつた。
In practice, it was extremely effective to generate a photocarrier by light irradiation and to promote thermal excitation by heating when an electric current was applied, in order to apply an electric current without any problem.

この電流密度はこの面積における平均電流を意
味する。その電極下の局部的に流れる領域の電流
密度を意味するためその面積が1mm以下の小面積
のみでなく103cm2の如き大面積にも適用が可能で
ある。
This current density means the average current in this area. Since it refers to the current density in a region where the current flows locally under the electrode, it can be applied not only to a small area of 1 mm or less but also to a large area such as 10 3 cm 2 .

この第3図はアモルフアス硅素の場合であるが
Ge、GexSi1-x(0<x<1)、SiC1-x(0<x<
1)、Si1N4-x(0<x<4)、SiO2-x(0<x<2)
の如き化合物または混合物であつても同様に実施
可能であり本発明のいう半導体とは電流を流しう
る制限における半絶縁体をも含むことはいうまで
もない。
This figure 3 shows the case of amorphous silicon.
Ge, Ge x Si 1-x (0<x<1), SiC 1-x (0<x<
1), Si 1 N 4-x (0<x<4), SiO 2-x (0<x<2)
It goes without saying that compounds or mixtures such as these can be used in the same manner, and the term "semiconductor" as referred to in the present invention includes semi-insulators in the sense that current can flow therethrough.

また半導体は真性であるのみならずB、P、
As等の不純物が1016〜1020cm-3濃度に添加された
P型、N型であつてもまたそれらが1021cm-3〜10
モル%の濃度に添加されたPまたはN型の半導体
であつてもよいことはいうまでもない。
Also, semiconductors are not only intrinsic, but also B, P,
Even if impurities such as As are added at a concentration of 10 16 to 10 20 cm -3 to P-type or N-type, they also have a concentration of 10 21 cm -3 to 10
It goes without saying that it may be a P or N type semiconductor added to a concentration of mol %.

実施例 2 第1図Bは他の構造の実施例を示す。Example 2 FIG. 1B shows an alternative construction embodiment.

実施例1は照射される光が電極3または2によ
り、しや閉されてしまう欠点を持つていた。
Example 1 had the disadvantage that the irradiated light was partially blocked by the electrode 3 or 2.

第1図Bは電極2,3の間の半導体1の部分に
その上部より光照射等にXeランプによる光照射
を行うべくしたものである。本実施例においては
非単結晶半導体の膜厚を2000Å〜3μmとし、ま
たその巾1〜10mm、厚さ10〜100mmとして実施し
た。
FIG. 1B shows an arrangement in which light is irradiated from above onto a portion of the semiconductor 1 between the electrodes 2 and 3 using a Xe lamp. In this example, the thickness of the non-single crystal semiconductor was 2000 Å to 3 μm, the width was 1 to 10 mm, and the thickness was 10 to 100 mm.

電流密度は102〜5×106A/cm2であり、漸次そ
の電流値を増加させていつた。かくして光照射の
効果を十分生かしたため、実施例1に比べて1/2
〜1/3の電流密度にて同様に再結合中心の密度を
1/105〜1/104にすることができた。
The current density was 10 2 to 5×10 6 A/cm 2 , and the current value was gradually increased. In this way, the effect of light irradiation was fully utilized, so the reduction was 1/2 compared to Example 1.
Similarly, the density of recombination centers could be reduced to 1/10 5 to 1/10 4 at a current density of ~1/3.

加熱を300℃以上、結晶化温度以下で行う場合
は再結合中心の密度を、減少させるための時間を
1/2〜1/10にすることができ、、また、電流密度を
10〜105A/cm2とさらに100℃上るごとに1/3程度
に低くすることができた。
When heating is performed at temperatures above 300℃ and below the crystallization temperature, the time required to reduce the density of recombination centers can be reduced by 1/2 to 1/10, and the current density can be reduced by 1/2 to 1/10.
It was possible to reduce the temperature to 10 to 10 5 A/cm 2 by about 1/3 for each 100°C increase.

しかしこの場合水素と中和結合してある半導体
の結合手も切れてしまい、逆に新たに熱を発生し
た再結合中心を作つてしまうため、この後に再度
不対結合手に対して水素または水素とヘリユーム
との混合ガス(H25〜20%、He80〜95%)を1
〜100MHzまたは1〜10GHzにてプラズマ化し、
かかる雰囲気にてプラズマアニールをすることが
好ましかつた。そのため再結合中心の密度を400
〜600℃にて1015〜1017cm-3としてさらに水素化中
和により1013〜1015cm-3に下げることができた。
However, in this case, the bond in the semiconductor that has a neutralization bond with hydrogen is also broken, and a new recombination center that generates heat is created. and helium (H 2 5-20%, He 80-95%)
Converts into plasma at ~100MHz or 1~10GHz,
It was preferable to perform plasma annealing in such an atmosphere. Therefore, the density of the recombination center is set to 400
It was 10 15 - 10 17 cm -3 at -600°C and could be further lowered to 10 13 - 10 15 cm -3 by hydrogenation neutralization.

実施例2においてこれら以外は実施例1と同様
にした。かくしてキヤリア移動度がASである硅
素においては約300Å程度しかなかつたが、1〜
50μmと103倍にもなつた。
Example 2 was the same as Example 1 except for the above. Thus, in silicon, where the carrier mobility is AS, it is only about 300 Å, but 1~
It has become 103 times as large as 50μm.

実施例 3 第4図は本願発明の他の実施例を示したもので
あり、光電変換装置に本願発明のアモルフアス半
導体を適用したものである。
Embodiment 3 FIG. 4 shows another embodiment of the present invention, in which the amorphous semiconductor of the present invention is applied to a photoelectric conversion device.

第4図Aは基板4上に第1の電極24,M1
流特にトンネル電流を流しうる絶縁または半絶縁
膜23,I1、セミアモルフアス半導体20、第2
の電流を流しうる絶縁または半絶縁膜21,I2
くし型または格子型の第2の電極M2よりなるM1
−I1−SA−I2−M2のダブルMIS型構造を有する
光電変換装置である。I1,I2はグロー放電または
プラズマCVD法により窒化硅素を10〜40Åの厚
さに形成し、M1を仕事関数が4.0eV以上の白金、
クロム、ニツケル、金またはITO等の透明電極よ
りなり、他の第2の電極M2は逆に仕事関数が
4.0eV以下のマグネシウム、アルミニユームまた
はアルカリ金属、アルカリ土類金属により実施
し、2つの電極を相補とした。
FIG. 4A shows a first electrode 24 on a substrate 4, an insulating or semi-insulating film 23 through which an M 1 current, particularly a tunnel current, can flow, I 1 , a semi-amorphous semiconductor 20, a second
An insulating or semi-insulating film 21, I 2 , which can flow a current of
M 1 consisting of a comb-shaped or grid-shaped second electrode M 2
This is a photoelectric conversion device having a double MIS type structure of −I 1 −SA−I 2 −M 2 . I 1 and I 2 are made of silicon nitride with a thickness of 10 to 40 Å by glow discharge or plasma CVD, and M 1 is made of platinum with a work function of 4.0 eV or more.
The other second electrode M2 is made of a transparent electrode such as chromium, nickel, gold or ITO, and the work function is
It was carried out using magnesium, aluminum, alkali metals, and alkaline earth metals with a voltage of 4.0 eV or less, and the two electrodes were complementary.

半導体20は実施例1または2により再結合中
心の密度を減少させたものである。その結果変換
効率は7〜10%にまで飛躍的に向上させることが
できた。この際電流は2つの電極に対し順方向に
流し、図面においては上面より光照射または/お
よび赤外線照射を行つた。
The semiconductor 20 has a reduced density of recombination centers according to Example 1 or 2. As a result, the conversion efficiency was dramatically improved to 7-10%. At this time, current was passed in the forward direction to the two electrodes, and in the drawing, light and/or infrared rays were irradiated from the top surface.

第4図Bは基板4上に第1の電極24、半導体
20、第2の電極21よりなり、2つの電極と半
導体とはオーム接触をさせたものである。半導体
20はP+型層27、真性半導体26、N+型半導
体23よりなるPIN接合を有している。さらに第
4図Aと同様に順方向にパルス電流を流した。
In FIG. 4B, a first electrode 24, a semiconductor 20, and a second electrode 21 are formed on a substrate 4, and the two electrodes and the semiconductor are in ohmic contact. The semiconductor 20 has a PIN junction consisting of a P + type layer 27, an intrinsic semiconductor 26, and an N + type semiconductor 23. Furthermore, a pulse current was passed in the forward direction as in FIG. 4A.

かくしてPIN型の太陽電池をおいても6〜10%
の変換効率得ることができた。
Thus, even with PIN type solar cells, the
It was possible to obtain a conversion efficiency of

この第4図A,Bにおいてその半導体20の厚
さは1〜5μmの薄さであり単結晶200〜300μmを
格子歪による直接遷移のため必要とせず、かつそ
のキヤリアの分散距離が100〜500Åというアモル
フアス硅素と異なり1〜50μmを有しているため
変換効率が3〜5倍にまで向上させることができ
たものと推定された。
In FIGS. 4A and 4B, the thickness of the semiconductor 20 is as thin as 1 to 5 μm, and a single crystal layer of 200 to 300 μm is not required due to direct transition due to lattice strain, and the carrier dispersion distance is 100 to 500 Å. It was estimated that the conversion efficiency could be improved 3 to 5 times because it has a diameter of 1 to 50 μm, unlike amorphous silicon.

光電変換装置はかかるダブルMIS型またはPIN
型と限らず多量PNPN…PN構造、シヨツトキ構
造、シングルMIS構造の変形の構造であつてもよ
い。
The photoelectric conversion device is double MIS type or PIN
It is not limited to the type, but may be a structure with a large amount of PNPN...a modification of the PN structure, the shot structure, or the single MIS structure.

本発明においては半導体としては硅素を中心と
して記した。しかし硅素に酸素、窒素、炭素を添
加してSiO2-x(0<X<2)、Si3N4-x(0<X<
4)、SiC2(0<X<1)であつてもBP、GaAs、
GaAIAsInP等の化合物半導体であつても同様で
あることはいうまでもない。
In the present invention, silicon is mainly described as the semiconductor. However, by adding oxygen, nitrogen, and carbon to silicon, SiO 2-x (0<X<2) and Si 3 N 4-x (0<X<
4), Even if SiC 2 (0<X<1), BP, GaAs,
Needless to say, the same applies to compound semiconductors such as GaAIAsInP.

本発明はその応用として光電変換装置について
述べてきたが半導体集積回路、絶縁ゲイト型電界
効果トランジスタ等のIC、LSI、VLSIに対して
も本発明のアモルフアス半導体を適用することが
できる。またコピー機器等の複写機または光メモ
リに適用することができる。
Although the present invention has been described as an application to a photoelectric conversion device, the amorphous semiconductor of the present invention can also be applied to ICs such as semiconductor integrated circuits and insulated gate field effect transistors, LSIs, and VLSIs. Further, it can be applied to a copying machine such as a copying machine or an optical memory.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の2つの断面図であ
る。第2図は本発明の理論を説明するためのエネ
ルギバンド図である。第3図は本発明で得られた
アモルフアス半導体の再結合中心反応の減少を示
す。第4図は本発明を応用した光電変換装置の実
施例を示す。
FIG. 1 shows two cross-sectional views of an embodiment of the invention. FIG. 2 is an energy band diagram for explaining the theory of the present invention. FIG. 3 shows the reduction in recombination center reactions in the amorphous semiconductor obtained by the present invention. FIG. 4 shows an embodiment of a photoelectric conversion device to which the present invention is applied.

Claims (1)

【特許請求の範囲】 1 アモルフアス(無定形)構造を有する珪素を
主成分とする半導体に電流を流すことにより不対
結合手または中和された結合手の密度を減少させ
ることを特徴とするアモルフアス半導体作製方
法。 2 特許請求の範囲第1項において、アモルフア
ス半導体がP型、I型またはN型の導電型を有す
ることを特徴としたアモルフアス半導体作製方
法。 3 特許請求の範囲第1項において、電流がパル
ス電流であることを特徴とするアモルフアス半導
体作製方法。 4 特許請求の範囲第1項において、電流を流す
前に結晶化温度よりも低い温度に加熱することを
特徴とするアモルフアス半導体作製方法。 5 特許請求の範囲第3項において、パルス電流
は100秒以内の時間、室温〜600℃の温度にて加え
ることを特徴としたアモルフアス半導体作製方
法。 6 特許請求の範囲第1項において、電流を流す
ことと並行して光照射を行うことにより光アニー
ルまたは光励起によりキヤリアを発生をせしめる
ことを特徴とするアモルフアス半導体作製方法。
[Claims] 1. An amorphous amorphous material characterized in that the density of dangling bonds or neutralized bonds is reduced by passing a current through a silicon-based semiconductor having an amorphous (amorphous) structure. Semiconductor manufacturing method. 2. The method for manufacturing an amorphous semiconductor according to claim 1, wherein the amorphous semiconductor has a conductivity type of P type, I type, or N type. 3. The method for manufacturing an amorphous semiconductor according to claim 1, wherein the current is a pulsed current. 4. The method for producing an amorphous semiconductor according to claim 1, characterized in that the amorphous semiconductor is heated to a temperature lower than the crystallization temperature before flowing an electric current. 5. The method for manufacturing an amorphous semiconductor according to claim 3, characterized in that the pulse current is applied for a period of 100 seconds or less at a temperature of room temperature to 600°C. 6. The method for producing an amorphous semiconductor according to claim 1, characterized in that carriers are generated by photoannealing or photoexcitation by applying light in parallel with passing a current.
JP6259080A 1980-05-12 1980-05-12 Semiamorphous semiconductor and manufacture therefor Granted JPS56158419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6259080A JPS56158419A (en) 1980-05-12 1980-05-12 Semiamorphous semiconductor and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6259080A JPS56158419A (en) 1980-05-12 1980-05-12 Semiamorphous semiconductor and manufacture therefor

Publications (2)

Publication Number Publication Date
JPS56158419A JPS56158419A (en) 1981-12-07
JPH0319694B2 true JPH0319694B2 (en) 1991-03-15

Family

ID=13204680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6259080A Granted JPS56158419A (en) 1980-05-12 1980-05-12 Semiamorphous semiconductor and manufacture therefor

Country Status (1)

Country Link
JP (1) JPS56158419A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119978A (en) * 1985-11-20 1987-06-01 Matsushita Electric Ind Co Ltd Amorphous solar cell
JP2708864B2 (en) * 1989-03-22 1998-02-04 富士電機 株式会社 Method for producing amorphous semiconductor

Also Published As

Publication number Publication date
JPS56158419A (en) 1981-12-07

Similar Documents

Publication Publication Date Title
JP3468670B2 (en) Solar cell and manufacturing method thereof
US20100258164A1 (en) Photovoltaic force device
KR20100080601A (en) Photovoltaic devices including heterojunctions
JPH0722205B2 (en) Photovoltaic cell and manufacturing method thereof
KR20160064692A (en) Solar cell and manufacturing method thereof
JPH0338756B2 (en)
JPH02201972A (en) Solar cell
JPS6230714B2 (en)
JPH0319694B2 (en)
US7253491B2 (en) Silicon light-receiving device
US4000505A (en) Thin oxide MOS solar cells
JPH05102504A (en) Photovoltaic element
Shewchun et al. Temperature dependence of the current‐voltage characteristics of silicon MIS solar cells
JPH0424878B2 (en)
Mizrah et al. Indium—Tin—Oxide—Silicon heterojunction photovoltaic devices
JP2896793B2 (en) Method for manufacturing photovoltaic device
JPH044757B2 (en)
JPS6331950B2 (en)
Maeda et al. Infrared-Photovoltaic Responses of Ion-Beam Synthesized β-FeSi2/n-Si Heterojunctions
JP3150681B2 (en) Thin film amorphous semiconductor device
JP2012138556A (en) Multi-junction solar cell
TW201201383A (en) Solar cell
JPH0554272B2 (en)
Dai High efficiency N-type silicon solar cells
Smith et al. Reverse current‐voltage characteristics of indium tin oxide/silicon solar cells under illumination