JPH0319681B2 - - Google Patents

Info

Publication number
JPH0319681B2
JPH0319681B2 JP60190782A JP19078285A JPH0319681B2 JP H0319681 B2 JPH0319681 B2 JP H0319681B2 JP 60190782 A JP60190782 A JP 60190782A JP 19078285 A JP19078285 A JP 19078285A JP H0319681 B2 JPH0319681 B2 JP H0319681B2
Authority
JP
Japan
Prior art keywords
silicide
glass
thick film
resistor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60190782A
Other languages
Japanese (ja)
Other versions
JPS6249603A (en
Inventor
Osamu Makino
Hirotoshi Watanabe
Tooru Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60190782A priority Critical patent/JPS6249603A/en
Publication of JPS6249603A publication Critical patent/JPS6249603A/en
Publication of JPH0319681B2 publication Critical patent/JPH0319681B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、厚膜抵抗の製造方法に係り、特に珪
化物粒子と非還元性ガラスからなる厚膜抵抗の製
造方法に関する。 従来の技術 近年、機器の小形化や多機能化の要望が年を追
つて強くなつてきている。この要望に応えるた
め、回路のIC化と共に回路部品の高密度実装が
重要な技術となつている。このため、抵抗やコン
デンサなどの受動素子は、基板への実装の容易性
と、小形化の両面から厚膜状の素子へと移行して
きた。 従来の厚膜抵抗は、一般的にはアルミナを主成
分とする焼結磁器基板上に、銀(Ag)とパラジ
ウム(Pd)とからなる貴金属を空気中でメタラ
イズして電極を形成したものに酸化ルテニウム
(RuO2)と酸化鉛系ガラスからなるグレーズ抵抗
を空気中で焼き付けて形成して得られていた。
(例えば、『厚膜IC化技術』日本マイクロエレク
トロニクス協会編 工業調査会 刊行 26頁〜34
頁) しかしながら、上記のような構成では、電極お
よび抵抗に共に貴金属を用いるため、高価なもの
になるばかりか、銀(Ag)の半田くわれや移動
を防止するため電極部にニツケル(Ni)などの
メツキを施すなど手間がかかるという問題があつ
た。このような貴金属は、銅(Cu)などのよう
に安価で電極に適した卑金属材料が一般に空気中
で金属化できず、一方、酸化ルテニウム(RuO2
系グレーズ抵抗材料が、酸化ルテニウム(RuO2
の還元反応のために、逆に非酸化性雰囲気中では
形成できないために使用されているものである。 これに対して、銅などの卑金属を電極とし非酸
化性雰囲気中で焼成する珪化物−ガラス系厚膜抵
抗が提案されている。確かにこの構成では、電
極、抵抗材料共に卑金属を用いるため安価であり
Cuなどの金属は半田付けが容易でしかもマイ
グレーシヨンしにくいなどの優れた点を有してい
る。また抵抗温度係数(TCR)や、ノイズ、短
時間過負荷特性など初期的な抵抗特性は、RuO2
系グレーズ抵抗と同等に優れている。 発明が解決しようとする問題点 しかし、上記の抵抗は初期的には満足できるも
のの、抵抗の経時変化が大きいため実用上大きな
不安を残している。特に、高温・高湿の環境下に
長時間おかれた時、抵抗体表面を中心に面積抵抗
が増大し、実用に耐えない量の抵抗変化が生じ
る。これは、明らかにされたわけではないが抵抗
体表面の珪化物粒子の水分と熱による化学的反応
によつて生じるものと考えられる。 このように、従来の珪化物−ガラス系グレーズ
抵抗は寿命面での不安定さからなかなか実用に供
されないのが実状であつた。 本発明は、上記問題点を解決するもので、卑金
属導体を電極とし、非酸化性雰囲気中で形成でき
る安価で高信頼性な厚膜抵抗の製造方法を提供し
ようとするものである。 問題点を解決するための手段 上記問題点を解決するために、本発明の製造方
法は、予め珪化物と非還元性ガラスの混合物を
500〜1200℃の酸化性雰囲気で熱処理した後、微
粉化する工程を備えたものである。 作 用 元来、ガラスを構成する酸化物の珪化物に対す
る濡れ性は悪い。このため、珪化物粒子のごく表
面だけに酸化膜を形成する必要があるが非酸化性
の雰囲気中で焼成されるガラス−珪化物間の相互
反応は期待できない。 本発明の方法によれば、熱処理によつて珪化物
表面の僅かな酸化と共にガラスが溶融して珪化物
粒子を覆い、両者を一体化させるため、この後、
微粉化して抵抗膜として焼成されても珪化物粒子
が膜表面に露出しなくなり、このため外界の湿度
の影響を受けにくくなつて耐湿性が向上する。 従つて、卑金属導体を電極とし、非酸化性雰囲
気中で形成できる安価で高信頼性な厚膜抵抗が可
能となる。 実施例 以下、本発明の厚膜抵抗の製造方法の一実施例
について、図面を参照しながら説明する。 第1図は、本発明の一実施例における厚膜抵抗
の断面図を示すものであり、10は絶縁性磁器基
板、20は電極膜、30は抵抗膜を示す。また第
2図は本発明の方法によつて得られた熱処理粉の
モデル図を、第3図は従来の抵抗体粉のモデル図
をそれぞれ示し、41と51は珪化物粒子、42
はガラス、43は熱処理微粒子、52はガラス粒
子をそれぞれ示す。 まず、珪化モリブデン(MoSi2)、珪化タンタ
ル(TaSi2)、珪化マグネシウム(Mg2Si2)、珪化
コバルト(CoSi2)、珪化ニツケル(NiSi2)の各
珪化物の粉体を用意した。これら珪化物粉体に、
BaO、B2O3、MgO、CaO、SiO2などの非還元性
酸化物よりなるガラスフリツト95〜20重量%加
え、よく混合した。この混合粉を金型による乾式
成形をしてバルク状にしたあと、500〜1200℃で
保持時間が10分〜1時間、酸化性の雰囲気中で熱
処理した。この時の雰囲気は、空気中、N2+空
気、N2+微量のO2ガスを加えた混合ガスなどの
流量をコントロールして変えた。最適な熱処理雰
囲気は、ガラスの軟化点や珪化物の種類、珪化物
の濃度によつて異なる。この熱処理物を、キシレ
ン中のボールミルで湿式粉砕によつて微粉化し熱
処理粉とした。この熱処理粉をSEMで観察した
ところ、第3図に示すように、珪化物粒子41が
ガラス42に閉じ込められている構造となつてい
た。 この熱処理粉に熱処理してない前述のガラスフ
リツトを必要に応じて珪化物が6〜50重量%の範
囲になるよう加え、さらに、アクリルなどの熱分
解性の有機バインダをテルピネノールに10重量%
溶解したビークルを加えて、三段ロールで混練し
て抵抗ペーストを得た。一方、アルミナ純度が96
%の焼結体である絶縁性磁器基板10に、銅、コ
バルト、ニツケル、鉄などの卑金属導体をそれぞ
れの非酸化性雰囲気の高温度でメタライズし電極
膜20を形成した評価基板を用意した。この評価
基板に、前記の抵抗ペーストをスクリーン印刷
し、120℃で10分間乾燥してから、最高温度が800
〜1100℃で窒素または窒素に数%の水素と僅かな
水蒸気を含む混合ガスの非酸化性雰囲気中で焼成
して抵抗膜30を得た。 このようにして得られた厚膜抵抗の抵抗体とし
ての諸特性について調べた。第1表には、本実施
例で得られた厚膜抵抗と従来の厚膜抵抗との面積
抵抗値(R0)、25℃と125℃間での抵抗温度係
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a thick film resistor, and particularly to a method for manufacturing a thick film resistor made of silicide particles and non-reducible glass. 2. Description of the Related Art In recent years, the demand for smaller devices and more multifunctional devices has become stronger with each passing year. To meet this demand, high-density mounting of circuit components has become an important technology along with the use of ICs for circuits. For this reason, passive elements such as resistors and capacitors have shifted to thick-film elements for both ease of mounting on substrates and miniaturization. Conventional thick film resistors are generally made by forming electrodes on a sintered porcelain substrate whose main component is alumina by metalizing noble metals consisting of silver (Ag) and palladium (Pd) in air. It was obtained by baking a glazed resistor made of ruthenium oxide (RuO 2 ) and lead oxide glass in air.
(For example, "Thick film IC technology" edited by Japan Microelectronics Association, published by Kogyo Kenkyukai, pp. 26-34)
However, in the above configuration, since noble metals are used for both the electrodes and the resistor, it is not only expensive, but also nickel (Ni) is used in the electrode part to prevent solder cracking and movement of the silver (Ag). There was a problem that it took time and effort to apply plating such as. Such noble metals, such as copper (Cu), which are inexpensive base metal materials suitable for electrodes, generally cannot be metallized in air, while ruthenium oxide (RuO 2 )
The glaze resistance material is ruthenium oxide (RuO 2 ).
It is used because it cannot be formed in a non-oxidizing atmosphere due to the reduction reaction of . In contrast, a silicide-glass thick film resistor has been proposed, which uses a base metal such as copper as an electrode and is fired in a non-oxidizing atmosphere. It is true that this configuration is inexpensive because it uses base metals for both the electrode and the resistor material.
Metals such as Cu have advantages such as easy soldering and resistance to migration. In addition, initial resistance characteristics such as temperature coefficient of resistance (TCR), noise, and short-time overload characteristics are determined by RuO 2
It is as good as the glaze resistance. Problems to be Solved by the Invention However, although the above-mentioned resistance is initially satisfactory, the change in resistance over time is large, which leaves a great deal of concern in practical use. In particular, when the resistor is left in a high-temperature, high-humidity environment for a long period of time, the area resistance increases mainly on the surface of the resistor, resulting in a change in resistance that is unsuitable for practical use. This is thought to be caused by a chemical reaction between the silicide particles on the surface of the resistor due to moisture and heat, although it has not been made clear. As described above, the conventional silicide-glass glaze resistor has been difficult to put into practical use due to its unstable life span. The present invention solves the above-mentioned problems and provides a method for manufacturing an inexpensive and highly reliable thick film resistor that can be formed in a non-oxidizing atmosphere using a base metal conductor as an electrode. Means for Solving the Problems In order to solve the above problems, the manufacturing method of the present invention includes preparing a mixture of silicide and non-reducible glass in advance.
It includes a process of heat treatment in an oxidizing atmosphere at 500 to 1200°C and then pulverization. Function: Originally, oxides constituting glass have poor wettability with respect to silicides. Therefore, although it is necessary to form an oxide film only on the very surface of the silicide particles, an interaction between the glass and the silicide, which is fired in a non-oxidizing atmosphere, cannot be expected. According to the method of the present invention, the heat treatment slightly oxidizes the silicide surface and melts the glass, covering the silicide particles and integrating the two.
Even when the film is pulverized and fired into a resistive film, the silicide particles are not exposed on the film surface, making it less susceptible to external humidity and improving its moisture resistance. Therefore, an inexpensive and highly reliable thick film resistor that can be formed in a non-oxidizing atmosphere using a base metal conductor as an electrode becomes possible. Example Hereinafter, an example of the method for manufacturing a thick film resistor of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a thick film resistor according to an embodiment of the present invention, in which 10 represents an insulating ceramic substrate, 20 represents an electrode film, and 30 represents a resistive film. Further, FIG. 2 shows a model diagram of a heat-treated powder obtained by the method of the present invention, and FIG. 3 shows a model diagram of a conventional resistor powder, in which 41 and 51 are silicide particles, 42
43 is a glass particle, 43 is a heat-treated fine particle, and 52 is a glass particle. First, powders of silicides such as molybdenum silicide (MoSi 2 ), tantalum silicide (TaSi 2 ), magnesium silicide (Mg 2 Si 2 ), cobalt silicide (CoSi 2 ), and nickel silicide (NiSi 2 ) were prepared. These silicide powders,
95 to 20% by weight of glass frit made of non-reducible oxides such as BaO, B 2 O 3 , MgO, CaO, SiO 2 was added and mixed well. This mixed powder was dry-molded using a metal mold into a bulk shape, and then heat-treated in an oxidizing atmosphere at 500 to 1200°C for a holding time of 10 minutes to 1 hour. The atmosphere at this time was varied by controlling the flow rate of air, N 2 + air, a mixed gas of N 2 + a small amount of O 2 gas, etc. The optimum heat treatment atmosphere varies depending on the softening point of the glass, the type of silicide, and the concentration of silicide. This heat-treated product was pulverized by wet pulverization in a ball mill in xylene to obtain a heat-treated powder. When this heat-treated powder was observed using a SEM, it was found that it had a structure in which silicide particles 41 were confined in glass 42, as shown in FIG. Add the above-mentioned unheated glass frit to this heat-treated powder as needed so that the silicide content is in the range of 6 to 50% by weight, and further add 10% by weight of a thermally decomposable organic binder such as acrylic to terpinenol.
The dissolved vehicle was added and kneaded with a three-stage roll to obtain a resistance paste. On the other hand, alumina purity is 96
An evaluation board was prepared in which an electrode film 20 was formed by metallizing base metal conductors such as copper, cobalt, nickel, and iron at high temperatures in a non-oxidizing atmosphere on an insulating ceramic substrate 10 that was a sintered body of 10%. Screen print the above resistance paste on this evaluation board, dry it at 120℃ for 10 minutes, and then
The resistive film 30 was obtained by firing at ~1100° C. in a non-oxidizing atmosphere of nitrogen or a mixed gas containing nitrogen, several percent hydrogen, and a small amount of water vapor. Various properties of the thick film resistor thus obtained as a resistor were investigated. Table 1 shows the area resistance value (R 0 ) of the thick film resistor obtained in this example and the conventional thick film resistor, and the resistance temperature relationship between 25°C and 125°C.

【表】 数(TCR)、ノイズ、150mw/mm2の負荷を5秒
間印加後の抵抗変化率を示す過負荷試験(OLT)
および温度70℃、相対湿度95%の雰囲気中に1000
時間放置した後の抵抗変化率(ΔR)の結果をそ
れぞれ示す。 第1表の従来例との比較から、本発明の製造方
法で得られた厚膜抵抗は優れた特性を有している
事がわかる。また、同表の実施例の試料間の比較
から、本発明の製造方法の中で、抵抗体無機成分
は珪化物と非還元性のガラスから構成されておれ
ばよく珪化物材料の種類によつてその効果が著る
しく変わらない事がわかると同時に、電極膜とし
て金属材料による大きな差は見られない。また熱
処理温度範囲は用いる珪化物の酸化開始温度と非
還元性ガラスの軟化温度の組合せによつて異なる
が、500℃より低温でガラスを溶融さすのは難し
く、1200℃より高温では場合によつてはガラス成
分の蒸発や、熱処理時の容器との反応なども生じ
るため500〜1200℃の範囲が好ましい。さらに、
抵抗膜の焼成温度は、非還元ガラスが充分に流れ
る温度を下限とし、上限は使用電極材料との反応
しない温度であり、800〜1100℃が好ましい。 発明の効果 以上のように本発明の製造方法は、予め珪化物
と非還元性ガラスの混合物を500〜1200℃の酸化
性雰囲気で熱処理後、微粉化して、これを印刷し
非還元性の高温で焼成する事により、卑金属導体
を電極とし、非酸化性雰囲気中で形成できる安価
で高信頼性な厚膜抵抗を提供でき、工業上極めて
有用なものである。
[Table] Overload test (OLT) showing number (TCR), noise, and resistance change rate after applying a load of 150 mw/mm 2 for 5 seconds
1000 in an atmosphere with a temperature of 70°C and a relative humidity of 95%.
The results of the resistance change rate (ΔR) after being left for a certain period of time are shown. A comparison with the conventional example shown in Table 1 shows that the thick film resistor obtained by the manufacturing method of the present invention has excellent characteristics. Furthermore, from the comparison between the samples in the examples in the same table, it is found that in the manufacturing method of the present invention, it is sufficient that the inorganic component of the resistor is composed of silicide and non-reducible glass, depending on the type of silicide material. It can be seen that the effect does not change significantly, and at the same time, there are no major differences depending on the metal material used for the electrode film. The heat treatment temperature range varies depending on the combination of the oxidation start temperature of the silicide used and the softening temperature of the non-reducing glass, but it is difficult to melt glass at temperatures lower than 500℃, and in some cases it may be difficult to melt glass at temperatures higher than 1200℃. The temperature is preferably in the range of 500 to 1200°C since evaporation of glass components and reaction with the container during heat treatment occur. moreover,
The lower limit of the firing temperature of the resistive film is a temperature at which non-reduced glass flows sufficiently, and the upper limit is a temperature at which no reaction occurs with the electrode material used, and is preferably 800 to 1100°C. Effects of the Invention As described above, in the manufacturing method of the present invention, a mixture of silicide and non-reducing glass is heat-treated in an oxidizing atmosphere at 500 to 1200°C, pulverized, and then printed to form a non-reducing high-temperature glass. By firing with , it is possible to provide an inexpensive and highly reliable thick film resistor that can be formed in a non-oxidizing atmosphere using a base metal conductor as an electrode, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における厚膜抵抗
の断面図、第2図は本発明の方法によつて得られ
た熱処理粉のSEM観察のモデル図、第3図は従
来の抵抗体粉のSEM観察のモデル図である。 10……絶縁性磁器基板、20……電極膜、3
0……抵抗膜、41……珪化物粒子、42……ガ
ラス、43……熱処理粉粒子、51……珪化物粒
子、52……ガラス粒子。
Figure 1 is a cross-sectional view of a thick film resistor according to an embodiment of the present invention, Figure 2 is a model diagram of a SEM observation of heat-treated powder obtained by the method of the present invention, and Figure 3 is a conventional resistor. It is a model diagram of SEM observation of powder. 10... Insulating ceramic substrate, 20... Electrode film, 3
0...Resistive film, 41...Silicide particles, 42...Glass, 43...Heat-treated powder particles, 51...Silicide particles, 52...Glass particles.

Claims (1)

【特許請求の範囲】 1 非還元性ガラスを珪化物粒子と共に500〜
1200℃の温度で酸化性雰囲気中で溶融させて前記
珪化物粒子を被覆させる工程と、前記溶融混合物
を微粉化する工程とを経た後に、電極として卑金
属導体がメタライズされた絶縁性磁器基板上に印
刷し、800〜1100℃の温度の非酸化性雰囲気中で
焼成することを特徴とする厚膜抵抗の製造方法。 2 珪素化物粒子が珪化モリブデン、珪化タンタ
ル、珪化マグネシウム、珪化コバルト、珪化ニツ
ケルの内一者以上であることを特徴とする特許請
求の範囲第1項記載の厚膜抵抗の製造方法。
[Claims] 1. Non-reducible glass together with silicide particles
After going through the steps of melting the silicide particles in an oxidizing atmosphere at a temperature of 1200° C. and pulverizing the molten mixture, a base metal conductor is placed on an insulating ceramic substrate metallized as an electrode. A method for producing a thick film resistor, comprising printing and firing in a non-oxidizing atmosphere at a temperature of 800 to 1100°C. 2. The method for manufacturing a thick film resistor according to claim 1, wherein the silicide particles are one or more of molybdenum silicide, tantalum silicide, magnesium silicide, cobalt silicide, and nickel silicide.
JP60190782A 1985-08-29 1985-08-29 Manufacture of thick film resistance Granted JPS6249603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60190782A JPS6249603A (en) 1985-08-29 1985-08-29 Manufacture of thick film resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60190782A JPS6249603A (en) 1985-08-29 1985-08-29 Manufacture of thick film resistance

Publications (2)

Publication Number Publication Date
JPS6249603A JPS6249603A (en) 1987-03-04
JPH0319681B2 true JPH0319681B2 (en) 1991-03-15

Family

ID=16263643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60190782A Granted JPS6249603A (en) 1985-08-29 1985-08-29 Manufacture of thick film resistance

Country Status (1)

Country Link
JP (1) JPS6249603A (en)

Also Published As

Publication number Publication date
JPS6249603A (en) 1987-03-04

Similar Documents

Publication Publication Date Title
US4122232A (en) Air firable base metal conductors
KR900008274B1 (en) Thick film resistor circuits
US4894184A (en) Low-temperature burnt conductive paste and method of manufacturing printed circuit board
US4087778A (en) Termination for electrical resistor and method of making the same
JP2001243836A (en) Conductive paste and printed circuit board using it
JPS6317357B2 (en)
JP2001307547A (en) Conductive composition and printed circuit board using the same
EP0047071B1 (en) Thick film conductor employing nickel oxide
JP3297531B2 (en) Conductive paste
US4906404A (en) Copper conductor composition
JPH0213803B2 (en)
JPH0319681B2 (en)
JPH0346705A (en) Copper paste
JPS62250603A (en) Manufacture of thick film resistor
JPH0349108A (en) Copper conductor composition material
JPS62250602A (en) Manufacture of thick film resistor
JP2833658B2 (en) Resistor composition and electronic component using the same
JP2004362862A (en) Conductive paste composition for thick-film conductor
JPS63301405A (en) Manufacture of low temperature baking type conductive paste and circuit board
KR800001624B1 (en) Air firable base metal condoctors
JPS62209801A (en) Glaze resistor paste
JPS5873185A (en) Method of producing thick film circuit board
JPS6318356B2 (en)
JPH0740631B2 (en) Thick film circuit board manufacturing method
JPS61294847A (en) Manufacture of thick film circuit substrate