JPH03196620A - Formation of copper wiring and target used therefor - Google Patents

Formation of copper wiring and target used therefor

Info

Publication number
JPH03196620A
JPH03196620A JP33776289A JP33776289A JPH03196620A JP H03196620 A JPH03196620 A JP H03196620A JP 33776289 A JP33776289 A JP 33776289A JP 33776289 A JP33776289 A JP 33776289A JP H03196620 A JPH03196620 A JP H03196620A
Authority
JP
Japan
Prior art keywords
copper wiring
copper
layer
sputtering
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33776289A
Other languages
Japanese (ja)
Inventor
Susumu Sawada
澤田 進
Shiyuuichi Irumada
修一 入間田
Takeo Ohashi
建夫 大橋
Hideaki Fukuyo
秀秋 福世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP33776289A priority Critical patent/JPH03196620A/en
Publication of JPH03196620A publication Critical patent/JPH03196620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To simply and cheaply form a copper wire by heat-treating the copper wiring part, which is formed by the use of a copper alloy target containing B at the specific rate, into the specific temperature within atmosphere containing N2 gas or NH3 so as to form a boride layer at the surface of the copper wiring layer part. CONSTITUTION:When forming a copper wiring part on the substrate by applying a sputtering method, a copper alloy target, which contains B at the rate of 0.5-5wt.%, is used as a sputtering target. And the formed copper wiring part is heat-treated to 300 deg.C or more within the atmosphere containing N2 gas or NH3 gas so as to form a boron nitride layer on the surface of the copper wiring part. Hereby, the fine copper wiring excellent in performance can be mass-produced excellently in work efficiency and at low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、LSI等における銅配線を形成する方法、
及びその際に使用する銅合金スパッタリングターゲット
に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for forming copper wiring in an LSI, etc.
The present invention also relates to a copper alloy sputtering target used at that time.

〈従来技術とその課題〉 従来、LSIの製造においては、配線材料としてM又は
M合金を使用し、スパッタリング被覆法並びにイオンエ
ツチング法によって基板上に所望パターンの配線を形成
するのが一般的であったが、VLS I−?’ULS 
Iの出現に象徴されるように半導体装置に対する高集積
化要求は止まるところを知らず、それに伴ってより一層
微細な配線が必要となってきたことから、最近では該配
線材料としてCuを使用することが検討されている。な
ぜなら、CuはM又はM合金に比べて耐エレクトロンマ
イグレーション性や耐ストレスマイグレーション性に優
れているため断線の危険が少なく、しかも低抵抗である
と言う好ましい特性を有しているためである。
<Prior art and its problems> Conventionally, in manufacturing LSIs, it has been common to use M or M alloy as a wiring material and to form wiring in a desired pattern on a substrate by sputtering coating method and ion etching method. However, VLS I-? 'ULS
As symbolized by the advent of I, there is no end to the demand for higher integration in semiconductor devices, and as a result, ever finer wiring has become necessary.Recently, Cu has been used as the wiring material. is being considered. This is because Cu has favorable properties such as superior electron migration resistance and stress migration resistance compared to M or M alloys, less risk of disconnection, and low resistance.

しかし、上記配線材料としてCuの通用を考えた場合、
CuにはStやSi0g膜に拡散し昌いことからP−N
接合のリーク電流を引き起こす原因となり易いとの問題
が指摘され、更に耐酸化性も十分でないため熱処理を施
すとCuの酸化による配線抵抗の上昇が生じるとの問題
もあって、その実用化が今−歩躊躇されていた。ただ、
最近、銅配線層とシリコン基板との間にTiN膜、W膜
、 Mo膜、 Ta膜。
However, when considering the use of Cu as the wiring material,
Since Cu diffuses into St and Si0g films, P-N
It has been pointed out that the problem is that it easily causes leakage current in the junction, and furthermore, since the oxidation resistance is not sufficient, there is also the problem that heat treatment will cause an increase in wiring resistance due to oxidation of the Cu, so it is difficult to put it into practical use now. -Ayumu was hesitant. just,
Recently, TiN films, W films, Mo films, and Ta films have been added between the copper wiring layer and the silicon substrate.

Cr膜等のバリア層を設けて両者の相互拡散を防止する
手段が提案されたこともあり (例えば特開昭63−1
56341号公報や特開昭63−174336号公報等
を参照されたい)、上記拡散に起因したP−N接合のリ
ーク電流を防止する道については先が見透せるになって
きたが、銅配線を形成する工程で必要な熱処理時におけ
る銅配線層の酸化防止については十分な対策が見出され
ていなかった。
Some proposals have been made to prevent mutual diffusion of the two by providing a barrier layer such as a Cr film (for example, Japanese Patent Laid-Open No. 63-1
56341, Japanese Patent Laid-Open No. 63-174336, etc.), it is becoming clear that there is a way to prevent the leakage current in the P-N junction caused by the above-mentioned diffusion, but copper wiring No sufficient measures have been found to prevent oxidation of the copper wiring layer during the heat treatment required in the process of forming the copper wiring layer.

ところが、このような状況の中で、下地上への配線用C
u層の形成を“Cu上にTiを配置したモザイクターゲ
ット“を用いたスパッタリングにて行い、続いて形成さ
れたCu−Ti合金薄膜配線層を窒素雰囲気中でアニー
ルして該配線層表面にTiN層を形成させ、これによっ
て耐酸化性を向上させようとの提案がなされた(19B
8年(昭和63年)秋季第49回応用物理学会学術講演
会講演予稿集第2分冊。
However, under these circumstances, the C for wiring on the ground surface
The u layer is formed by sputtering using a "mosaic target with Ti arranged on Cu", and then the formed Cu-Ti alloy thin film wiring layer is annealed in a nitrogen atmosphere to deposit TiN on the surface of the wiring layer. A proposal was made to improve oxidation resistance by forming a layer (19B).
Volume 2 of the 49th Autumn 1988 (Showa 63) Proceedings of the 49th Academic Conference of the Japan Society of Applied Physics.

第434頁参照〕。See page 434].

しかしながら、該提案になる方法では、Cu−Ti合金
薄膜層の表面にTiN層を形成させるための所要窒化温
度が800℃程度と高温であるのでLSIの製造に現在
使用されている装置の利用が出来ない上、Cu−Ti合
金自体の比抵抗が高いために窒化処理によってCu中の
Tiの殆んどをTiNとして表面に出さないと十分に低
い比抵抗が得られないとの不都合があり、更にはCu−
Ti合金薄膜層の形成が“Cu上にTi片を置いたター
ゲソビをスパッタする手法で実施されるため作業性の点
でも問題があって工業上十分に満足できるものとは言え
なかった。
However, in the proposed method, the required nitriding temperature to form a TiN layer on the surface of the Cu-Ti alloy thin film layer is as high as about 800°C, so the equipment currently used for LSI manufacturing cannot be used. In addition, since the specific resistance of the Cu-Ti alloy itself is high, it is inconvenient that a sufficiently low specific resistance cannot be obtained unless most of the Ti in the Cu is exposed to the surface as TiN through nitriding treatment. Furthermore, Cu-
Since the formation of the Ti alloy thin film layer is carried out by sputtering a target material in which a Ti piece is placed on Cu, there are also problems in terms of workability and it cannot be said to be fully satisfactory industrially.

このようなことから、本発明が目的としたのは、「耐酸
化性に優れ十分な導電性を発揮する細密銅配線を、格別
に新規な設備を要することなく工業的規模で簡単かつ安
価に形成できる手段」を確立することである。
Therefore, the purpose of the present invention is to ``develop fine copper wiring that exhibits excellent oxidation resistance and sufficient conductivity easily and inexpensively on an industrial scale without the need for particularly new equipment.'' The aim is to establish a means by which the government can

(課題を解決するための手段) そこで、本発明者等は上記目的を達成すべく数多くの実
験を重ねながら研究を行った結果、「窒化処理によって
“スパッタリング被覆法で形成した銅配線層”の表面に
窒化物層を生成させ銅配線層の酸化防止を図るに当り、
銅配線層中に原子半径の小さなりを含有させておくと、
Tiを含有させた場合よりも格段に低い窒化温度で酸化
防止に有効な窒化物層の形成が可能となる上、“耐酸化
性を発揮するのに十分な厚さのホウ素窒化物層”を形成
させるのに必要なり量がCu中に含まれていても比抵抗
の上昇が小さいので、B含有量が適当範囲に規制されて
おれば銅配線の性能が劣化する虞れもない、しかも、B
含有銅配線層の形成は“Cu−8合金ターゲツトを使用
したスパッタリング被覆法”を通用することにより安定
して実施でき、“Cu上にTi片を置いたモザイクター
ゲット”使用する前記従来提案法のような“スパッタ処
理時のハンドリング性悪化“を招くこともない、」との
新しい知見を得ることができた。
(Means for Solving the Problems) Therefore, the present inventors conducted research through numerous experiments in order to achieve the above object, and as a result, they found that ``a copper wiring layer formed by a sputtering coating method'' by nitriding treatment. In order to prevent oxidation of the copper wiring layer by forming a nitride layer on the surface,
If a small atomic radius is included in the copper wiring layer,
It is possible to form a nitride layer that is effective in preventing oxidation at a much lower nitriding temperature than when Ti is included, and a boron nitride layer that is thick enough to exhibit oxidation resistance can be formed. Even if the amount necessary for formation is contained in Cu, the increase in specific resistance is small, so if the B content is regulated within an appropriate range, there is no risk of deterioration in the performance of copper wiring. B
The formation of the copper-containing wiring layer can be stably performed by using the "sputtering coating method using a Cu-8 alloy target", and the previously proposed method using a "mosaic target with a Ti piece placed on Cu" We were able to obtain new knowledge that this process does not cause such "deterioration in handling properties during sputtering processing."

本発明は、上記知見事項等に基づいてなされたものであ
り、 「スパッタリング被覆法を通用して下地の上に銅配線部
を形成するに当って、スパッタリングターゲットとして
Bを0.5〜5%(以降、成分割合を表わす%は重量%
とする)の割合で含有する銅合金ターゲットを用いると
共に、形成された銅配線部をN、ガス又はN Hs含有
雰囲気中で300℃以上に加熱処理して該銅配線部表面
にホウ素窒化物層を形成させることにより、その耐酸化
性を顕著に改善できるようにした点」 に特徴を有し、更には 「耐酸化性銅配線を形成するためのスパッタリングター
ゲットを、Bを0.5〜5%の割合で含有すると共に残
部が実質的にCuから成る銅合金で構成した点」 をも特徴とするものである。
The present invention has been made based on the above-mentioned findings and the like. ``When forming a copper wiring section on a base using a sputtering coating method, B is added in an amount of 0.5 to 5% as a sputtering target. (Hereinafter, % indicating the component ratio is weight %.
Using a copper alloy target containing a ratio of It is characterized by the fact that its oxidation resistance can be significantly improved by forming a % of Cu, and the remainder is substantially made of Cu.

以下、本発明においてスパッタリングターゲットの化学
組成及び処理条件を前記の如くに限定した理由を、その
作用並びに効果と共に詳述する。
Hereinafter, the reason why the chemical composition and processing conditions of the sputtering target are limited as described above in the present invention will be explained in detail together with their functions and effects.

く作用及び効果〉 まず、本発明に係るCu−8合金スパツタリングターゲ
ットにおけるB含有量を0.5〜5%と定めたのは、タ
ーゲットのB含有量が0.5%未満であると“スパッタ
処理によって得られるCu−B合金配線層”を窒化処理
してもその表面に十分な厚さの耐酸化保護性を有するホ
ウ素窒化物層が形成されず、一方、5%を超えてBを含
有させると“スパッタ処理によって得られるCu−B合
金配線層“の導電性に悪影響が出るようになるためであ
る。
Functions and Effects> First, the reason why the B content in the Cu-8 alloy sputtering target according to the present invention is set at 0.5 to 5% is because the B content of the target is less than 0.5%. Even if the "Cu-B alloy wiring layer obtained by sputtering" is nitrided, a boron nitride layer with sufficient thickness and oxidation-resistant protection is not formed on its surface; This is because if it is included, the conductivity of the "Cu--B alloy wiring layer obtained by sputtering" will be adversely affected.

そして、銅合金配線層を形成させるためのスパッタリン
グターゲットを上記の如き合金形態としたことにより、
スパッタ処理時のハンドリング性に困難が伴うのを防止
できることは先に述べた通りである。
By using the above-mentioned alloy form as the sputtering target for forming the copper alloy wiring layer,
As mentioned above, difficulties in handling during sputtering can be prevented.

また、上記Cu−8合金スパツタリングターゲットを使
用して形成されたCu−B合金配線層はその後耐酸化性
向上のために窒化処理されるが、該窒化処理は工業的に
極めて容易なN2ガス又はNH。
Further, the Cu-B alloy wiring layer formed using the Cu-8 alloy sputtering target is then nitrided to improve oxidation resistance, and the nitriding treatment is performed using N2, which is extremely easy industrially. Gas or NH.

ガス含有雰囲気中での加熱によって実施される。It is carried out by heating in a gas-containing atmosphere.

この場合、Cu−Ti合金配線層では800℃程度に加
熱しないと形成されなかった“耐酸化保護性に優れる窒
化物表面層″は、Cu−B合金配線層においては300
℃以上程度の非常に低い温度においても形成されるため
、LSIの製造に従来から使用されてきた装置を利用す
ることも十分に可能である。ただ、本発明に係るCu−
B合金配線層であっても、窒化処理温度が300℃を下
回ると“十分な耐酸化保護性を有する窒化ホウ素表面層
”の安定形成が困難となるため、N2ガス又はNH3ガ
ス含有雰囲気中での加熱温度は300℃以上と定めたが
、好ましくは400℃程度以上とするのが良い。なお、
窒化処理雰囲気中の窒素圧は高ければ高いほど良好であ
ることは言うまでもなく、加熱保持時間は加熱温度やC
u−B合金配線層のB含有量等によって適宜調整すれば
良い。
In this case, the ``nitride surface layer with excellent oxidation protection'' that was not formed in the Cu-Ti alloy wiring layer unless heated to about 800°C is 300°C in the Cu-B alloy wiring layer.
Since it is formed even at a very low temperature of about 0.degree. C. or higher, it is fully possible to use equipment conventionally used for manufacturing LSIs. However, Cu-
Even with a B alloy wiring layer, if the nitriding temperature is below 300°C, it will be difficult to stably form a "boron nitride surface layer with sufficient oxidation-resistant protection," so it cannot be used in an atmosphere containing N2 gas or NH3 gas. Although the heating temperature was set at 300°C or higher, it is preferably about 400°C or higher. In addition,
It goes without saying that the higher the nitrogen pressure in the nitriding atmosphere, the better.
It may be adjusted as appropriate depending on the B content of the u-B alloy wiring layer.

そして、上述のような工程を含んで製造された銅配線は
、その後に熱処理等が施されるようなことがあっても酸
化による性能劣化(導電性の低下や断線の発生)を生じ
ることがなく、半導体装置等の信頬性維持に大きく寄与
することができる。
Furthermore, even if copper wiring manufactured through the above-mentioned process is subsequently subjected to heat treatment, performance deterioration due to oxidation (reduction in conductivity and occurrence of wire breakage) may occur. Therefore, it can greatly contribute to maintaining the reliability of semiconductor devices and the like.

続いて、本発明を実施例によって更に具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 Cu−2,5χB合金製のスパッタリングターゲットを
使用したスパッタ処理によりSiO□製基板上基板上1
rts厚のCu−B薄膜(B含有割合は2.5%であっ
た)を形成した後、これを100 P、1の窒素圧雰囲
気中で400℃(基板温度)に加熱し、2時間保持した
<Example> By sputtering using a sputtering target made of Cu-2,5χB alloy, a substrate made of SiO
After forming a rts thick Cu-B thin film (B content was 2.5%), it was heated to 400 °C (substrate temperature) in a nitrogen pressure atmosphere of 100 P and 1 and held for 2 hours. did.

次いで、このように窒化処理されたCu−BFI膜の表
層部、並びに該表層部にArイオンエツチング(加速電
圧:1kV)をそれぞれ15分、30分、45分、60
分施したものについて、BとNのピーク付近のxps分
析(X線光電子分光分析)を行ったが、その結果をエツ
チング時間毎に第1乃至5図で示す。
Next, Ar ion etching (acceleration voltage: 1 kV) was performed on the surface layer of the Cu-BFI film nitrided in this way and on the surface layer for 15 minutes, 30 minutes, 45 minutes, and 60 minutes, respectively.
XPS analysis (X-ray photoelectron spectroscopy) near the peaks of B and N was performed on the etched samples, and the results are shown in FIGS. 1 to 5 for each etching time.

第1乃至5図に示される結果からも明らかなように、C
u−8合金製のスパッタリングターゲットを使用して得
られた銅薄膜では、400℃と言う比較的低い温度の窒
化処理であっても88表面層が形成されることが分かる
As is clear from the results shown in Figures 1 to 5, C
It can be seen that in the copper thin film obtained using the U-8 alloy sputtering target, an 88 surface layer is formed even when the nitriding process is performed at a relatively low temperature of 400°C.

そして、上記窒化処理後の銅薄膜を銅配線に予想される
酸化性状態(大気中、450℃)に60分間保持しその
後に導電性の測定を行ったが、この場合でもLSI配線
として十分満足できる値を示し、上記88表面層が優れ
た酸化保護性を有していることが確認された。
The copper thin film after the nitriding process was held for 60 minutes in an oxidizing state expected for copper wiring (at 450 degrees Celsius in the atmosphere), and then its conductivity was measured; even in this case, it was sufficiently satisfied as an LSI wiring. It was confirmed that the 88 surface layer had excellent oxidation protection.

なお、これとは別に、それぞれB含有量が0.6%、1
.1%、2.0%、4.2%、4.9%の各Cu−B合
金製スパッタリングターゲットを使用した以外は上記と
同じ条件の処理で得られた窒化処理Cu−BFil膜に
ついても同様の調査を実施したが、この場合にもほぼ同
様の良好な結果を得ることができた。
In addition, apart from this, B content is 0.6% and 1
.. The same applies to the nitrided Cu-BFil films obtained under the same conditions as above, except that sputtering targets made of 1%, 2.0%, 4.2%, and 4.9% Cu-B alloys were used. We carried out a similar investigation, and we were able to obtain almost the same good results in this case as well.

く効果の総括〉 以上に説明した如(、この発明によれば、性能の優れた
細密銅配線を作業性良く低コストで量産することが可能
となるなど、産業上極めて有用な効果がもたらされる。
Summary of Effects> As explained above, the present invention brings about extremely useful effects industrially, such as making it possible to mass-produce fine copper wiring with excellent performance at a low cost with good workability. .

4、4,

【図面の簡単な説明】[Brief explanation of drawings]

第1乃至5図は、 実施例で得られた窒化処理Cu −B*Wj!表面についてのXPS分析の結果をエツチ
ング時間毎にまとめて互いに別に示したものである。
Figures 1 to 5 show the nitrided Cu -B*Wj! obtained in the example. The results of XPS analysis on the surface are summarized by etching time and shown separately.

Claims (2)

【特許請求の範囲】[Claims] (1)スパッタリング被覆法を通用して下地の上に銅配
線部を形成するに際し、スパッタリングターゲットとし
てBを0.5〜5重量%の割合で含有する銅合金ターゲ
ットを用いると共に、形成された銅配線部をN_2ガス
又はNH_3ガス含有雰囲気中で300℃以上に加熱処
理して該銅配線部表面にホウ素窒化物層を形成させるこ
とを特徴とする、耐酸化性銅配線の形成方法。
(1) When forming a copper wiring part on a base using a sputtering coating method, a copper alloy target containing 0.5 to 5% by weight of B is used as a sputtering target, and the formed copper A method for forming an oxidation-resistant copper wiring, comprising heating the wiring part at 300° C. or higher in an atmosphere containing N_2 gas or NH_3 gas to form a boron nitride layer on the surface of the copper wiring part.
(2)Bを0.5〜5重量%の割合で含有すると共に残
部が実質的にCuから成ることを特徴とする、耐酸化性
銅配線を形成するための銅合金スパッタリングターゲッ
ト。
(2) A copper alloy sputtering target for forming an oxidation-resistant copper wiring, characterized in that it contains B in a proportion of 0.5 to 5% by weight, and the remainder consists essentially of Cu.
JP33776289A 1989-12-26 1989-12-26 Formation of copper wiring and target used therefor Pending JPH03196620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33776289A JPH03196620A (en) 1989-12-26 1989-12-26 Formation of copper wiring and target used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33776289A JPH03196620A (en) 1989-12-26 1989-12-26 Formation of copper wiring and target used therefor

Publications (1)

Publication Number Publication Date
JPH03196620A true JPH03196620A (en) 1991-08-28

Family

ID=18311726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33776289A Pending JPH03196620A (en) 1989-12-26 1989-12-26 Formation of copper wiring and target used therefor

Country Status (1)

Country Link
JP (1) JPH03196620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953628A (en) * 1997-01-28 1999-09-14 Matsushita Electric Industrial Co., Ltd. Method for forming wiring for a semiconductor device
JP2001220667A (en) * 1999-09-27 2001-08-14 Applied Materials Inc Method and device for forming sputtered dope-finished seed layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459938A (en) * 1987-08-31 1989-03-07 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459938A (en) * 1987-08-31 1989-03-07 Fujitsu Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953628A (en) * 1997-01-28 1999-09-14 Matsushita Electric Industrial Co., Ltd. Method for forming wiring for a semiconductor device
JP2001220667A (en) * 1999-09-27 2001-08-14 Applied Materials Inc Method and device for forming sputtered dope-finished seed layer

Similar Documents

Publication Publication Date Title
US6255733B1 (en) Metal-alloy interconnections for integrated circuits
JPS58189373A (en) Manufacture of protective oxide layer
JP2878887B2 (en) Semiconductor electrode structure
JP4427487B2 (en) Tin-coated electrical connector
JPH03196619A (en) Formation of copper wire and target used therefor
EP1401015A1 (en) Selective dry etching of tantalum and tantalum nitride
JPH03196620A (en) Formation of copper wiring and target used therefor
JP2001247958A (en) Method for manufacturing bolometer material, and bolometer element
JPH06177128A (en) Semiconductor device and fabrication thereof
US6238737B1 (en) Method for protecting refractory metal thin film requiring high temperature processing in an oxidizing atmosphere and structure formed thereby
EP0601509A1 (en) Semiconductor devices and method of manufacturing the same
JPH06177117A (en) Sputter target and fabrication of semiconductor device employing it
JP3184001B2 (en) Method for manufacturing semiconductor device
JP5155139B2 (en) Tin-coated electrical connector
JPH034612B2 (en)
KR900000442B1 (en) Aluminium alloy of semiconductor device
JP3033803B2 (en) Method for manufacturing semiconductor device
JPS60251663A (en) Semiconductor device
JPH07230991A (en) Manufacture of semiconductor device
JPH0648880Y2 (en) Semiconductor device
JPH06302601A (en) Fabrication of semiconductor device
Koubuchi et al. Stress migration resistance of Al-Si-Pd alloy interconnects
JPH0677161A (en) Manufacture of semiconductor element
Savitsky et al. Thin film pdin compound for integrated circuit metallization
JPH06208999A (en) Manufacture of semiconductor device