JPH03195924A - Method and apparatus for measuring flow rate of liquid - Google Patents

Method and apparatus for measuring flow rate of liquid

Info

Publication number
JPH03195924A
JPH03195924A JP1336136A JP33613689A JPH03195924A JP H03195924 A JPH03195924 A JP H03195924A JP 1336136 A JP1336136 A JP 1336136A JP 33613689 A JP33613689 A JP 33613689A JP H03195924 A JPH03195924 A JP H03195924A
Authority
JP
Japan
Prior art keywords
temperature
change
liquid
conduit
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1336136A
Other languages
Japanese (ja)
Inventor
Yuko Hochido
寶地戸 雄幸
Takehiko Futaki
剛彦 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP1336136A priority Critical patent/JPH03195924A/en
Publication of JPH03195924A publication Critical patent/JPH03195924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To determine the velocity of a liquid flow in a conduit by changing a temperature at a prescribed spot outside the conduit through which a liquid flows and by measuring a delay of a change in the temperature at a prescribed spot located on the downstream side of the former. CONSTITUTION:A heater 2 connected to a power source 3 is provided on a conduit 1 through which a liquid flows, and a temperature measuring element 4 connected to a detecting circuit 5 is provided on the downstream side of the heater 2. A change in temperature is detected by the temperature measuring element 4 and a signal thereof enters an arithmetic circuit 7. Meanwhile, a signal from an oscillator 6 also enters the arithmetic circuit 7, a time delay T of the change in temperature is determined therein and the velocity of the liquid is calculated with correction at the time of a low velocity included. Now, when a spot whereat the change in temperature is given is set at a point A and a spot whereat the change in temperature is measured is set at a point B, the quantity of generated heat or the quantity of absorbed heat as to the change in temperature given at the point A can be made small, since the points A and B can be set in proximity to each other. Accordingly, it does not happen that the temperature of a heating part turns so high as to boil or cause pyrolysis, or that the temperature of a heat absorbing part turns so low as to be hardened or cause an increase in viscosity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導管中を流れる液体の流量を測定する方法と
、その方法を実施するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for measuring the flow rate of a liquid flowing in a conduit and to an apparatus for carrying out the method.

(従来の技術) 従来、半導体製造プロセス等の微小量の精密な流量測定
には主に熱式質量流量計が使用されている。
(Prior Art) Conventionally, thermal mass flowmeters have been mainly used to precisely measure minute amounts of flow in semiconductor manufacturing processes and the like.

この流量計は導管の外側の二個所に感温抵抗線を巻き、
この二個所の中間にヒーター線を巻いて一定の電流を流
して加熱する。この導管に液体が流れると、上流部では
温度が下降し、下流部では上昇して二個所の間に温度差
が生じる。
This flowmeter has temperature-sensitive resistance wire wrapped around two locations on the outside of the conduit.
A heater wire is wound between these two points and a constant current is passed through them to heat them. When liquid flows through this conduit, the temperature decreases upstream and increases downstream, creating a temperature difference between the two locations.

また、発熱の代りに吸熱を用いることもある。Also, endotherm may be used instead of exotherm.

すなわち、ヒーター線の代りにペルチェ素子を用いて一
定の電流を流して冷却する。この導管に液体が流れると
、上流部では温度が上昇し、下流部では低下して二個所
の間に温度差が生じる。
That is, instead of a heater wire, a Peltier element is used to flow a constant current for cooling. When a liquid flows through this conduit, the temperature increases at the upstream portion and decreases at the downstream portion, creating a temperature difference between the two locations.

この温度差の変化する割合は、液体の熱容量の大きざで
決められる。このことから液体の流れを質量流量として
温度差の変化に変換し、この変化を感温抵抗線の抵抗値
の変化としてブリッジ回路で検出している。
The rate at which this temperature difference changes is determined by the size of the heat capacity of the liquid. From this, the flow of liquid is converted into a change in temperature difference as a mass flow rate, and this change is detected by a bridge circuit as a change in the resistance value of the temperature-sensitive resistance wire.

上記のように、従来の質量流量計は、発熱あるいは吸熱
による定常状態の測定を基本としているため液体の流れ
が止まると、発熱部は高温になり過ぎて沸騰したり、熱
分解を起こす等の欠点があり、吸熱部は低温になり過ぎ
て固化したり、粘度増大を起こす等の欠点がある。
As mentioned above, conventional mass flowmeters are based on steady-state measurement due to heat generation or heat absorption, so when the flow of liquid stops, the heat generating part becomes too high and may boil or cause thermal decomposition. There are disadvantages, such as the heat absorption part becoming too cold and solidifying or increasing viscosity.

また、発熱量あるいは吸熱量を制限すると、測定の速度
が低下する欠点がある。
Furthermore, if the amount of heat generated or the amount of heat absorbed is limited, there is a drawback that the measurement speed decreases.

さらに、定常状態の信号になるまで待たなければならな
いため、測定時間が長くなり、測定精度を上げられない
欠点がある。
Furthermore, since it is necessary to wait until the signal is in a steady state, the measurement time becomes long and measurement accuracy cannot be improved.

また、この質量流量計は液体の熱容量、粘性等による補
正が必要である欠点がある。
Additionally, this mass flow meter has the disadvantage that it requires correction based on the heat capacity, viscosity, etc. of the liquid.

(解決しようとする問題点) 本発明は、上記の欠点を除去し、液体の微量流量を精度
よく、かつ、速やかに測定できる測定法とその方法を実
施するための装置を提供しようとするものである。
(Problems to be Solved) The present invention aims to eliminate the above-mentioned drawbacks and provide a measurement method that can accurately and quickly measure a minute flow rate of a liquid, and an apparatus for implementing the method. It is.

(問題を解決するための手段) 本発明は、液体が流れる導管の外部の一定個所の温度を
変化させ、その下流の一定個所において温度変化の遅れ
を測定することにより、管内液流の速度を求める方法で
ある。
(Means for Solving the Problem) The present invention changes the temperature of a fixed point outside the conduit through which the liquid flows, and measures the delay in temperature change at a fixed point downstream thereof, thereby increasing the velocity of the liquid flow inside the pipe. This is the way to find out.

いま、導管の外部の一定個所の温度を変化させた場合、
導管による熱伝導と、導管中に静止液体がある場合その
液体による熱伝導とがあるため、液体が流れていない時
でも信号がでる。
Now, if we change the temperature at a certain point outside the conduit,
Because there is heat conduction through the conduit, and heat conduction through the liquid if there is stationary liquid in the conduit, a signal is generated even when no liquid is flowing.

この導管に液体が流れると、一定個所の温度変化はその
液流によって熱輸送される。この液流が静止状態での熱
伝導速度より十分速い時は次の式%式% ここでLは温度変化させる個所と測温個所との距離、T
は温度変化の時間の遅れ、■は平均流速である。
When a liquid flows through this conduit, the temperature change at a certain point is transferred by the liquid flow. When this liquid flow is sufficiently faster than the heat conduction rate in a stationary state, the following formula % formula % where L is the distance between the temperature change point and the temperature measurement point, T
is the time delay of temperature change, and ■ is the average flow velocity.

Lを一定にすると、平均流速Vと温度変化の時間の遅れ
Tとは反比例する。
When L is kept constant, the average flow velocity V and the temperature change time delay T are inversely proportional.

いま、温度変化を与える個所をA点とし、その温度変化
を測温する個所をB点とする。
Now, let the point where the temperature change is applied be point A, and the point where the temperature change is measured be point B.

導管中に液体の流れがない時は、A点で発振した温度変
化の波形は、導管による熱伝導と静止液体による熱伝導
によってB点に達し測温素子て検知されるため、温度変
化の時間の遅れTの値は大きい。
When there is no flow of liquid in the conduit, the waveform of temperature change that oscillates at point A reaches point B due to heat conduction through the conduit and the stationary liquid and is detected by the temperature sensor, so the time of temperature change is The value of the delay T is large.

次に、導管中に液体が流れた時は、A点て発振した温度
変化の波形は、さらに液流による熱輸送が加わるためB
点に速く伝わり、温度変化の時間の遅れTの値は小さく
なる。
Next, when the liquid flows in the conduit, the waveform of the temperature change that oscillates at point A changes to B due to the addition of heat transport due to the liquid flow.
It is transmitted quickly to the point, and the value of the time delay T of temperature change becomes small.

上記の説明の通り、温度変化の時間の遅れTを測定する
ことによって平均流速Vを求めることができる。
As explained above, the average flow velocity V can be determined by measuring the time delay T of temperature change.

温度変化の時間の遅れTは、温度変化を検知する測温素
子からの信号と発振器からの信号で測定することができ
る。
The time delay T in temperature change can be measured using a signal from a temperature measuring element that detects a temperature change and a signal from an oscillator.

温度変化を与える素子は、発熱の場合はヒーター、吸熱
の場合はペルチェ素子等が使用できる。
As the element for changing the temperature, a heater can be used in the case of heat generation, and a Peltier element can be used in the case of heat absorption.

測温素子にはサーミスタ等の感温素子が使用できる。A temperature sensing element such as a thermistor can be used as the temperature measuring element.

液流が静止状態時の熱伝導速度は一般に遅いので、A点
とB点の距離は短くてき、測定周期は静止状態時の温度
変化の遅れ時間より多少長い程度で十分である。
Since the heat conduction rate when the liquid flow is in a stationary state is generally slow, the distance between points A and B is shortened, and it is sufficient that the measurement period is slightly longer than the delay time of temperature change in a stationary state.

時間の測定は極めて高精度に測定でき、変化信号は絶対
値測定に比較し容易に、かつ、安定して測定できるので
測定精度は高くなる。
Time can be measured with extremely high precision, and change signals can be measured more easily and stably than absolute value measurement, resulting in higher measurement accuracy.

また、A点とB点との間は熱的に完全絶縁する必要はな
いので、測定時間は速くなる。
Furthermore, since there is no need for complete thermal insulation between points A and B, the measurement time becomes faster.

次に、本発明になる方法を実施するための装置について
説明する。
Next, an apparatus for carrying out the method according to the present invention will be described.

第1図は本発明になる装置の構成図である。FIG. 1 is a block diagram of an apparatus according to the present invention.

液体が流れる導管1に電源3に接続されたヒーター2が
設置してあり、このヒーター2によって温度変化が与え
られる。ヒーター2の下流に検出回路5に接続された測
温素子4を設置し、その測温素子4によって温度変化を
検出し、その信号は演算回路7に入る。一方、発振器6
からの信号も演算回路7に入り、そこで温度変化の時間
遅れTを求め、液体の低流速時の補正を含めて流速を算
出する。
A heater 2 connected to a power source 3 is installed in the conduit 1 through which the liquid flows, and this heater 2 provides a temperature change. A temperature measuring element 4 connected to a detection circuit 5 is installed downstream of the heater 2, and a temperature change is detected by the temperature measuring element 4, and the signal is input to an arithmetic circuit 7. On the other hand, oscillator 6
The signal from the liquid flow rate is also input to the arithmetic circuit 7, where the time delay T of temperature change is determined, and the flow rate is calculated including correction for low flow rate of liquid.

(発明の効果) 本発明によれば、A点で与える温度変化は、A点とB点
を近接できるため発熱量あるいは吸熱量を小さくするこ
とができるので、発熱部が高温になり過ぎて沸騰したり
、熱分解を起こしたりすることはなく、また、吸熱部が
低温になり過ぎて固化したり、粘度増大を起こしたりす
ることはない特徴がある。
(Effects of the Invention) According to the present invention, since the temperature change given at point A can be made close to point A and B, the amount of heat generated or absorbed can be reduced, so the heat generating part becomes too high temperature and boils. It has the characteristic that it does not cause heat decomposition or thermal decomposition, and does not solidify or increase viscosity due to the temperature of the heat absorbing part becoming too low.

また、本発明においては、熱平衡を利用せず熱変化のみ
を利用しているため測定時間が極めて速く、また、測定
精度がよい特徴がある。
Furthermore, since the present invention uses only thermal changes without utilizing thermal equilibrium, the measurement time is extremely fast and the measurement accuracy is high.

ざらに、液体の熱容量、粘性等による補正を要しない利
点がある。
Another advantage is that it does not require correction based on the heat capacity, viscosity, etc. of the liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる液体流量測定装置の構成図である
。 図において、1は液体が流れる導管、2はヒーター、3
は電源、4は測温素子、5は検出回路、6は発振器、7
は演算回路、8は流速表示部である。
FIG. 1 is a configuration diagram of a liquid flow rate measuring device according to the present invention. In the figure, 1 is a conduit through which liquid flows, 2 is a heater, and 3
is a power supply, 4 is a temperature measuring element, 5 is a detection circuit, 6 is an oscillator, 7
8 is a calculation circuit, and 8 is a flow rate display section.

Claims (2)

【特許請求の範囲】[Claims] (1)液体が流れる導管の外部の一定個所の温度を変化
させ、その下流の一定個所において温度変化の遅れを測
定することにより、管内液流の速度を求めることを特徴
とする液体流量の測定法。
(1) Measurement of liquid flow rate, characterized by determining the velocity of the liquid flow in the pipe by changing the temperature at a fixed point outside the pipe through which the liquid flows and measuring the delay in temperature change at a fixed point downstream of the change in temperature. Law.
(2)液体が流れる導管の上流部に、電源に接続された
発熱素子あるいは吸熱素子を設置し、該導管の下流部に
、検出回路に接続された測温素子を設置し、さらに発振
器を回路中に設置することによって、上流部と下流部の
温度変化の遅れを測定することにより、管内液流の速度
を求めることを特徴とする液体流量の測定装置。
(2) A heat generating element or a heat absorbing element connected to a power source is installed in the upstream part of the conduit through which the liquid flows, a temperature measuring element connected to a detection circuit is installed in the downstream part of the conduit, and an oscillator is installed in the circuit. 1. A liquid flow rate measuring device, which is installed in a pipe and measures the delay in temperature change between an upstream portion and a downstream portion, thereby determining the velocity of a liquid flow within a pipe.
JP1336136A 1989-12-25 1989-12-25 Method and apparatus for measuring flow rate of liquid Pending JPH03195924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336136A JPH03195924A (en) 1989-12-25 1989-12-25 Method and apparatus for measuring flow rate of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336136A JPH03195924A (en) 1989-12-25 1989-12-25 Method and apparatus for measuring flow rate of liquid

Publications (1)

Publication Number Publication Date
JPH03195924A true JPH03195924A (en) 1991-08-27

Family

ID=18296066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336136A Pending JPH03195924A (en) 1989-12-25 1989-12-25 Method and apparatus for measuring flow rate of liquid

Country Status (1)

Country Link
JP (1) JPH03195924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066225A (en) * 1999-06-24 2001-03-16 Fujikura Ltd Cover or door opening/closing detector
WO2008090839A1 (en) * 2007-01-26 2008-07-31 Horiba Stec, Co., Ltd. Flowmeter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461987A (en) * 1977-10-27 1979-05-18 Shimadzu Corp Gas chromatography
JPS60186714A (en) * 1984-03-05 1985-09-24 Toshiba Corp Flow rate measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461987A (en) * 1977-10-27 1979-05-18 Shimadzu Corp Gas chromatography
JPS60186714A (en) * 1984-03-05 1985-09-24 Toshiba Corp Flow rate measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066225A (en) * 1999-06-24 2001-03-16 Fujikura Ltd Cover or door opening/closing detector
WO2008090839A1 (en) * 2007-01-26 2008-07-31 Horiba Stec, Co., Ltd. Flowmeter
JPWO2008090839A1 (en) * 2007-01-26 2010-05-20 株式会社堀場エステック Flowmeter
US8015870B2 (en) 2007-01-26 2011-09-13 Horiba Stec, Co., Ltd. Flowmeter for measuring a flow rate using a heat exchange principle

Similar Documents

Publication Publication Date Title
US4548075A (en) Fast responsive flowmeter transducer
JPS58501094A (en) A method for determining at least one instantaneous parameter of a fluid associated with heat exchange of a probe immersed in the fluid, and an apparatus for carrying out the method.
ES2047818T3 (en) MASS FLOWMETERS WITH TEMPERATURE DETECTORS.
JP2962695B2 (en) Fluid detector
US2799165A (en) Apparatus for measuring flow
US4400975A (en) Apparatus for monitoring liquid flow rates
JPH03195924A (en) Method and apparatus for measuring flow rate of liquid
KR930023703A (en) Steam flow meter
JP2930742B2 (en) Thermal flow meter
JPS6388465A (en) Device for measuring flow velocity of liquid metal circulating in pipe at low speed
JP2003028692A (en) Method and apparatus for measuring quantity of flow
JPS6341494B2 (en)
JPH05107094A (en) Flow detection method of thermal flowmeter
JP2879256B2 (en) Thermal flow meter
SU877441A1 (en) Device for determination flow speed
SU614371A1 (en) Method and apparatus for determining heat conductivity
RU2087871C1 (en) Method of measurement of flow rate of multiphase stream
JPS6259865A (en) Measuring method for flow velocity
JPH0299831A (en) Method and device for controlling flow rate in tube
SU591698A1 (en) Heat flowmeter
JPS57120816A (en) Heat ray pulse flowmeter
JPS6125086B2 (en)
JPS5965720A (en) Microflowmeter
SU381901A1 (en) THERMAL FLOW METER
SU135247A1 (en) Hot-wire gas flow meter